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It is shown that the two-electron wave function of the system “hydrogen atom + photo-
electron” in the Born approximation provides high accuracy of the photoionization process
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1. Introduction

The coefficient of continuous absorption in the stellar photospheres is formed by many processes of
photons interactions with atoms of different chemical elements, their ions and electrons. In the case
of stars of medium spectral types, similar to the Sun, the main mechanism is the photoionization of
negative hydrogen ions, which ionization potential is 0.0555 . . . Ry ≈ 0.7551 eV. Its significant contri-
bution to the formation of the absorption coefficient is in the region λ 6 16.4 · 103 Å. The idea about
photoionization process of H− ions were proposed by R.Wildt [1, 2], and the first approximation of
cross-section calculations were performed by S.Chandrasekhar [3, 4] and T. John [5]. The R.Wildt’s
idea was so attractive, that inspired also experimentalists. The most accurate results were obtained
in the work of S. Smith and D.Burch [6], which experimentally established the spectral dependence
with respect to the cross-section σ(λ)/σ(λ0) at λ0 = 5280 Å in the region 4000 − 13000 Å. In fact, in
this work was established the dependence on the wavelength of some effective hydrogen cross-section,
with small contributions given by other processes. The results of theoretical works generally agreed
well with the results of S. Smith and D.Burch, but could not describe the non-monotonic nature of
spectral curve around its maximum, in the region 7000− 8200 Å. In the work [7] was first shown, that
the additional consideration also of the process of photoionization of excited hydrogen atoms explains
the features of the experimental curve. On this basis is given the interpretation of some decrease of
the continuous radiation intensity of the Sun in the region 6500 − 8200 Å, which is known from the
reliable observational data, that was obtained at the end of the XX-th century [8, 9].

The calculations of the cross-section of photoionization process forH− ion were performed by several
authors [10–14], and the deviation between the obtained results reaches 2%. All works devoted to the
calculation of cross-section for photon collision with H− ion, as the result of which the formed hydrogen
atom is in the ground state. The accuracy of results depends on the calculation accuracy of the two-
electron wave function of the H− ion and the wave function of the system “atom + photoelectron”.
Using the variational functions in this case is the general rule. The description of the system “atom +
photoelectron” is similar to the problem of electron scattering on the hydrogen atom, but not identical
with it. In the photoionization problem it is important to correctly describe the photoelectron state
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at close distances to the atom and their mutual influence. The best results were yielded also here with
help of the variational method. In particular, in the work [10] was constructed the wave function of
the system “atom + photoelectron”, which has 10 variational parameters. Unfortunately, the values
of these parameters are not given in the work, therefore, the role of individual inter-electron effects
remained unknown.

Due to the necessity of observable features interpretation of continuous radiation of the Sun and
other stars, the problem of calculation of cross-section collisions H− ions and the hydrogen atoms
with photons remains relevant, as well as the precise calculations using the alternative methods. In
the present work we use the compact wave function for H− ion, calculated with basis-variational
method [13]. The wave function of the system “atom + photoelectron” we obtain from the Schrödinger
equation, which is reduced to the system of integro-differential equations. In the Born approximation
the intermediate calculations are performed in the analytical form, and the calculation of the part of
matrix elements of the electron momentum operators is reduced to the computer calculations of single
integrals.

2. General relations

Let the outcome of the photoionization process of H− ion be a neutral hydrogen atom, in which the
electron is in the state that described by the wave function ϕσ(r), and the photoelectron with the wave
vector k and the energy εk = ~2k2/2m. The process of photoionization as a quantum transition in
the two-electron system in the so-called dipole approximation corresponds to the transition intensity
function

2

m~ωσ,k

∣∣∣〈Ψσ,k|(eq, [P̂1 + P̂2])|Ψ−〉
∣∣∣
2
. (1)

Here P̂i is the momentum operator of i-th electron, and the difference between the energies of the final
and initial states of the system

~ωσ,k = εk + Eσ − E− =
e2

2a0

(
k2∗ +∆ε+ εexc(σ)

)
, (2)

where k∗ = ka0, a0 is the Bohr radius, ∆ε = 0.0555 . . . is the ionization energy, εexc(σ) = 1−n−2
σ is the

excitation energy of the atom in Rydbergs, and eq is the unit vector of electromagnetic field polarization.
Furthermore, Ψ−(r1, r2) is the H− ion coordinate function, which is symmetric with respect to the
permutation r1 and r2, Ψσ,k(r1, r2) is the similar system function “atom + photoelectron”. Due to
the symmetry of the wave functions, the matrix elements of both electrons are the same. In the
case of unpolarized light as a result of averaging over the mutual orientations of the vectors eq and

Pσ(k) ≡ 〈Ψσ,k|P̂i|Ψ−〉 the function (1) can be reduced to the so-called oscillator strength

fσ(k) = 8[3m ~ωσ,k]
−1 |Pσ(k)|2 , (3)

which determines the partial cross-section of the photoionization process for the σ-channel

