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Thermal processes of new technological methods of heat treatment (thermocyclic, elec-
tropulse) of metals and alloys are considered in the paper. Mathematical models of the
temperature field in a moving tape and a wire with cyclically acting pulsed heat sources are
considered. Based on these models, the formulation of inverse problems for homogeneous
and inhomogeneous thermal conductivity equations is proposed. For each case (internal,
external heat source or a combination), the appropriate method for solving the inverse
problem is proposed. The integral condition of heat balance is used to construct the solu-
tions of the inverse problems. An integral condition of energy balance is used to construct
a quadratic residual functional in an extreme problem. The inverse problem in the case
when we have a combination of internal and external periodic heat sources is solved us-
ing the search method, where the integral condition was used to find the deviations and
further refinements of the desired function of the source.
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1. Introduction

The processes of heat treatment of moving and stationary objects are widely used in the powder
metallurgy, in the production of wire, as well as other products. In this paper, the heat treatment
is used as a separate operation, or in combination with plastic deformation [1–3]. This is due to the
requirements to the quality for the final product. Therefore, along with plastic deformation there are
various types of heat treatment by both external and internal heat sources [1–3]. It is important that
the heat treatment allows the creation of physical and mechanical properties of metals and composite
materials. Thermocyclic and pulse treatment using the technology of electro-plastic deformation [1–3]
is especially effective during the production of ultra-fine wire.

2. Analysis of publications on the subject of the study

The papers [4–7] contain studies of the thermal processes that occur during sintering of powdered
materials, various kinds of heat treatment and thermal processes that occur during wire drawing.
Mathematical models describe temperature distribution during processing of moving and stationary
wire and other products of cylindrical shape.

Initial boundary value problems for linear and quasi-linear heat equation in cylindrical coordinate
system (r, z, φ, t) are considered as mathematical models.

From a mathematical point of view, the study of the temperature distribution in moving and sta-
tionary axially symmetric objects can be carried out through considering different initial boundary
value problems for linear and nonlinear heat equations by introducing certain restrictions on the equa-
tion and attracting the appropriate boundary conditions that characterize the heating process. Since
most of the temperature distributions investigated by heating the product of cylindrical shape do not
depend on the coordinates φ, the partial derivative with respect to this variable in the heat equation
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can be neglected. Wires and other cylindrical shaped product are considered in the form of a moving
or stationary cylindrical isotropic medium with constant parameters and thermal characteristics with
the heating zone of the length L. In this case mathematical models of temperature fields, in which
there are both external and internal sources of heat have been already studied [5, 6]. Internal heat
sources W (z, t, T ) are caused by an electric current, which flows through the medium. External heat
sources are caused by a heat exchange of the product with the environment and are governed by the
Newton and Stefan–Boltzmann laws.

The internal heat sources in the mathematical model are represented in the form of a finite function
W (z, t, T ) in the equation, and external heat sources are represented as boundary conditions of the
first, second or third kind.

Influence of non-linear components in the equation and the boundary conditions on the temperature
distributions is considered in the mathematical models.

3. The solution of the boundary problem for the heat equation with an external peri-
odically operating heat sources

In the mathematical model, the external heat sources are represented in the form of boundary con-
ditions of the first, second, or third kind. The mathematical model of the temperature field during
pulsed treatment of a sample of the cylindrical shape, has the form [7]
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(

T 4 − T 4
c

)]

, (4)

where λ, c, ρn are thermal conductivity, heat capacity and density, Tc is ambient temperature, α, ε, σ
are the convective heat transfer coefficient from the surface, the emissivity factor and the Stefan–
Boltzmann constant. By using the relation [8]

u(z, t) =
2

r20

∫ r0

0
T (r, z, t) r dr (5)

and the boundary condition (3), we obtain a problem for the determination of the average temperature
along the radius in the area QT = {(z, t)|z ∈ (0, l), t ∈ (0, t0)}

