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It is shown that the two-electron wave function of the system “hydrogen atom + photo-
electron” in the Born approximation provides high accuracy of the photoionization process
cross-section calculation of negative hydrogen ion. The partial cross-sections, which corre-
spond to different “reaction ns-channels” in the scale of photoelectron energy and the scale
of wavelengths are calculated. The comparisons with the results of other authors which
obtained by other methods are performed.
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1. Introduction

The coefficient of continuous absorption in the stellar photospheres is formed by many processes of
photons interactions with atoms of different chemical elements, their ions and electrons. In the case
of stars of medium spectral types, similar to the Sun, the main mechanism is the photoionization of
negative hydrogen ions, which ionization potential is 0.0555... Ry ~ 0.7551¢eV. Its significant contri-
bution to the formation of the absorption coefficient is in the region A < 16.4 - 103 A. The idea about
photoionization process of H~ ions were proposed by R.Wildt [1,2], and the first approximation of
cross-section calculations were performed by S.Chandrasekhar [3,4] and T.John [5]. The R. Wildt’s
idea was so attractive, that inspired also experimentalists. The most accurate results were obtained
in the work of S.Smith and D.Burch [6], which experimentally established the spectral dependence
with respect to the cross-section a(\)/o(Xg) at Ag = 5280 A in the region 4000 — 13000 A. In fact, in
this work was established the dependence on the wavelength of some effective hydrogen cross-section,
with small contributions given by other processes. The results of theoretical works generally agreed
well with the results of S.Smith and D.Burch, but could not describe the non-monotonic nature of
spectral curve around its maximum, in the region 7000 — 8200 A. In the work [7] was first shown, that
the additional consideration also of the process of photoionization of excited hydrogen atoms explains
the features of the experimental curve. On this basis is given the interpretation of some decrease of
the continuous radiation intensity of the Sun in the region 6500 — 8200 A, which is known from the
reliable observational data, that was obtained at the end of the XX-th century [8,9].

The calculations of the cross-section of photoionization process for H~ ion were performed by several
authors [10-14], and the deviation between the obtained results reaches 2%. All works devoted to the
calculation of cross-section for photon collision with H ™ ion, as the result of which the formed hydrogen
atom is in the ground state. The accuracy of results depends on the calculation accuracy of the two-
electron wave function of the H~ ion and the wave function of the system “atom -+ photoelectron”.
Using the variational functions in this case is the general rule. The description of the system “atom +
photoelectron” is similar to the problem of electron scattering on the hydrogen atom, but not identical
with it. In the photoionization problem it is important to correctly describe the photoelectron state
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at close distances to the atom and their mutual influence. The best results were yielded also here with
help of the variational method. In particular, in the work [10] was constructed the wave function of
the system “atom + photoelectron”, which has 10 variational parameters. Unfortunately, the values
of these parameters are not given in the work, therefore, the role of individual inter-electron effects
remained unknown.

Due to the necessity of observable features interpretation of continuous radiation of the Sun and
other stars, the problem of calculation of cross-section collisions H~ ions and the hydrogen atoms
with photons remains relevant, as well as the precise calculations using the alternative methods. In
the present work we use the compact wave function for H~ ion, calculated with basis-variational
method [13]. The wave function of the system “atom + photoelectron” we obtain from the Schrédinger
equation, which is reduced to the system of integro-differential equations. In the Born approximation
the intermediate calculations are performed in the analytical form, and the calculation of the part of
matrix elements of the electron momentum operators is reduced to the computer calculations of single
integrals.

2. General relations

Let the outcome of the photoionization process of H~ ion be a neutral hydrogen atom, in which the
electron is in the state that described by the wave function ¢, (r), and the photoelectron with the wave
vector k and the energy ¢, = h%k%/2m. The process of photoionization as a quantum transition in
the two-electron system in the so-called dipole approximation corresponds to the transition intensity

function
2

1
mhwo,k ( )

Here P; is the momentum operator of i-th electron, and the difference between the energies of the final
and initial states of the system

(Wl [P1 + Po)w )|

2
hwop =cep+ By — BE_ = %(kf + Ae + £oxe(0)), (2)
0

where k. = kag, ag is the Bohr radius, Ae = 0.0555.. .. is the ionization energy, eexc(0) = 1— n;2 is the
excitation energy of the atom in Rydbergs, and e, is the unit vector of electromagnetic field polarization.
Furthermore, ¥_(ry,ry) is the H~ ion coordinate function, which is symmetric with respect to the
permutation r; and ro, W, k(ri,re) is the similar system function “atom + photoelectron”. Due to
the symmetry of the wave functions, the matrix elements of both electrons are the same. In the
case of unpolarized light as a result of averaging over the mutual orientations of the vectors e, and
P, (k) = (¥, ,|P;|¥_) the function (1) can be reduced to the so-called oscillator strength

fo(k) = 8[3mhwo,k]_1 ‘Po(k)‘z ) (3)
which determines the partial cross-section of the photoionization process for the o-channel
2m2e?h
So(w) === folk) 8(lwe — w), (4)
k

where Aw is the photon energy, and the J-function provides the energy conservation law. The cross-
section can also be represented in the wavelength scale, or the photoelectron energies. In this case it
is convenient to use dimensionless quantities

we = hw(€2/2a0) ™, kw=kao, A = Ao, (5)
where \g = 2mch(e?/2a0) ™" = 911.27 A. There is the relation between these quantities as follows:
k2 + Eexc(0) + Ae = w, = AL
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The calculation of photoionization cross-section of negative hydrogen ions in the Born approximation 127