Sσ(ω) =
2π2e2~

mc

∑

k

fσ(k) δ(~ωσ,k − ~ω), (4)

where ~ω is the photon energy, and the δ-function provides the energy conservation law. The cross-
section can also be represented in the wavelength scale, or the photoelectron energies. In this case it
is convenient to use dimensionless quantities

ω∗ = ~ω
(
e2/2a0

)−1
, k∗ ≡ ka0, λ∗ = λ/λ0, (5)

where λ0 = 2πc~(e2/2a0)
−1 = 911.27 Å. There is the relation between these quantities as follows:

k2∗ + εexc(σ) + ∆ε = ω∗ = λ−1
∗ .
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The full photoionization cross-section of the H− ion is the sum of partial cross-sections that correspond
to different channels

S−(ω) =
∑

σ

Sσ(ω). (6)

3. The wave function of the H− ion

In the work [12], the coordinate wave function of the H− ion is represented as the bilinear expansion
by one-particle electron wave functions in neutral hydrogen atom ϕσ(r)

Ψ−(r1, r2) =
∑

σ1,σ2

aσ1,σ2
ϕσ1

(r1)ϕσ2
(r2), (7)

where aσ1,σ2
are the unknown coefficients, moreover aσ1,σ2

= aσ2,σ1
, which follows from symmetry

Ψ−(r1, r2) of the H− ion, which exists only in the singlet state. Substituting the expression (7) into
the Schrödinger equation that describes the state of two electrons in the proton field

Ĥ(r1, r2)Ψ−(r1, r2) = E−Ψ−(r1, r2),

Ĥ(r1, r2) = ĥ(r1) + ĥ(r2) +
e2

r12
, ĥ(ri) = −~2∇2

i

2m
− e2

ri
,

(8)

we obtained the system of homogeneous linear equations
∑

σ′

1
,σ′

2

{
Hσ2,σ1|σ′

1
,σ′

2
− E−δσ1,σ′

1
δσ2,σ′

2

}
aσ′

1
,σ′

2
= 0,

Hσ2,σ1|σ′

1
,σ′

2
=

∫
dr1

∫
dr2 ϕ

∗
σ2
(r2)ϕ

∗
σ1
(r1) Ĥ(r1, r2)ϕσ′

1
(r1)ϕσ′

2
(r2).

(9)

The system of equations (9) was solved by the method of perturbation theory. To this end, the
superposition is used as a zero order approximation

Ψ(0)(r1, r2) = a−3
0

k∑

l=1

al ψl(ρ1,ρ2) (10)

which are normalized and orthogonal functions

ψ1(ρ1,ρ2) = N1(π
√
2)−1(α1α2)

3/2
{
eα1ρ1 e−α2ρ2 + e−α2ρ1 e−α1ρ2

}
,

N1 =
{
1 + (4α1α2)

3(α1 + α2)
−6

}−1/2
;

ψl(ρ1,ρ2) = Nl

(
π
√
2l − 1

)−1
(γl)

2l+1(ρ1ρ2)
l−1P l−1(t) exp [−γl(ρ1 + ρ2)]

(11)

at l > 2, Pl−1(t) is the Legendre polynomial of the order l − 1; t is the cosine of angle between the
vectors ρ1 and ρ2, ρi = ri/a0; N2 = 1; N3 = 2/9; N4 = 1/45, . . . ; the parameters α1, α2 and γl are
the variational ones. The coefficients al are determined from the secular problem, and the parameters
α1, α2, γl from the minimum energy condition of H− ion. In the case k = 4 the ion energy in such
approximation equals E0 = −1.05239Ry,

a1 = 0.9939285, a2 = −0.1086079, a3 = −0.0176175, a4 = −0.005792;
α1 = 1.03524, α2 = 0.326516, γ2 = 1.00138, γ3 = 1.53401, γ4 = 2.09053.

(12)

The expansion coefficients Ψ(0)(r1, r2) for the basis functions ϕσ(r)

Aσ1,σ2
=

∫∫
dr1 dr2 Ψ

(0)(r1, r2)ϕ
∗
σ1
(r1)ϕ

∗
σ2
(r2) (13)

were used as a zero approximation to find the solutions of the system (9). Using the substitution

aσ1,σ2
= Aσ1,σ2

+ ασ1,σ2
(14)
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the system (9) is reduced to the system of linear inhomogeneous equations for the unknowns ασ1,σ2

∑

σ′

1
,σ′

2

ασ′

1
,σ′

2
Hσ2,σ1|σ′

1
,σ′

2
− E−ασ1,σ2

= E−Aσ1,σ2
−Hσ1,σ2

,

Hσ1,σ2
=

∫∫
dr1 dr2 ϕ

∗
σ2
(r2)ϕ

∗
σ1
(r1) Ĥ(r1, r2)Ψ

(0)(r1, r2),

(15)

and
E− = E0 +

∑

σ1,σ2

ασ1,σ2

{
H∗

σ1,σ2
− E−A

∗
σ1,σ2

}
. (16)