λ
∂2u

∂2z
− v(t)cρn

∂u

∂z
− cρn

∂u

∂t
=

2εσ

r0

(

T 4
c − u4

)

+ f12(t)
2

r0
α(Tc − u), (6)

u(z, 0) = T0, (7)

u(0, t) = T0, u(l, t) = Tl. (8)

In the latter formula, the heat exchange surface of the moving medium with the environment is kept
in mind. The transformation (5) makes it possible to reduce the dimension of the problem and reduce
it to a solution of the first boundary value problem for the quasilinear heat equation. Substituting the
variables (9) in problem (6)–(8), we reduce Eq. (6) to the canonical form

u(z, t) = U(z, t)eµ(t)z+η(t)t (9)

and we obtain the following problem in the area QT = {(z, t)|z ∈ (0, l), t ∈ (0, t0)}
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∂U

∂t
= a2

∂2U

∂2z
+ f(z, t), z(t) ∈ QT , (10)

U(z, 0) = Tz = T0e
−µ(0)z , 0 6 z 6 l, (11)

U(0, t) = T (t) = T0e
−η(t)t, T (z) = T (t), U(l, t) = T1(t), 0 6 t 6 t0, (12)

where

f(z, t) = f12(t)

(

−2αTcπ
2

π2r0cρn

)

e−µz−η(t)t, µ =
vcρn
2λ

, η(t) =
−v2cρn

4λ
+ f12(t)

2α

r0cρn
.

We have a correctly formulated problem, because the solution of problem (10)–(12) exists, it is
unique and stable with respect to small perturbations f(z, t), T (z), T1(z).

Problem of reconstructing the heat source. In the case where the heat source is a known
function, we come to the inverse problem.

Such problems arise during control of temperature fields. Here, it is necessary to find temperature
distribution in the axisymmetric environment. Let the thermal characteristics of the medium be
constant. After applying averaging (6) and further transformations the problem (1)–(4) is transformed
into (10)–(12). Here, the function f(z, t) can be determined fully only when we know the temperature
distribution throughout the heating area. Therefore, during assigning the heat sources we assume the
amount of energy that turns into heating of the area and loss from the surface to be a known. The
condition of the heat balance in the case of an external source takes the form

∫ t0

0+

∫∫

G

α(T )
T (r, z, t) − Tc

v
dg dt = cρn

∫ t0

0+

∫ r0

0

∫ l

0
f12(t)

(

T (r, z, t) − T0
)

dz dr dt. (13)

After averaging (5) and applying (9) to the condition (13), we have

∫ t0

0+

∫ l

0
α(T )

U(z, t)eµz+η(t)t − Tc
v

dz dt = cρn

∫ t0

0+

∫ l

0
f12(t)

(

U(z, t)eµz+η(t)t − T0

)

dz dt. (14)

Based on Eq. (14) we introduce the quadratic residual functional [9, 10]

J(f) =

∫ t0

ε+

∫ l

0
[W1(U, f)−W2(U)]2 dz dt,

W1(U, f) = α(T )
U(z, t)eµz+η(t)t − Tc

v
, W2(U) = f12(t)

(

U(z, t)eµz+η(t)t − T0

)

.

We complete the statement of an inverse problem by adding initial and boundary conditions to the
heat equation. We have the inverse problem (10)–(12) in the area QT = {(z, t)|z ∈ (0, l), t ∈ (0, t0)}.
The function f(z, t) in (10) is found under the condition of a minimum of quadratic residual functional
and restriction J(f) > δ2,

δ2 =

∫ t0

0+

∫ l

0
σ2dz dt,

where σ2 is dispersion of the function W2(v) [9, 10].
The iterative process is built in the space L2(Q), Q = Ω × [0, τm] using a conjugate gradient

method [9–11]
fk+1 = fk − bkS

k, k = 0, 1, . . . , k, (15)

where Sk = J
′k
f + γkS

k−1, γk = ‖J
′k
f ‖2/‖J

′k−1
f ‖2, βk = Uk−f,V k

‖Vk‖2
, Uk = U(fk, z, τ) is the temperature

field at the kth iteration, V k = V (∆fk, z, τ) the gradient of the temperature field at the kth iteration,
when the source varies by amount ∆fk; (u,w) =