The full photoionization cross-section of the H ™ ion is the sum of partial cross-sections that correspond
to different channels

S_(w) =) Selw). (6)
3. The wave function of the H~ ion

In the work [12], the coordinate wave function of the H~ ion is represented as the bilinear expansion
by one-particle electron wave functions in neutral hydrogen atom ¢, (r)

¥_(ri,rp) = E o105 Por (T1) o (r2), (7)
01,02
where a,, 5, are the unknown coefficients, moreover as, s, = @o,,0,, Which follows from symmetry

U_(ry,ro) of the H™ ion, which exists only in the singlet state. Substituting the expression (7) into
the Schrodinger equation that describes the state of two electrons in the proton field

A~

H(I’l, I'Q)\If_(l'l, I'2) = E_\I’_(I'l, 1'2),

B - - e? - Rv? €2 (8)
H(I'lar2) = h(I’l) + h(I'Q) + 7‘_127 h(rl) = — o — r_i’

we obtained the system of homogeneous linear equations

Z {Hag,al\ai,aé - E—501,Ui 602#’&} aai,aé = 0’
01,04 (9)
Hos 011000 = /drl /dr2 Py (T2) Py (1) H(r1,12) 01 (r1) 0 (r2).

The system of equations (9) was solved by the method of perturbation theory. To this end, the
superposition is used as a zero order approximation

k
VO (ry,r9) = ag® > arti(py, ps) (10)
=1
which are normalized and orthogonal functions

e N e R )
N = {1 + (4a1a2)3(a1 + 012)_6}_1/2; (11)
Di(p1, py) = Ni(mv2L— 1) " ()2 (p1p2) TP (1) exp [~ (p1 + p2)]

at [ > 2, P_1(t) is the Legendre polynomial of the order I — 1; ¢ is the cosine of angle between the
vectors p; and po, p; = ri/ag; No = 1; N3 = 2/9; Ny = 1/45, ...; the parameters a;, ay and +; are
the variational ones. The coefficients a; are determined from the secular problem, and the parameters
1, g, 7 from the minimum energy condition of H~ ion. In the case kK = 4 the ion energy in such
approximation equals Fy = —1.05239 Ry,

a1 = 0.9939285, ap = —0.1086079, a3 = —0.0176175, a4 = —0.005792;

o = 1.03524,  ap = 0.326516, v2 = 1.00138, v3 = 1.53401, Y4 = 2.09053. (12)
The expansion coefficients W() (ry,ry) for the basis functions ¢, (r)
Aovr = [ [ s g WO e1,52) 5, ) 5, 02 (13)
were used as a zero approximation to find the solutions of the system (9). Using the substitution
Uoy,00 = Aot 00 T Qo 0o (14)
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the system (9) is reduced to the system of linear inhomogeneous equations for the unknowns o, 4,

Z a0170§H02701\0'170§ —E_0s,,0, = E_As 0, — Hoy 0,
71 (15)
Hq oy = // dry dr ¢, (r2) @5, (v1) H(r1,12) U0 (11, 12),

and

E_=FEo+ Y oo {H} ., — E-A} ,,}. (16)

01,02

The coefficients oy, », were found in the first approximation of the perturbation theory,

()‘5711),02 = {E0A01702 - H01,02}{ﬁ01,02 - EO}_l,

(17)
H017U2 = Haz,al\al,ag - (1 - 501702) H02701|02,017
as a result of which the energy and the wave function of H~ ion are following
Eg) = Eo + Z A E‘71702; AEUWZ = ag'll)ﬂ?{H:'l,O? B EOAZlyUz};
(1) 01’0(20) 0 (18)
U (e, 1) = UO(ry, ) + D~ all) 05, (11) @0, (r2).

01,02

The calculations were performed using the hydrogen functions ¢14(r), pa2s(r), ¢3s(r), Y2pm(r), where
m = 0,%+1. In such approximation the H~ ion energy becomes E_ = 1.055472... Ry, moreover the
corrections AFEg, 5, < 0.

It should be noted that the 5-parameter function W(®) (r1,r2) gives the same value of H~ ion energy
as the R. Tweed’s function with 31 or 41 parameters [15], or 20-parametric J. Hart and G.Herzberg
function [16]. The H~ ion energy which was obtained in the work [12] differs from the result of the
work [17], in which the variational function with 444 parameters was used, only on 2.7 - 107> Ry.

4. The wave function of the system “atom + photoelectron”

To describe the systems with localized and delocalized electron states, it is natural to use the reference
system approach [18]. In this approach the wave function of the system “atom -+ photoelectron” can
be written in the form of expansion

Woslrirs) = 3 37 (oo (1) Fo (Klra) + o (12) Fo (K1)}, (19

N is the normalization constant. In order to make this function satisfy the o-channel of reaction, when
in the result of ionization formed neutral atom with the electron in the state ¢, (r) and photoelectron
with the wave vector k and the energy ¢, = h2k?/2m, the next conditions must be fulfilled

. 0 _ .
lim F,(k|r) = goli)(r) = V2 expli(k, )],
lim Fy,, (klr) =0 at o5 #o0.
r—00
Therefore, the main term in the expression (19) is the term o7 = o, which corresponds to the model of
“hard” atoms, and terms o1 # o play the role of corrections that take into account the atom polarization
by photoelectron. The wave function (19) and the function W_(ry,ry) are the eigenfunctions of the
same Hamiltonian, which correspond to different energy values, therefore they must be orthogonal to
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The calculation of photoionization cross-section of negative hydrogen ions in the Born approximation 129

each other. The sufficient condition for this is the orthogonality of unknowns Fj, (k|r) to the atomic
wave functions

[ Bkl 5, () =0 (21)

At the approximate calculations this condition can be used in the optimization procedure for finding
correct approximations for the functions Fy, (k|r).