The coefficients ασ1,σ2
were found in the first approximation of the perturbation theory,

α(1)
σ1,σ2

=
{
E0Aσ1,σ2

−Hσ1,σ2

}{
H̃σ1,σ2

− E0

}−1
,

H̃σ1,σ2
= Hσ2,σ1|σ1,σ2

− (1− δσ1,σ2
)Hσ2,σ1|σ2,σ1

,
(17)

as a result of which the energy and the wave function of H− ion are following

E
(1)
− = E0 +

∑

σ1,σ2

∆ Eσ1,σ2
; ∆Eσ1,σ2

= α(1)
σ1,σ2

{
H∗

σ1,σ2
− E0A

∗
σ1,σ2

}
;

Ψ
(1)
− (r1, r2) = Ψ(0)(r1, r2) +

∑

σ1,σ2

α(1)
σ1,σ2

ϕσ1
(r1)ϕσ2

(r2).
(18)

The calculations were performed using the hydrogen functions ϕ1s(r), ϕ2s(r), ϕ3s(r), ϕ2p,m(r), where
m = 0,±1. In such approximation the H− ion energy becomes E− = 1.055472 . . . Ry, moreover the
corrections ∆Eσ1σ2

< 0.
It should be noted that the 5-parameter function Ψ(0)(r1, r2) gives the same value of H− ion energy

as the R.Tweed’s function with 31 or 41 parameters [15], or 20-parametric J.Hart and G.Herzberg
function [16]. The H− ion energy which was obtained in the work [12] differs from the result of the
work [17], in which the variational function with 444 parameters was used, only on 2.7 · 10−5 Ry.

4. The wave function of the system “atom + photoelectron”

To describe the systems with localized and delocalized electron states, it is natural to use the reference
system approach [18]. In this approach the wave function of the system “atom + photoelectron” can
be written in the form of expansion

Ψσ,k(r1, r2) =
N√
2

∑

σ1

{
ϕσ1

(r1)Fσ1
(k|r2) + ϕσ1

(r2)Fσ1
(k|r1)

}
, (19)

N is the normalization constant. In order to make this function satisfy the σ-channel of reaction, when
in the result of ionization formed neutral atom with the electron in the state ϕσ(r) and photoelectron
with the wave vector k and the energy εk = ~2k2/2m, the next conditions must be fulfilled

lim
r→∞

Fσ(k|r) = ϕ
(0)
k (r) = V −1/2 exp[i(k, r)],

lim
r→∞

Fσ1
(k|r) = 0 at σ1 6= σ.

(20)

Therefore, the main term in the expression (19) is the term σ1 = σ, which corresponds to the model of
“hard” atoms, and terms σ1 6= σ play the role of corrections that take into account the atom polarization
by photoelectron. The wave function (19) and the function Ψ−(r1, r2) are the eigenfunctions of the
same Hamiltonian, which correspond to different energy values, therefore they must be orthogonal to
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each other. The sufficient condition for this is the orthogonality of unknowns Fσ1
(k|r) to the atomic

wave functions ∫
Fσ1

(k|r)ϕ∗
σ2
(r) dr = 0. (21)

At the approximate calculations this condition can be used in the optimization procedure for finding
correct approximations for the functions Fσ1

(k|r).
For the purpose of clearness, we consider the first case of 1s-channel of reaction, when the ionization

product is the hydrogen atom in the ground state (σ = 1s). This channel is most important, because
it corresponds to the cross-section, which is non-zero in the range 0 < λ < 16.4 · 103 Å and only this
channel was considered in the works of our predecessors. The another channels of reactions, which we
will consider later, correspond to the cross-section, which are non-zero in the range of deep ultraviolet
(λ < 1241.5 Å).

Substituting the expression (19) in the Schrödinger equation and taking into account the expres-
sion (21), we obtain the system of coupled integro-differential equations for the functions

{
~2∇2

2m
− εk + Eσ1

− E1s + νσ1
(r)

}
Fσ1

(r)

+ ϕσ1
(r)

∫
ϕ∗
σ1
(r2)

e2

|r− r2|
Fσ1

(r2) dr2 = −
∑

σ′(6=σ1)

M̂σ1
(r)Fσ′ (r). (22)

Here the following notation is used

M̂σ′(r)Fσ′(r) = ωσ1σ′(r)Fσ′ (r) + ϕσ′(r)

∫
ϕ∗
σ1
(r2)

e2

|r− r2|
Fσ′(r2) dr2,

ωσ1σ′(r) =

∫
ϕ∗
σ1
(r2)

e2

|r− r2|
ϕσ′(r2) dr2,

νσ1
(r) = −e

2

r
+ ωσ1,σ′(r).