∫∫

Q
u(z, t)w(z, t) dz dt, ‖u‖ =

√

(u, u) scalar product

of elements u(z, t), w(z, t) and the norm of element u in space L2(Q). The gradient of temperature field
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V k is obtained from the solution of the homogeneous boundary value problem for the inhomogeneous
equation

∂V

∂t
= a2

∂2V

∂2z
+∆f(z, t), (z, t) ∈ QT , (16)

V (z, 0) = 0, 0 6 z 6 l, (17)

V (0, t) = 0, V (l, t) = 0, 0 6 t 6 t0. (18)

We get the objective functional gradient using the conjugate variable ψ(z, t). Identity (Lv, ψ) =
(v, L ∗ ψ) allows us to write the conditions of the conjugated problem:

L ∗ ψ = ζ, (z, t) ∈ QT , (19)

ψ(z, tm) = 0, (20)

ψ|∂Ω = 0, (21)

where L ∗ ψ = ψt + a2ψzz, ζ = ζ(z, t) some function. The formula for the gradient can be written as
J ′
q = ψ, (z, t) ∈ Q.

For the organization of the iterative process (15) at each step we calculate the temperature, tem-
perature gradient and the conjugate variable. To find U(z, t), V (z, t), ψ(z, t) we need to solve all three
problems (10)–(12), (16)–(18), and (19)–(21). To this end we use a six-point difference scheme [10].
Let us introduce the grid ωh = {zi = ih, i = 0, 1, . . . , N}, ωτ = {tj = jτ, j = 0, 1, . . . , j0} and the grid
̟hτ = ̟×ωτ = {(ih, jτ), i = 0, 1, . . . , N, j = 0, 1, . . . , j0} with steps h = 1

N
, τ = t0

j0
. Let us denote by

yji the values in nodes (zi, tj) of grid function U , which is defined on ̟hτ . We replace the derivative
∂U
∂t

by a first difference derivative, and the derivative ∂2U
∂2z

by a second difference derivative Uzz. Then
we will enter arbitrary real parameter σ and consider one-parameter family of difference schemes, i.e.,

yj+1
i − yji
τ

= Λ(σyj+1
i + (1− σ)yji ) + ϕj

i , 0 < i < N, 0 6 j < j0, (22)

yj0 = T j
1 , yjN = T j

2 , y0i = y(zi, 0) = T (zi), ϕj
i = f(zi, tj+0,5),

tj+0.5 = tj + 0.5τ,

or
ϕj
i = 0.5(f + f), f = f(zi, tj+0.5), Λyi = yzz,i = (yi−1 − 2yi + yi+1)/h

2.

The difference scheme (22) is written in a six-point pattern. At σ = 0.5 it is absolutely stable with
respect to the initial data and the right hand side [10]. Then, the sweep method is used for solving
the system of equations.

4. Solution to the heat conduction problem with internal heat sources

Consider a general formulation of the problem of determining the temperature field in a moving
medium, which is heated by internal heat sources. The heating process occurs in two stages. In
the first stage the medium is heated with variable speed v(t). This is an unsteady transition process.
During the transition process, which occurs during the time 0 6 t 6 t0, the medium speed v(t) varies
within the range 0 6 v(t) = const.

If during the transition process the heat sources with unchanged parameters act in the heating zone,
then the temperature field will be of nonsteady nature. Along with the question of determining the
temperature distribution during the transition process there appears a technical problem how to define
the control parameters of heating process, in order for the temperature of the field during medium
movement with a variable v(t) speed to be steady. This can be achieved if we choose the appropriate
heat source density.
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Starting from the time t0, for t > t0 the speed of the wire becomes constant v = const. The choice
of control parameters allows maintaining a processing rate required from a technological point of view
in the area of the EPD. The density of the sources can be chosen in such a way that during the analyzed
period of time the temperature should remain near the predetermined one.