For the purpose of clearness, we consider the first case of 1s-channel of reaction, when the ionization
product is the hydrogen atom in the ground state (o = 1s). This channel is most important, because
it corresponds to the cross-section, which is non-zero in the range 0 < A < 16.4 - 103 A and only this
channel was considered in the works of our predecessors. The another channels of reactions, which we
will consider later, correspond to the cross-section, which are non-zero in the range of deep ultraviolet
(A < 1241.5A).

Substituting the expression (19) in the Schrodinger equation and taking into account the expres-
sion (21), we obtain the system of coupled integro-differential equations for the functions

2v2
{ Tl e+ Eoy — E1s + Vo, (T)} F, (r)

’ Fgl(rg dI‘2 Z Mal ) (22)

o (1) / o, (r2)
o’ (#o1)

Ir — rof
Here the following notation is used

N 62
Mcr’ (I') Fcr’ (I') = Woy 0’ (I') Fcr’ (I‘) + g (I') / 90:;1 (r2) ‘1_7 Fcr’ (r2) dI'g,

"
2
* €
Wy (T) = /%l (r2) | Po(r2) dra, (23)
62
Vo, (1) = = — + woy 0 (r).

So, the left side of the equation (22) takes into account electrostatic and exchange effects of “hard”
model of atom, and the right side describes the analogous influence effects of different states (o’ # o1)
on the formation F,, (r).

In order to find approximate solutions of the system (22) we transform it to the integral form. Let

us introduce a set of Green’s functions G((,Ol) (r,r’), which satisfy the equation

n*v? Oy /
—ep+ Esy — E15 ¢ Gy (r,1') =6(r —1'). (24)
2m !
Using the solutions of equation (24)
Ggol)(r, ') =V"! Z{gq —er+Ey — Els}_ exp[ (q,r—r )] (25)
q

we write the system of equations (22) in the integral form:

Fop(r) = FO(r) - / GO (r,r') @, (') d’,

. e? - (26)
o, (1) = v, (') oy () + 0, (1) / P (2) [ F () dra b 3 Mo x) Fon (),
? o' (Fo1)
The functions Fé?)(r) are the solutions of equations
Ve
{_ om _5k+Ecr1 _EIS}FU(?)(I') = 0. (27)
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In accordance with the asymptotics (20) the function Fi4(r) is a plane wave, and the solutions (27) at
o1 # 1s must be the localized functions with condition e, < E,, — E15. In the case ¢ > E,, — E15 we
(

assume FJ?) (r) = 0. Let us introduce the projection operator

p:1_2‘900><900" (28)

Acting on the plane wave 4,01({0) (r), this operator forms a so-called orthogonalized plane wave,

Ped) = 600 = 3 (el 0l0) = ). (29

(e
which is orthogonalized to the atomic functions ¢, (r) by definition. According to the condition (21)
P F,, (r) = F,,(r). In those cases when Fog?) (r) is the localized function, it can be represented in the

form of expansion for the functions ¢, (r), but because of that ISFé?)(r) =0 at o1 # 1s.
Acting on the left and right sides of the equations (26) with the operator P, we transform them to
such form:

For (1) = (0 b1~ [ G (0,7) @, () (30)

where 0., 15 is the Kronecker symbol,
GO’I (I‘, I‘/) = V_1/2 Z{Eq — €&+ EU1 - Els}_lcpq(r) eXp [—i(q, r/)] . (31)

q

To solve the equations (30) we apply the iteration method. In the first Born approximation

62

F1(51)(1') = pk(r) — /Gls(l‘ﬂ“/) {Vls(r,) ei(r) + p1s(r) /dl‘z p15(r2) ¥ —ra] sﬁk(r2)} dr’

= pk(r) + x1s(k|r); (32)
2
vis() = =5 (1+ r/ag) 7210,

and at o1 # 1s

e2

) =~ [ Gaer) {wm,lsu’) o)+ 1) [ s, ()

= Xou (Kr).
The application of such approximation is justified by the fact that the corrections x15(k|r) and x,, (k|r)
have built on orthogonalized plane waves, and electrostatic and exchange potentials are weak.
Integration over the variables r’ and rq in the expressions (32), (33) is easy to perform, using the
(0) (0)

expansions of potentials and plane waves ¢, ’(rz), ¢q  (r') by the spherical harmonics:

e

|/ — ro]