(23)

So, the left side of the equation (22) takes into account electrostatic and exchange effects of “hard”
model of atom, and the right side describes the analogous influence effects of different states (σ′ 6= σ1)
on the formation Fσ1

(r).
In order to find approximate solutions of the system (22) we transform it to the integral form. Let

us introduce a set of Green’s functions G
(0)
σ1

(r, r′), which satisfy the equation
{
~2∇2

2m
− εk + Eσ1

− E1s

}
G(0)

σ1
(r, r′) = δ(r− r′). (24)

Using the solutions of equation (24)

G(0)
σ1

(r, r′) = V −1
∑

q

{
εq − εk + Eσ1

−E1s

}−1
exp

[
i(q, r− r′)

]
, (25)

we write the system of equations (22) in the integral form:

Fσ1
(r) = F (0)

σ1
(r)−

∫
G(0)

σ1
(r, r′)Φσ1

(r′) dr′,

Φσ1
(r′) = νσ1

(r′)Fσ1
(r′) + ϕσ1

(r′)

∫
ϕ∗
σ1
(r2)

e2

|r′ − r2|
Fσ1

(r2) dr2 +
∑

σ′(6=σ1)

M̂σ′(r′)Fσ′(r′).
(26)

The functions F
(0)
σ1

(r) are the solutions of equations
{
−~2∇2

2m
− εk +Eσ1

− E1s

}
F (0)
σ1

(r) = 0. (27)
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In accordance with the asymptotics (20) the function F1s(r) is a plane wave, and the solutions (27) at
σ1 6= 1s must be the localized functions with condition εk < Eσ1

−E1s. In the case εk > Eσ1
−E1s we

assume F
(0)
σ1

(r) = 0. Let us introduce the projection operator

P̂ = 1−
∑

σ

|ϕσ〉〈ϕσ |. (28)

Acting on the plane wave ϕ
(0)
k (r), this operator forms a so-called orthogonalized plane wave,

P̂ϕ
(0)
k

(r) = ϕ
(0)
k

(r)−
∑

σ

〈
ϕσ|ϕ(0)

k

〉
ϕσ(r) ≡ ϕk(r), (29)

which is orthogonalized to the atomic functions ϕσ(r) by definition. According to the condition (21)

P̂ Fσ1
(r) = Fσ1

(r). In those cases when F
(0)
σ1

(r) is the localized function, it can be represented in the

form of expansion for the functions ϕσ(r), but because of that P̂F
(0)
σ1

(r) = 0 at σ1 6= 1s.
Acting on the left and right sides of the equations (26) with the operator P̂ , we transform them to

such form:

Fσ1
(r) = ϕk(r) δσ1,1s −

∫
Gσ1

(r, r′)Φσ1
(r′) dr′, (30)

where δσ1,1s is the Kronecker symbol,

Gσ1
(r, r′) = V −1/2

∑

q

{
εq − εk + Eσ1

− E1s

}−1
ϕq(r) exp

[
−i(q, r′)

]
. (31)

To solve the equations (30) we apply the iteration method. In the first Born approximation

F
(1)
1s (r) = ϕk(r)−

∫
G1s(r, r

′)

{
ν1s(r

′)ϕk(r
′

) + ϕ1s(r
′)

∫
dr2 ϕ1s(r2)

e2

|r′ − r2|
ϕk(r2)

}
dr′

= ϕk(r) + χ1s(k|r);

ν1s(r) = −e
2

r
(1 + r/a0) e

−2r/a0 ,

(32)

and at σ1 6= 1s

F (1)
σ1

(r) = −
∫
Gσ1

(r, r′)

{
ωσ1,1s(r

′)ϕk(r
′) + ϕ1s(r

′)

∫
dr2 ϕ

∗
σ1
(r2)

e2

|r′ − r2|
ϕk(r2)

}
dr′

= χσ1
(k|r).

(33)

The application of such approximation is justified by the fact that the corrections χ1s(k|r) and χσ1
(k|r)

have built on orthogonalized plane waves, and electrostatic and exchange potentials are weak.
Integration over the variables r′ and r2 in the expressions (32), (33) is easy to perform, using the

expansions of potentials and plane waves ϕ
(0)
k

(r2), ϕ
(0)
q (r′) by the spherical harmonics:

exp
[
i(k, r′)

]
=

∞∑

l=0

(2l + 1)(i)lPl(k̂∗,ρ) jl(k∗ρ), k∗ = ka0;

e2

|r1 − r2|
=
e2

a0

∞∑

l=0

Pl(ρ̂1,ρ2) al(ρ1, ρ2), Pl(ρ̂1,ρ2) =
l∑

m=−l

4π

2l + 1
Y ∗
l,m(ρ1)Yl,m(ρ2),

Pl(k̂∗,ρ) ≡
l∑

m=−l

4π

2l + 1
Y ∗
lm(k∗)Ylm(ρ),

(34)

where al(ρ1, ρ2) = ρ−l
1 ρ

l+1
2 at ρ1 > ρ2, al(ρ1, ρ2) = ρ−l

2 ρ
l+1
1 at ρ2 > ρ1; Pl(â1,a2) is the Legendre

polynomial of l-th order from cosine of angle between vectors a1 and a2; Ylm(ρ) is the spherical
function, which depend on the angular variables of the vector ρ, Ylm(k∗) is the same function of
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angular variables of the vector k∗; jl(x) is the spherical Bessel function of l-th order of first kind [19].
It allows us to rewrite χ1s(k|r) in such form:

χ1s(k|r) = −4πe2a20
V

∑

q

ϕq(r)

εq − εk

∞∑

l=0

(2l + 1) Pl(k̂,q) Ξ
1s
l (k∗, q∗). (35)

Herewith Pl(k̂,q) is the Legendre polynomial from cosine of angle between vectors k and q;

Ξ1s
l (k∗, q∗) =

{
8a1sl (k∗, q∗) + ν1sl (k∗, q∗)

}
−

∞∑

n=l+1

q̃∗n,l(k∗)
{
8b1sn,l(q∗) + ν1sn,l(q∗)

}
(36)

is the scalar function of dimensionless variables k∗ and q∗. Here we used such notation (q∗ = qa0):

a1sl (k∗, q∗) =
[
2(2l + 1)

]−1
∫∫ ∞

0
dρ1 dρ2(ρ1ρ2)

2e−ρ1e−ρ2al(ρ1, ρ2) jl(k∗ρ1) jl(q∗ρ2);

ν1sl (k∗, q∗) = −
∫ ∞

0
dρ ρ(1 + ρ) e−2ρjl(k∗ρ) jl(q∗ρ);

b1sn,l(q∗) =
[
2(2l + 1)

]−1
∫∫ ∞

0
dρ1 dρ2(ρ1ρ2)

2al(ρ1, ρ2)e
−(ρ1+ρ2)Rn,l(ρ2) jl(q∗ρ1);

ν1sn,l(q∗) =

∫ ∞

0
dρ ρ2Rn,l(ρ) jl(q∗ρ) ν1s(ρ), ν1s(ρ) = −1

9
(1 + ρ) e−2ρ;

(37)

where Rn,l(ρ) is the radial factor of atomic function ϕσ(r) at σ = (n, l,m);

q̃n,l(k∗) = (−i)l
∫ ∞

0
dρ ρ2Rn,l(ρ) jl(k∗ρ). (38)

The factor
{
8a1sl (k∗, q∗)−ν1s1 (k∗, q∗)

}
in the formula (36) corresponds to the plane-wave approximation,

and all others – account for orthogonalization components. The convergence of the expansion relative
to the orbital wave number l in the formula (36) in the case of low-energy photons (at k∗ ≪ 1) is
provided by the asymptotics of the coefficient functions

a1sl (k∗, q∗) ∼ (k∗)
l, ν1sl (k∗, q∗) ∼ (k∗)

l, g̃n,l(k∗) ∼ (k∗)
l. (39)

Fig. 1 illustrates this behavior of functions a1sl (k∗, q∗). The functions a1s0 (k∗, q∗), a
1s
1 (k∗, q∗), ν

1s
0 (k∗, q∗),

ν1s1 (k∗, q∗) are given in the analytical form in the Appendix.

a1s
0
(k∗, q∗) a1s

1
(k∗, q∗)

k∗ = 0.1

k∗ = 0.5

q∗
q∗

0
0

0
0

0.10.1

0.2

0.2

0.2

0.3

0.3

0.3

0.4

0.5

0.5

0.5

0.5

0.6

0.7

11 1.51.5 22 2.52.5 33

0.014

0.012

0.01

0.008

0.006

0.004

0.002

Fig. 1. Dependence of the functions a1s
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To yield the asymptotics F
(1)
1s (k|r) on the large distances from the proton, we replace the function

ϕq(r) in the formula (35) on ϕ
(0)
q (r) and expand the latter one into the spherical harmonics. Integrating

over the angular variables of vector q according to
∫
dΩq Pl(k̂,q)Pl1(q̂,ρ) =

4π

2l + 1
δl,l1 Pl(k̂,ρ), (40)

we find following asymptotics χ1s(k|r):

χ1s(k|r) = −V 1/2
∞∑

l=0

(2l + 1)Pl(k̂,ρ)T
1s
l (k∗|ρ),

T 1s
l (k∗|ρ) = il

4

π

∫ ∞

0

dq∗ q
2
∗

q2∗ − k2∗
jl(q∗ρ) Ξ

1s
l (k∗, q∗).