The definition of nonstationary temperature distribution during the transition process leads to the
solution of the following initial boundary value problem for the heat equation in area Ω: {(z, r, t)|0 <
z < l, 0 < r < r0, 0 < t 6 t0)} [4–7]
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∂r

)

+ λ
∂2T

∂z2
− v(t)cρn

∂T

∂z
− cρn

∂T

∂t
= −W (z, t, T ), (r, z, t) ∈ Ωt,

T (r, z, 0) = T0,

T (r, 0, t) = T0, T (r, l, t) = Tl,

∂T

∂r

∣

∣

∣

∣

r=0

= 0, λ
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∣

∣

∣
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[
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(

T 4 − T 4
c

)]

, (23)

where λ, c, ρn are thermal conductivity, heat capacity and density, Tc is ambient temperature, α, ε, σ
are the convective heat transfer coefficient from the surface, the emissivity factor and the Stefan–
Boltzmann constant. The heat sources function W (z, t, T ) when depends on the coordinates and time
takes the form [4]

W (z, t, T ) = f11(z)f2(T ), 0 < t 6 t0, (24)

W (z, t, T ) = f12(t)f2(T ), t > t0,

f2(T ) =
I2ρ0(1+βT )

π2r4
0

, ρ0, β are resistivity and temperature coefficient of resistance of the wire.

Using the relation (5) and the boundary condition (23), we obtain the problem of determining the
average temperature along the radius in the area QT = {(z, t)|z ∈ (0, l), t ∈ (0, t0)}

λ
∂2u

∂2z
−v(t)cρn

∂u

∂z
−cρn

∂u

∂t
+f12(t)

(

2

r0
α+

βρ0I
2

π2r40

)

=
2εσ

r0
(T 4

c −u
4)+f12(t)

ρ0I
2

π2r40
+f12(t)

2

r0
αTc, (25)

u(z, 0) = T0, (26)

u(0, t) = T0, u(l, t) = Tl. (27)

Consider the task of restoring the internal heat source. In this case, we assume the amount of energy
that transforms into heating the environment and loss from the surface is should to be known,

∫ t0

ε+

∫ r0

0+

∫ l

0
f12(t)

I(t)2ρ0l + βI(t)2ρ0lT (r, z, t)

v(t)r40π
2

dz dr dt = cρn

∫ t

ε+

∫∫

G

(

T (r, z, t) − T0
)

dg dt

+
αl

r0

∫ t0

ε+

∫ r0

0+

∫ l

0
f12(t)

T (r, z, t) − Tc
v(t)

dz dr dt. (28)

We have the inverse problem (25)–(28) in the area QT = {(z, t)|z ∈ (0, l), t ∈ (0, t0)}. After averaging
over the radius and assuming that the temperature field is independent of the angular coordinate, the
condition, Eq. (28) takes the form [4–7]

∫ t0

ε+

∫ l

0
f12(t)

I(t)2ρ0l + βI(t)2ρ0u
∗(z, t)l

v(t)r40π
2

dz dt = cρn

∫ t

ε+

∫ l

0
(u∗(z, t)− T0) dz dt

+
αl

r0

∫ t0

ε+

∮

l

f12(t)
u∗(z, t)− Tc

v(t)
dz dr dt. (29)

Based on Eq. (29) we introduce the quadratic residual functional [9–11]
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J(f) =

∫ t0

ε+

∫ l

0
[W1(U, f)−W2(U)]2 dz dt,

W1(U, f) = f12(t)
I(t)2ρ0l + βI(t)2ρ0u

∗(z, t)l

v(t)r40π
2

,

W2(U) = cρn (u
∗(z, t)− T0) +

αl

r0
f12(t)

u∗(z, t)− Tc
v(t)

.