(33)

expli(k,r')]= Y (2 + 1) (i) Pu(ke, p) ji(kep), ko = kao;
=0
&2 _fip(/\)a( ) P(A)—ZIILL—WY*( ) Yim(p2)
|I'1 —I'2| - ao £ 1\P15P2 1\P1,pP2), 1\P1, P2 —m:_l 2l—|—1 Im P1 I,m P2), (34)
Pi(k«, p) = —— Y (k) Vi (p),
) (K+, p) m;zzl“ i (K2) Vi (p)

where a;(p1,p2) = pylp5™ at p1 > po, apr,p2) = p3' P at po > pi; Pi(ar,as) is the Legendre

polynomial of I-th order from cosine of angle between vectors a; and ag; Yj,,(p) is the spherical
function, which depend on the angular variables of the vector p, ¥}, (k) is the same function of
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angular variables of the vector k,; j;(x) is the spherical Bessel function of I-th order of first kind [19].
It allows us to rewrite x15(k|r) in such form:

drre?a? r) — N —ls
s (kfr) = — == Z ;Pq_( E)k 320+ 1) BGaQ) S (ke 02)- (35)
q 1 1=0

Herewith Pl(l;a) is the Legendre polynomial from cosine of angle between vectors k and q;

Ells(k*aQ*) = {8alls (Kxy q4) +Vl k., qs } Z qz,l(k*) {Sb}il(Q*) +V11,SI(Q*)} (36)
n=I+1

is the scalar function of dimensionless variables k, and g.. Here we used such notation (g, = gag):

a® (ke, q) = [2(21 + 1)}_1// dpy dpa(p1p2)’e " e 2 ai(py, p2) Gi(kep1) Ji(qep2);
0

v (key ) = — /0 dp p(1 + p) e~ ji(ksp) ji(qep);
b¥(qs) = [2(21 + 1)}_1//0 dp1 dpa(p1p2)2ar(p1, p2)e” PP R, 1(p9) Gi(gepr); (37)

o . 1 _
vii(a) = [ dopr Ruso)idan) o). o) = =5 (14 p) e

where R, ;(p) is the radial factor of atomic function ¢, (r) at o = (n,l,m);
dnall) = (<0) [ dps? Rus(p) op) (33)

The factor {Salls(k‘*, qx) — 1% (ks q*)} in the formula (36) corresponds to the plane-wave approximation,
and all others — account for orthogonalization components. The convergence of the expansion relative
to the orbital wave number [ in the formula (36) in the case of low-energy photons (at k. < 1) is
provided by the asymptotics of the coefficient functions

a* (key @) ~ (k) v (ke g) ~ (R)', G (k) ~ (k) (39)

Flg 1 illustrates this behavior of functions ai®(kx, gx). The functions a{® (K, gx), ai®(kx, ), V3% (kx, qx),
Vl (k«, q«) are given in the analytical form in the Appendix.

0.7

1 :
ap® (ks gx) 0.014 | ai®(kx, qx)
0.6 A
0.012 1
0.4 1 .
0.008 1 03
0.3 1
0.006 A 0.2
0.2 1 0.004 1
0.1
0.1 A R
0.002 0
0 T T T T T 0 T T T T T i
0 0.5 1 1.5 2 2.5 3 0 0.5 1 1.5 2 2.5 3

Fig. 1. Dependence of the functions a}®(k., g.) and ai®(k.,g.) on the variable ¢. at different values k..
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To yield the asymptotics Fl(i) (k|r) on the large distances from the proton, we replace the function

g (r) in the formula (35) on 4,0((10) (r) and expand the latter one into the spherical harmonics. Integrating

over the angular variables of vector q according to
4

s s P ) (40)

[ % R P (@p) -
we find following asymptotics y1s(k|r):
xis(klr) = V23 (214 1) Pk, p) T (k).
1=0 (41)
Gele) =7 [ G i 2.
P ) qZ—kZ J\GxP) =p (Rxs Gx )

™

Taking into account the asymptotics of the Bessel functions [19]

1
Ji(z) = — sin [z - gl] at z>1, (42)
z
as well as the expression
5% (ke, —a.) = (=1) P (ke 02, (43)

we reduce T}'*(k.|p) to such form

too g .
qxqx ezq*p ”1s(k*,q*) p—l ezk*p Ells(k*,k*) (44)

Tls k* — I —1/
l ( ‘,0) [”Tp] Cw qg_kg

It follows that Fi4(k|r) has the asymptotics

Fro(klr) = V=12 {e“k*vm —pte®r N2+ 1) Pk, p) B (ks m} , (45)
=0

which is the sum of the plane and spherical waves, and the expression
Sis(ks) = 47TZ 20 +1) 2 (ke k)] 2 (46)

determines the total cross-section of the scatterlng of the electron on the hydrogen atom, which is in
ground state, taking into account electrostatic and exchange corrections.

The calculation of Born corrections x., (k|r) at o1 # 1s are performed according to the scheme
described above. In the case of ns-states (n > 2) we get the analog of the expression (35)

4re?al ©q(r) > 1
ns(K|r) = — 0 a 20 + 1) Pi(ke, qs) 25" (ks g 47
XKl ==Y oy 2 T DAl @) 5 (kg (4D

Herewith
=10 (k. 0) = {80, (k. ) +w33 ”S(k*vq*)}
(YD G ) (SO (0 + w0}, (48)
ne2l+1

where introduced here functions are the analogous to corresponding expressions from the formula (37):
15 NS

a; """ (ky, q) and bls’"s(kz*,q*) which are formed from a}*(k,¢.) and b,%(k.,q.) by the replacement
exp(—p2) = 1/2 Rpo(p2); w,*"(ka,q) and w'® 1% (gx) we get from w/®(ky,qs) and w}%(g.) by the

replacement v;5(p) — wls,ns(p) = (e2/ag)~ wls,ns( ); the expressions for g, ;(¢«) and gy, i(gs) coincide
at n =ng,.
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Integrating the expression (47) over the angular variables of the vector q, we find the explicit
expression for the function x,s(k|r):

Xns (K|r) v1/22 )! Pi(k, p) T, (k. ),

4 [*  deg.@Ziap) 1
Tls,ns k‘* _ = * = s,ns ]{7*, .).
157 () W/O B = )

(49)

0.045 1s,2s

T2 (ke|p

wosl D (k«lp)

0.035 A 0.2 \ 0.3
0.03 1 0.5

0.025 A

k« =0.1
0.02 1

0.015 A

0.01 A

0.005 A

—0.5 T T T T 0 T T T T
0 2 4 6 8 10 0 2 4 6 8 10

Fig. 2. Dependence of the functions T, ***(k.|p) and T, ***(k.|p) on the variable p at different values k..