(41)

Taking into account the asymptotics of the Bessel functions [19]

jl(z) ≈
1

z
sin

[
z − π

2
l
]

at z ≫ 1, (42)

as well as the expression
Ξ1s
l (k∗,−q∗) = (−1)l Ξ1s

l (k∗, q∗), (43)

we reduce T 1s
l (k∗|ρ) to such form

T 1s
l (k∗|ρ) = [iπρ]−1

∫ +∞

−∞

dq∗q∗
q2∗ − k2∗

eiq∗ρ Ξ1s
l (k∗, q∗) ≈ ρ−1 eik∗ρ Ξ1s

l (k∗, k∗). (44)

It follows that F1s(k|r) has the asymptotics

F1s(k|r) ⇒ V −1/2

{
ei(k∗,ρ) − ρ−1 eik∗ρ

∞∑

l=0

(2l + 1)Pl(k̂,ρ) Ξ
1s
l (k∗, k∗)

}
, (45)

which is the sum of the plane and spherical waves, and the expression

S1s(k∗) = 4π
∞∑

l=0

(2l + 1)
[
Ξ1s
l (k∗, k∗)

]2
a20 (46)

determines the total cross-section of the scattering of the electron on the hydrogen atom, which is in
ground state, taking into account electrostatic and exchange corrections.

The calculation of Born corrections χσ1
(k|r) at σ1 6= 1s are performed according to the scheme

described above. In the case of ns-states (n > 2) we get the analog of the expression (35)

χns(k|r) = −4πe2a20
V

∑

q

ϕq(r)

εq − εk + (1− n−2) e2/2a0

∞∑

l=0

(2l + 1)Pl(k∗,q∗) Ξ
1s,ns
l (k∗, q∗). (47)

Herewith

Ξ1s,ns
l (k∗, q∗) =

{
8a1s,nsl (k∗, q∗) + ω1s,ns

l (k∗, q∗)
}

− (−i)l
∑

nσ>l+1

g̃∗nσ ,l(k∗)
{
8b1s,nsnσ ,l

(q∗) + ω1s,ns
nσ,l

(q∗)
}
, (48)

where introduced here functions are the analogous to corresponding expressions from the formula (37):
a1s,nsl (k∗, q∗) and b1s,nsnσ,l

(k∗, q∗) which are formed from a1sl (k∗, q∗) and b1sn,l(k∗, q∗) by the replacement

exp(−ρ2) → 1/2Rn,0(ρ2); ω
1s,ns
l (k∗, q∗) and ω1s,ns

nσ,l
(q∗) we get from ω1s

l (k∗, q∗) and ω1s
n,l(q∗) by the

replacement ν1s(ρ) → ω1s,ns(ρ) = (e2/a0)
−1ω1s,ns(r); the expressions for g̃n,l(q∗) and g̃nσ ,l(q∗) coincide

at n = nσ.
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Integrating the expression (47) over the angular variables of the vector q, we find the explicit
expression for the function χns(k|r):

χns(k|r) = V 1/2
∞∑

l=0

(i)l Pl(k̂,ρ)T
1s,ns
l (k∗|ρ),

T 1s,ns
l (k∗|ρ) = − 4

π

∫ ∞

0

dq∗ q
2
∗ jl(q∗ρ)

q2∗ + (1− n−2)− k2∗
Ξ1s,ns
l (k∗, q∗).

(49)
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k∗ = 0.1
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Fig. 2. Dependence of the functions T 1s,2s

0
(k∗|ρ) and T 1s,2s

1
(k∗|ρ) on the variable ρ at different values k∗.

Unlike (41), the expression (49) determines the dependence χns(k|r) at the arbitrary values r, and
the integrand does not have singularity at k2∗ < 1 − n−2. Therefore the functions T 1s,ns

l (k∗|ρ) are
localized at small values of the photoelectron energy and resemble the hydrogen functions, which are
illustrated in Fig. 2 with T 1s,2s

0 (k∗|ρ) and T 1s,2s
1 (k∗|ρ). Therefore, when taking into account the terms

σ1 6= 1s the wave function (19) has the character of a variational wave function [10] and this is different
from the wave function of the system “atom + photoelectron” in the model with “hard” hydrogen atom.
However the functions T 1s,2s

1 (k∗|ρ) depend on the photoelectron energy, and in the region k2∗ > 1−n−2

the function χn,s(k|r) is described by the spherical wave, as well as χ1,s(k|r), unlike the function of
the work [10].

4.1. The two-electron transitions at the one-electron photoionization of ion H−

If the photon energy is in the interval

(1− n−2 + 0.0555)
e2

2a0
6 ~ω < 1.0555 . . .

e2

2a0
, (50)

then it becomes possible the process of one-electron photoionization, the final result of which will
be neutral atom in the excited state and photoelectron with the energy εk = ~ω − (εexc) e

2/2a0.
We consider here the scheme of calculation of the wave function of the system “excited atom +
photoelectron”, when after the collision the atomic electron is in the state with the wave function

ϕσ(r) = Rn,l(ρ)Yl,m(θ, ϕ) a
−3/2
0 , where l = 0; 1. In the model of “hard” atom the two-electron wave

function

Ψσ,k(r1, r2) =
1√
2

{
ϕσ(r1)Fσ(k|r2) + ϕσ(r2)Fσ(k|r1)