The further treatment of the problem with internal heat sources is similar to the solution of the problem
with an external heat source.

5. Boundary value problems of heat conduction with a combination of internal and
external heat sources

We consider a mathematical model of the thermal process with a combination of internal and external
periodically-operating heat sources, i.e., the heat sources are reflected by both the equation and the
boundary conditions,
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∣

∣

z=L

= f1i(t)
[

α(T )(T − Tc) + εσ
(

T 4 − T 4
c

)]

,

(30)

∂T

∂r

∣

∣

∣

∣

r=0

= 0, λ
∂T

∂r

∣

∣

∣

∣

r0=0

= f1i(t)
[

−α(T )(T − Tc)− εσ
(

T 4 − T 4
c

)]

, (31)

where W (z, t, T ) in the case of dependent on the coordinates and time heat sources get the form (24).
After averaging of Eq. (5) we attain to the problem in the area QT = {(z, t)|z ∈ (0, l), t ∈ (0, t0)}
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F (T, t) =
2εσ

r0

(

T 4
c − u4

)

+ f12(t)
ρ0I
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π2r40
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2
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We need to find I(u), which is the function of temperature

∫ t0

ε+

∫ r0

0+

∫ l

0
f12(t)

I(t)2ρ0l + βI(t)2ρ0lT (r, z, t)

v(t)r40π
2

dz dr dt = cρn

∫ t0

ε+
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(

T (r, z, t) − T0
)

dg dt

+
αl
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∫ t0

ε+

∫ r0

0+
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0
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v(t)

dz dr dt.
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We start the solution process with a priori setting the value of I(u), which can be determined from the
integral equation (34), where the function u∗(z, t) is taken from the solution of the simplified problem.
Then we will find a solution to problem (30)–(33). This is a correctly formulated direct heat conduction
problem and can be solved numerically with the help of a difference scheme. In the problem (30)–
(33) the right side of the equation, the boundary conditions contain piecewise continuous functions.
To obtain the solution, we will build a conservative difference scheme using the balance method.
Conservative schemes can be obtained by the balance method (integro-interpolation method) [10].

Deviation of the model function uβ(z, t) that is found in the approximation β and given by the
condition (34) is used as an error signal for further clarification I(u). To determine the variation of
the function I(u), which reduces the residual η = uM (0, t) − T0(t) by combining method [11–14], we
will decompose I(u) into Taylor series in powers u and consider only finite number of terms

I(u) = I0 + I1u+ I2u
2 + I3u

3 + . . . + Iju
j.

This polynomial contains the j+1 of variable parameters Ij . If the function T0(t) varies monotonically,
then we will present Eq. (35) in the form

I(u) = a0 + a1(u− T 0k) + a2u(u− T 0k) + a3u(u− T 0k)
2 + a4u

2(u− T 0k)
2 + . . . ,

u = u− T0(0),

T 0k = T0(tk)− T0(0).

On the right end of the interval [0, tk], at u = T 0k, the unknown coefficient aj(Ij) depends only on a0.
To find the parameters aj(Ij) (j = 1, 2, . . . , J) to each of them is assigned a function value T0(tj) at
a certain point tj of the interval [0, tk]. Thus, the function value T0(tk) at time tk corresponds to the
value a0. Search for optimal parameter values aj(Ij) which provide for the residual ξj = um(tj)−T0(tj)
condition |ξj| 6 δ is based on a method of consistent residuals minimization by the following algorithm.

To each parameter aj a certain residual ξj (j = 0, 1, 2, . . . , J) is assigned. The test step ∆a1
is performed by the first parameter a1 and the solution (direct problem) is found, which results in
determination of the increment of the corresponding residuals ∆ξ1 and the approximate value of the
derivative ∂ξ1

∂a1
= ∆ξ1

∆a1
is calculated. Next, several working steps on the parameter a1 at a fixed value of

other parameters is done until the condition |ξj | 6 δ for the residual ξj (j = 1) is satisfied. The value
of working steps is determined according to the following formula at Aj = 1

∆aj = −Ajξj
∂a1
∂ξ1

. (36)

Thus, the derivative ∂a1
∂ξ1

can be refined after each βth working step, i.e.,

(

∂aj
∂ηj

)(β)

=
a
(β)
j − a

(β−1)
j

ξ
(β)
j − ξ

(β−1)
j

.