Unlike (41), the expression (49) determines the dependence xys(k|r) at the arbitrary values r, and
the integrand does not have singularity at k? < 1 — n~2. Therefore the functions Tlls’"s(k‘*\ p) are
localized at small values of the photoelectron energy and resemble the hydrogen functions, which are
illustrated in Fig. 2 with T, **(k,|p) and T,***(k.|p). Therefore, when taking into account the terms
o1 # 1s the wave function (19) has the character of a variational wave function [10] and this is different
from the wave function of the system “atom + photoelectron” in the model with “hard” hydrogen atom.
However the functions Tls 28(1{:* |p) depend on the photoelectron energy, and in the region k2 > 1 —n =2
the function xy s(k|r) is described by the spherical wave, as well as xi s(k|r), unlike the function of
the work [10].

4.1. The two-electron transitions at the one-electron photoionization of ion H~

If the photon energy is in the interval

2 2

(1 —n~2 +0.0555) 26—% < hw < 1.0555... 26—% (50)
then it becomes possible the process of one-electron photoionization, the final result of which will
be neutral atom in the excited state and photoelectron with the energy e, = Aw — (Eexc) €2/2ag.
We consider here the scheme of calculation of the wave function of the system “excited atom -+
photoelectron”, when after the collision the atomic electron is in the state with the wave function
0o (r) = Ry i(p) Yim (0, 9) a53/2, where [ = 0;1. In the model of “hard” atom the two-electron wave
function

U, k(ry,r2) \/— {po(r1) Fr(k|r2) + @0 (r2) Fr(k[r1)}, (51)
and the function F,(r) is the solution of equation
h2v2 62
{— 5 Ek + I/J(T)} F,(k|r) + ¢4 (r) /dr2 o (ra) E— F,(k|ry) = 0. (52)
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In the first Born approximation

F) (Kfr) = oi(r) + xo(Klr),

e?

Xo(k|r) = /G r,r') {VJ ) ok (') + o (r )/dl’g o (ra) m cpk(rg)} dr’,
Z SOq exp r/)] {Eq - Ek}_1§ (53)

62 2 2 —1 e?
I/J(I'):—?-l- dra |@s(r2)|” e |r — ra :—a—oyg(p).

We perform the calculation of cross-sections for ns-states because the cross-sections for np-states
are negligible. In particular, in the case of 2s-state we obtain the analog of the expression (35),

4dme?q? r — .
vas(lr) = — T8 5 2al0) NS o)) (i) (ks g,
|4 q €a ~ %k 1=0
E7° (ksy qs) = 8a7° (kv qu) + V7% (ks i) + .5

ai®(ke,q) = [8(20 + 1)]_1//00011/71 dp2(p1p2)? Ra0(p1) Roo(p2) ai(pr, p2) di(apr) ji(kp2); (54)
B hes) = [ dora(o) i) o)
0

e’ 3 0> PP
=—— Q1+ Zp+ 2424
v2s () p { 4p 4 8 J’ ’

where Ry o(p) are the radial functions of 2s state.

5. Matrix elements of momentum operators and photoionization cross-sections

Let us consider the channel of photoionization, result of which is the hydrogen atom in the ground
state, considering the main term of the function (19), when o = 1s. In this approximation

Pis(k) = —% (W_(r1,12)]@15(r2) [V1 @ic(r1) + Vixis(kl1) |+ [@r(r2) + x1s(K[r2)| Vigis(r1)), (55)

which gives 4 components of the vector P14(k). Separating out the dimensional factor, we write P14(k)
in the form

P = 2 (é)/gmm (50
where P;(k,) are the dimensionless functions of the variable k., namely
Py(k.) = 3201 Nyw' 2 (ara2) 2k, { 1+ a2>3ozix% TRy oz1);zi¥§ +k2)? } |
Py(ky) = ;12/82 (2m)'?az 1 1%2)4 ’ (,.Y%)Ij::kz)37 (57)
i) = -ontenea 15 [* Gt | e e )
Pk =es Ty o |, e = ) G
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Calculated expression for Pi4(k) can be obtained if instead of the function Fjs(k|r) used only its
p-wave component

(p) 3t ) R 471'62(1% . R s
Fls (k|I’) = W Jl(k*r)Pl(kvr) - vV Z]l(Q*r)Pl(qu) Pl(k*7Q*) =1 (k*7q>k) 5 (58)
q

which has the structure of main terms of 45 SO0, 1017 em?
the wvariational wave functions from the 4 A 1
work [10]. The terms P;(k.) and Py (k) cor- 35 ’ 2
respond to the plane wave approximation for 5 |
the function Fy4(k|r). The terms P3(k,) and
Py(ky) created by the Born correction are 20
small in modulus and make a small contri- 27
bution to the cross-section. 15
We have also taken into account the term 14

1 05 1

7 {©2s(r1) x2s(K|ra) + @24 (r2) x2s(Klr1) } . I N,
(59) 0 2 4 6 8 10 12 14 16 18 20

in the function (19), where xos(k|r) are de- ~ Fig.3. Dependence of the cross-section S15(A.) on the

termined by the expressions (47), (48), which wavelength. Curvel takes into account the terms Pj(k.)
give the dimensionless matrix elements and Py(k.); curve2 — Py (k,) — Ps(k.); curve3 accounts for
Py (ki) — Ps(ky).