}
, (51)

and the function Fσ(r) is the solution of equation

{
−~2∇2

2m
− εk + νσ(r)

}
Fσ(k|r) + ϕσ(r)

∫
dr2 ϕ

∗
σ(r2)

e2

|r− r2|
Fσ(k|r2) = 0. (52)
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In the first Born approximation

F (1)
σ (k|r) = ϕk(r) + χσ(k|r),

χσ(k|r) = −
∫
Gσ(r, r

′)
{
νσ(r

′)ϕk(r
′) + ϕσ(r

′)

∫
dr2 ϕ

∗
σ(r2)

e2

|r′ − r2|
ϕk(r2)

}
dr′,

Gσ(r, r
′) =

1

V

∑

q

ϕq(r) exp
[
−i(q, r′)

]
{εq − εk}−1;

νσ(r) = −e
2

r
+

∫
dr2 |ϕσ(r2)|2 e2 |r− r2|−1 = − e

2

a0
νσ(ρ).

(53)

We perform the calculation of cross-sections for ns-states because the cross-sections for np-states
are negligible. In particular, in the case of 2s-state we obtain the analog of the expression (35),

χ2s(k|r) = −4πe2a20
V

∑

q

ϕq(r)

εq − εk

∑

l=0

(2l + 1)Pl(k̂,q) Ξ
2s
l (k∗, q∗),

Ξ2s
l (k∗, q∗) = 8a2sl (k∗, q∗) + ν2sl (k∗, q∗) + . . . ;

a2sl (k∗, q∗) =
[
8(2l + 1)

]−1
∫∫ ∞

0
dρ1 dρ2(ρ1ρ2)

2R2,0(ρ1)R2,0(ρ2) al(ρ1, ρ2) jl(qρ1) jl(kρ2);

ν2sl (k∗, q∗) =

∫ ∞

0
dρ ρ2ν2s(ρ) jl(k∗ρ) jl(q∗ρ);

ν2s(ρ) = −e
−ρ

ρ

{
1 +

3

4
ρ+

ρ2

4
+
ρ3

8

}
; . . . ,

(54)

where R2,0(ρ) are the radial functions of 2s state.

5. Matrix elements of momentum operators and photoionization cross-sections

Let us consider the channel of photoionization, result of which is the hydrogen atom in the ground
state, considering the main term of the function (19), when σ = 1s. In this approximation

P1s(k) = − i~√
2

〈
Ψ−(r1, r2)|ϕ1s(r2)

[
∇1 ϕk(r1) +∇1χ1s(k|1)

]
+
[
ϕk(r2) + χ1s(k|r2)

]
∇1ϕ1s(r1)

〉
, (55)

which gives 4 components of the vector P1s(k). Separating out the dimensional factor, we write P1s(k)
in the form

P1s(k) =
~

a0
· k
k

(
a30
V

)1/2 4∑

i=1

Pi(k∗), (56)

where Pi(k∗) are the dimensionless functions of the variable k∗, namely

P1(k∗) = 32a1N1π
1/2(α1α2)

3/2k∗

{
α1

(1 + α2)3(α2
1 + k2∗)

2
+

α2

(1 + α1)3(α2
2 + k2∗)

2

}
;

P2(k∗) = − 128

31/2
(2π)1/2a2

γ62
(1 + γ2)4

· k∗
(γ22) + k2∗)

3
; (57)

P3(k∗) = −a1N1(α1α2)
3/2 128

π1/2

∫ ∞

0

dq∗q
3
∗

q2∗ − k2∗
Ξ1s
1 (k∗, q∗)

{
α1

(1 + α2)3(α2
1 + q2∗)

2
+

α2

(1 + α1)3(α2
2 + q2∗)

2

}
;

P4(k∗) = a2
128

π1/2
· 8√

6
· γ62
(1 + γ2)4

∫ ∞

0

dq∗q
3
∗

q2∗ − k2∗
Ξ1s
1 (k∗, q∗)

1

(γ22 + q2∗)
3
.
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Calculated expression for P1s(k) can be obtained if instead of the function F1s(k|r) used only its
p-wave component

F
(p)
1s (k|r) = 3i√

V

{
j1(k∗r)P1(k̂,r)−

4πe2a20
V

∑

q

j1(q∗r)P1(q̂,r)P1(k∗, q∗) Ξ
1s
1 (k∗, q∗)

}
, (58)
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Fig. 3. Dependence of the cross-section S1s(λ∗) on the
wavelength. Curve 1 takes into account the terms P1(k∗)
and P2(k∗); curve 2 – P1(k∗) – P3(k∗); curve 3 accounts for

P1(k∗) – P6(k∗).

which has the structure of main terms of
the variational wave functions from the
work [10]. The terms P1(k∗) and P2(k∗) cor-
respond to the plane wave approximation for
the function F1s(k|r). The terms P3(k∗) and
P4(k∗) created by the Born correction are
small in modulus and make a small contri-
bution to the cross-section.