Suppose that for the residuals ξj (j = 1, 2, . . . , s, s < J), which correspond to the parameters
a1, a2, . . . , as, condition |ξj | 6 δ is satisfied. In this case, the values of the parameters a1, a2, . . . , as+1,
which are subject to the inequality |ξj | 6 δ, ξj (j = 1, 2, . . . , s + 1) are determined. In the beginning,

we make a test step ∆as+1 on the parameter as+1 and then we calculate the derivative ∂ξs+1

∂as+1
= ∆ξs+1

∆as+1
.

Then the first working step is performed on this parameter, the step size is determined in accordance
with (36). Each following step on the parameter as+1 occurs after calculation cycle that is associated
with a change of the parameters a1, a2, . . . , as+1 untill condition |ξj| < δ (j = 1, 2, . . . , s) is satisfied. In

this case, we do not implement test steps to find the derivative
∂ξj
∂aj

(j = 1, 2, . . . , s), in contrast to the

case of the calculation cycle, which preceded the change of parameter as+1. The derivative
∂ξj
∂aj

for the

first working step is taken from the previous cycle, and, in this case, the increment ∆aj is calculated
according to the formula (32) at 0 < Aj 6 1. The calculation is terminated when all the components
ξj (j = 1, 2, . . . , s, s < J) of the residual vector satisfy the condition |ξj | 6 δ.
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6. Conclusions

A mathematical model of thermal processes in a cylindrical area with the existing internal and external
heat sources is considered. We have investigated the methods for solving the inverse boundary value
problems of heat conduction. From the physical point of view, the problem describes thermal processes
during thermal cycling and electric pulse treatment of cylindrically shaped samples.

Depending on the type of the inverse problem and the known parameters of the process describing
the mathematical model, the appropriate method of its solution is proposed. In particular, the problem
of restoration of the right side of a parabolic equation is considered. We have shown that the problem of
finding the temperature field and concentration distribution of both internal and external heat sources
can be reduced to external ones and solved by one algorithm.
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Iнтегральнi умови в обернених задачах теплопровiдностi

КобильськаО.Б., ЛяшенкоВ.П., ГригороваТ.А.

Кременчуцький нацiональний унiверситет iм.М.Остроградського,

вул. Першотравнева, 20, 61046, Кременчук, Україна

У роботi розглянуто тепловi процеси пiд час нових технологiчних методiв обробки
металiв i сплавiв (термоциклiчної, електроiмпульсної). Побудовано математичнi мо-
делi температурного поля в рухомiй стрiчцi та дротi з циклiчно дiючими iмпульсними
джерелами тепла. На основi цих моделей запропоновано формулювання обернених за-
дач для однорiдних та неоднорiдних рiвнянь теплопровiдностi. Для кожного випадку
(внутрiшнього, зовнiшнього джерела тепла або їх комбiнацiї) запропоновано вiдпо-
вiдний метод розв’язування оберненої задачi. Iнтегральна умова балансу тепла ви-
користовується для побудови розв’язкiв обернених задач. Зокрема, iнтегральна умо-
ва балансу тепла використовується для побудови квадратичного функцiоналу якостi
в екстремальнiй задачi. Обернену задачу у випадку, коли є комбiнацiя внутрiшнiх
та зовнiшнiх перiодично дiючих джерел тепла, розв’язано за допомогою пошуково-
го методу, де iнтегральна умова використана для пошуку вiдхилень та подальшого
уточнення потрiбної функцiї джерела.

Ключовi слова: математична модель, обернена задача, джерело тепла, iнте-

гральна умова.
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