16 o dg.q? —1s,2
Pe(h) = — N 3/2/ S N
5 (K ) mal 1(aa) 0 2 —k2+3/4t (ke: gx)
(651 (a2 — 1) ag(al — 1) }
X + ; 60
{<a%+q2>2<a2+1/2>4 @2+ @P(ar 1 1/2)8 (60)
64 Vg /oo dQ*qg —1s,2s 1
Pylky) = 1) | M s oy
N e AR Vo) Al Ny = ey R L o ey

At the calculation of the matrix elements of momentum operator were used the expansion coefficients
a1, ag and variational parameters oy, ag and 7, given in (12).

According to the formula (4) the cross-section  Table 1. The cross-section Sps in the units
for the process of photoionization in 1s-channel in 1077 ¢cm?, which calculated by the expressions (56),
the wavelength scale is (57), (60), (61) in the scale of dimensionless wave vec-

) tors k, and the dimensionless wavelength ..

16 Fa(w) [ Be | M S | B | A | Su
Sis(w) = 5 a0 ag *L 2 > Pi(ke(w))| . (61) o1 [ 17.9856 | 0.00%5 [ 029 | 7.1633 | 3.5032
* i=1 0.05 | 17.2414 | 0.2810 || 0.30 | 6.8729 | 3.3918

0.10 | 15.2672 | 1.5678 || 0.35 | 5.6180 | 2.8101
where kz*(w*) = (we = Ae)'2 = (/A = A2)% 5951 19.9205 [ 3.1063 || 0.40 | 4.6404 | 2.2795
g = € /hC 1S the ﬁne structure constant. The 0.20 10.4712 3.9002 0.45 3.8760 1.8450
role of individual terms P;(k.) is shown in Fig. 3, 0.21 | 10.0402 | 3.9492 || 0.50 | 3.2733 | 1.5030
in which the cross-section Sis is depicted in the 0.22 | 9.6246 | 3.9668 || 0.55 | 2.7933 | 1.2355
scale of wavelengths in the units 10717 cm?. It 0.23 | 9.2251 | 3.9563 || 0.60 | 2.4067 | 1.0244
was also depicted the result of calculation from 0.24 | 8.8417 | 3.9215 || 0.65 | 2.0921 | 0.8553

the work [10]. The result of this cross-section 0.25 | 8.4746 | 3.8659 || 0.70 | 1.8332 | 0.7175
0.26 | 81235 | 3.7931 || 0.75 | 1.6181 | 0.6037

0.27 | 7.7882 | 3.7064 || 0.80 | 1.4378 | 0.5085
0.28 | 7.4683 | 3.6088 || 0.85 | 1.2854 | 0.4284

was shown in Table1 in the wavelength scale and
dimensionless wave vector, according to the for-
mula (61).

For the calculation of the cross-section of photoionization of H~ ion, when is formed the excited
hydrogen atom, we used the wave functions (51)—(53). In particular in the case o = 2s the function (54)
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gives the cross-section, which determined by the formula (61), in which k, (w.) = {w. — Ae — 3/4}1/2,
and the dimensionless matrix elements are as follows:

P (k,) = 16V2r alNl(a1a2)3/2k* plag, aslky);

(2 —1/2) k. .
(v2+1/2)° (2 +1/2)%

P35 (k) = —128V6m azns

PF(R) =~y Nyfarao)? [ 0 = 0 (o, sl (62)
256 1 1 © dg.q? 1
P2S k* T — 6a < - _> k* / * 528 k*; * EOICE)
4 ( ) /_371' Y202 | V2 2 (/72 + 1/2)5 0 qg _ k% 1 ( q ) (722 T qz)g

plon, aslz) = { (a2 — 1oy (a1 —1) o } '

(@2 +1/2)4(a? +22)2  (oq + 1/2)* (a3 + 22)?

As was shown in Fig. 4, the cross-section Sas(A) is non-zero in the range 0 < A\, < 1.2415, and its

maximum is approximately in 13 times less than the cross-section maximum of Sjs(\).
0.6

S(n), 1017 em? 0.00035 SO0 107 a2
0.5 1 0.0003 -
04 - 0.00025 - Sss(A)
0.0002 A
0.3 1
0.00015 A
0.2 1
0.0001 -
i S4 )\*
01 0.00005 A .
A
0 T T T T T T 0 7 T T T T -
0 0.2 0.4 0.6 0.8 1 1.2 0 0.2 0.4 0.6 0.8 1 1.2
Fig.4. Dependence of the cross-sections Sis(\s) Fig.5. Dependence of the cross-sections Sss(As)
and Sas(\.) on wavelength. and Sys(Ax) on wavelength.

The cross-section Sg,(\s) is very small, which was shown from the plane wave contribution to the
matrix element of momentum operator

hk (a3\*) . 256mas A8
Pyiok) =< —— —0> i 2 k2Yi0(k). 63
zno(k) {aok‘ (v 3(v2 + k)3 (72 + 3)° Lolk) (63

Because of the matrix operator is imaginary, its contribution to the dimensionless cross-section (in the
units 10717 cm?) has the order 107°. In the case 3s- and 4s-states in the plane wave approximation

327
P (k) = a1 N1 (aq, a2)? 2k,
1 ( ) 3\/§ 1 1( 1 2)
a1 ol —4/3as+1/2 ar  of —4/3a;+1/3)
(af +k3)? (a2 +1/3)5 (a3 + k)2 (a1 +1/3) ’

R PR VD N R
P (k) = 4a1 Ny (on00)> > \/mky
{ a1 a2 —3/2a%+9/16ay —1/16 as a2 —4/3aq + 1/3}
(of + k2)? (a2 +1/4)° (03 +k2)? (a1 +1/3)
The spectral dependence of the cross-sections Ss5(\) and Sys(A) is shown in Fig. 5.
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6. Conclusions

Our approach is based on the calculation of two electron wave function of the system “hydrogen
atom + photoelectron” with help of the perturbation theory, namely in the Born approximation.
Its applicability is due not only accounting for the orthogonalization effects, but also because the
calculation of matrix elements of momentum operator in dipole approximation does not contain whole
the wave function Fi4(k|r), but its so called p-wave part, which corresponds to the partial wave with
orbital number [ = 1 and is small (see. (58)).

As was shown from the calculation of the
cross-section, Si5(A«) according to the ex-
pression (61), the approximation of “hard”

Table 2. The photoionization cross-section of the H~ ion
in the units 10~ '7cm? as the function k. ( approximation
for the results of S. Geltman, [10]; our results, [*]).

atom is principal, and taking into ac- S [10] 1] 3] [14] ]
count, the terms of type {¢o, (r1)xo, (Klr2) + 0.1000 | 1.5202 | — | 1.5650 | 1.5530 | 1.5678
Po1 (r2)Xo, (K|r1)} gives small corrections, 0.1414 | 2.8100 | 2.7908 | 2.8620 | 2.8460 | 2.8781
which are caused by the polarization of atom 0.2000 | 3.8470 | 3.9820 | 3.9120 | 3.8980 | 3.9002
by photoelectron. Herewith xos(k|r) are the 0.2100 | 3.9080 - — — 3.9492
localized functions in the region of photo- 0.2200 | 3.9388 - - - 3.9668
electron energy e, < %, that describe the 0.2300 | 3.9412 - - - 3.9563
change of electron distribution structure in 0.2400 | 3.9211 — — — 3.9215
the atom. 0.2449 | 3.9029 | 3.9560 | 3.9780 | 3.9650 | 3.8966
Concerning the cross-section of the pho- 0.2828 | 3.6314 | 3.7590 | 3.7170 | 3.7080 | 3.5800
0.3162 | 3.2846 | 3.3130 | 3.3730 | 3.3680 | 3.2042

toionization process with excited atom, the
most significant is the cross-section for the atom in the state 2s. Other cross-sections are negligibly
small.

As was shown from Table2, the cross-section Sis(k.) calculated by us is close to the results of

works [10,11,13,14|. We obtained the value Sﬁmm)(k‘*) = 3.9668 at k., = 0.22. This gives reasons for
arguing, that the maximal cross-section value is in the limits

3.96... < S 10 em™2 < 3.97....

[1] Wildt R. Negative ions of hydrogen and the opacity of stellar atmospheres. Astrophysical Journal. 90,
611-620 (1939).

[2] WildtR. The continuous spectrum of Stellar atmoospheres consisting only of atoms and negative ions of
hydrogen. Astrophysical Journal. 93, 47-51 (1941).

[3] ChandrasekharS. On the continuous absorption coefficient of the negative hydrogen ion. II. Astrophysical
Journal. 102, 395-401 (1945).

[4] ChandrasekharS., Breen F. H. On the continuous absorption coefficient of the negative hydrogen ion. III.
Astrophysical Journal. 104, 430-445 (1946).

[5] JohnT.L., Seaton M. J. The photodetachment of H~. Monthly Notices of the Royal Astronomical Society.
121 (1), 41-47 (1960).

[6] SmithS.J., BurchD.S. Relative Measurement of the Photodetachment cross-section for H~. Phys. Rev.
116 (5) 1125-1131 (1959).

[7] VavrukhM. V., Vasil’eval. E., Stelmakh O. M., Tyshko N. L. Continuous Absorption and Depression in the
Solar Spectrum at Wavelengths from 650 to 820 nm. Kinemat. Phys. Celest. Bodies. 32 (3), 129-144
(2016).

[8] Neckel H., Labs D. The solar radiation between 3300 and 12500 A. Solar Physics. 90 (2), 205-258 (1984).

[9] Burlov-Vasil’evK. A., Vasil’eval. E., Matveev Yu. B. New measurments of the absolute spectral energy dis-
tribution of Solar radiations in the range AX 650 — 1070 nm. Kinematics and Physics of Celestial Bodies.
12 (3), 75-91 (1996).

Mathematical Modeling and Computing, Vol.7, No. 1, pp. 125-139 (2020)



138

Vavrukh M. V., Dzikovskyi D. V., Stelmakh O. M., Solovyan V. B.

[10]

Geltman S. The bound-free absorption coefficient of the hydrogen negative ion. Astrophysical Journal.
136 (3), 935-945 (1962).

[11] BroadJ.T. One- and two-electron photoejection from H~: A multichannel J-matrix calculation. Phys.
Rev. A. 14 (6), 2159-2173 (1976).

[12] Vavrukh M. V., Stelmakh O.M. The cross-sections of the main processes that forms the continuous absorp-
tion coefficient in the photosphere of Sun-like stars. Journal of Physical Studies. 17 (4), 4902 (2013).

[13] Stewart A.L. A perturbation-variation study of photodetachment from H~. J. Phys. B: Atom. Molec.
Phys. 11 (22), 3851-3860 (1978).

[14] Wishart A. W. The bound-free photodetachment cross-section of H~. J. Phys. B: Atom. Molec. Phys. 12
(21), 3511-3519 (1979).

[15] Tweed R.J. Correlated wavefunctions for helium-like atomic systems. J. Phys. B. 5 (4), 810-819 (1972).

[16] HartJ.F., Herzberg G. Twenty-Parameter Eigenfunction and Energy Values of the Ground States of the
He and He-Like ions. Phys. Rev. 106 (1), 79-82 (1957).

[17] Pekeris C.L. 11, 21 and 23S States of H~ and of He. Phys. Rev. 126 (4), 1470-1476 (1962).

[18] Vavrukh M. V., Kostrobij P. P., Markovych B. M. Reference system approach in the theory of many-electrons
systems. Rastr-7, Lviv (2017), (in Ukrainian).

[19] Abramowitz M., StegunI. A. Handbook of Mathematical Functions With Formulas, Graphs, and Mathe-
matical Tables. Government Printing Office: Washington (1972).

Appendix

The functions aj®(k«, ¢« ), ai®(kx«, qx), V&% (ks ¢+), V3 (ks, q«) are determined by such expressions:

ag’ (ks qx) = {10 + k2 + ZH1+ @} {1+ k2 YA+ k2 + @) — 4k2¢2} Y (65)

1
a1® (s, qx) = { <3 (qff —2¢7 — —> kS +3(¢ + 6¢F — 3¢k

3

(kv — q.)? +4

(e g1 4

+16(ke — @) (kage — 1) [kiq? + (62 + @) (K2 + k) + (g + 447 + DKL + 7]

(=24 — 3q" — 1262 — 3)k? — (g + 9) — 2) In

k* *
X arctan <? - %) +16(ks + @) (kige + DK@ + (=6 — q.) (k2 + k)

(66)

* k*
+ (qf + 4¢3 + 1Dk + q,%] arctan (% + ?> — 32¢3(k? + 1) arctan(k,)

-1
1
32k (g2 + 1) arctan<q*>} [24k3q3(k3 I 1)3] i uk*q*{ (qz - ) i

55 5 55 34
+ <2q5§ + ?qf + §> k4 <q$ + Eqff + 54¢2 + §> k2

1 —1
- g a0+ 2) ) 2R + P2 + VPG4 K 2 - ai]
4+ (ke +qu)*

1s _ 2 242 2 21-1 -1
vp® (Fa, ) = 4[(4 + K2 + ¢)? — 4K2q)] + (4kuge) ' In Tt (k=)

(67)

Bt g A+ (ke +q.)°

Vlls(k*aQ*) = (2k*q*)_1{
(68)
+[4Q+ k) — R+ E + a4+ +¢2)* — 4kiq] _1}-
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Po3paxyHok nonepe4Horo nepepisy ¢poToioHiI3auil Big EMHUX IOHIB
BOAHIO Y OOpPHIBCbKOMY HAOM>KEHHI

Baspyx M. B.!, JIzikoscoknit JI. B.Y, Crenpmax O. M.!, Conos’sn B. B.2

LTvsiscoruti nayionaavrut yrisepcumem imens Isana @panxa,
eyn. Kupuaa i Mepodia, 8, 79005, Jlveis, Yxpaina
2 Incmumym. @izury xondencosarux cucmem HAH Yipainu,
eyn. Ceenyiuvkozo, 1, 79011, Jlvsis, Yxpaina

Tlokazano, MO JIBOEJIEKTPOHHA XBUJIBLOBA (DYHKINS CHCTEMH “aTOM BOJHIO + (HOTOEJEK-
TpoH”’ y OOPHIBCHKOMY HAOJ/IMKEHHI 3a0e31edye BUCOKY TOYHICTh PO3PAXYHKY IMOMEpPed-
HOTO Tepepisy mporiecy (oroioHizaril HeraTuBHOro ioHa BOJHIO. Po3paxoBaHo YacTKOBI
MIOIIEPEYHI Iepepi3n, MO BiAMOBIAAIOTHL PI3HUM ‘NS-KaHaJaM peakIii’ y IKaJi eHeprii
doToenekTpoHa i MKaJi JOBXKUH XBUJIb. BUKOHAHO TOPIBHAHHS 3 PE3yJIbTaTaMU iHIITUX
aBTOPIB, OJIEPKAHUX IHIITUMHU METOJIAMU.

Knw4osi cnosa: dsoesexmporha Teusbosa GynKkuis, GOPHIBCHKE HAOAUNCEHHS, He2a-
musrull 10% 800HI0, nonepewrull nepepia gomoionizayii.
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