We have also taken into account the term

1√
2

{
ϕ2s(r1) χ2s(k|r2) + ϕ2s(r2) χ2s(k|r1)

}

(59)
in the function (19), where χ2s(k|r) are de-
termined by the expressions (47), (48), which
give the dimensionless matrix elements

P5(k∗) = − 16√
2π
a1N1(α1α2)

3/2

∫ ∞

0

dq∗q
3
∗

q2∗ − k2∗ + 3/4
Ξ1s,2s
1 (k∗, q∗)

×
{

α1(α2 − 1)

(α2
1 + q2)2(α2 + 1/2)4

+
α2(α1 − 1)

(α2
2 + q2)2(α1 + 1/2)4

}
; (60)

P6(k∗) =
64

3
√
3π
a2

γ62
(γ2 + 1/2)5

(γ2 − 1/2)

∫ ∞

0

dq∗q
3
∗

q2∗ − k2∗ + 3/4
Ξ1s,2s
1 (k∗, q∗)

1

(γ22 + q2∗)
3
.

At the calculation of the matrix elements of momentum operator were used the expansion coefficients
a1, a2 and variational parameters α1, α2 and γ2, given in (12).

Table 1. The cross-section S1s in the units
10−17 cm2, which calculated by the expressions (56),
(57), (60), (61) in the scale of dimensionless wave vec-

tors k∗ and the dimensionless wavelength λ∗.

k∗ λ∗ S1s k∗ λ∗ S1s

0.01 17.9856 0.0025 0.29 7.1633 3.5032
0.05 17.2414 0.2810 0.30 6.8729 3.3918
0.10 15.2672 1.5678 0.35 5.6180 2.8101
0.15 12.8205 3.1063 0.40 4.6404 2.2795
0.20 10.4712 3.9002 0.45 3.8760 1.8450
0.21 10.0402 3.9492 0.50 3.2733 1.5030
0.22 9.6246 3.9668 0.55 2.7933 1.2355
0.23 9.2251 3.9563 0.60 2.4067 1.0244
0.24 8.8417 3.9215 0.65 2.0921 0.8553
0.25 8.4746 3.8659 0.70 1.8332 0.7175
0.26 8.1235 3.7931 0.75 1.6181 0.6037
0.27 7.7882 3.7064 0.80 1.4378 0.5085
0.28 7.4683 3.6088 0.85 1.2854 0.4284

According to the formula (4) the cross-section
for the process of photoionization in 1s-channel in
the wavelength scale is

S1s(ω) =
16

3
α0 a

2
0

k∗(ω∗)

ω∗

∣∣∣∣∣
6∑

i=1

Pi

(
k∗(ω∗)

)
∣∣∣∣∣

2

, (61)

where k∗(ω∗) = (ω∗ − ∆ε)1/2 = (1/λ∗ − ∆ε)1/2,
α0 = e2/~c is the fine structure constant. The
role of individual terms Pi(k∗) is shown in Fig. 3,
in which the cross-section S1s is depicted in the
scale of wavelengths in the units 10−17 cm2. It
was also depicted the result of calculation from
the work [10]. The result of this cross-section
was shown in Table 1 in the wavelength scale and
dimensionless wave vector, according to the for-
mula (61).

For the calculation of the cross-section of photoionization of H− ion, when is formed the excited
hydrogen atom, we used the wave functions (51)–(53). In particular in the case σ = 2s the function (54)
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gives the cross-section, which determined by the formula (61), in which k∗(ω∗) = {ω∗ −∆ε− 3/4}1/2,
and the dimensionless matrix elements are as follows:

P 2s
1 (k∗) = 16

√
2π a1N1(α1α2)

3/2k∗ µ(α1, α2|k∗);

P 2s
2 (k∗) = −128

√
6π a2γ

6
2

(γ2 − 1/2)

(γ2 + 1/2)5
k∗(

γ22 + 1/2
)3 ;

P 2s
3 (k∗) = − 64√

2π
a1N1(α1α2)

3/2

∫ ∞

0

dq∗q
3
∗

q2∗ − k2∗
Ξ2s
1 (k∗, q∗)µ(α1, α2|q∗); (62)

P 2s
4 (k∗) =

256√
3π

γ62a2

(
γ2 −

1

2

)
k∗

1

(γ2 + 1/2)5

∫ ∞

0

dq∗q
2
∗

q2∗ − k2∗
Ξ2s
1 (k∗, q∗)

1

(γ22 + q2∗)
3
;

µ(α1, α2|x) =
{

(α2 − 1)α1

(α2 + 1/2)4(α2
1 + x2)2

+
(α1 − 1) α2

(α1 + 1/2)4(α2
2 + x2)2

}
.

As was shown in Fig. 4, the cross-section S2s(λ∗) is non-zero in the range 0 6 λ∗ 6 1.2415, and its
maximum is approximately in 13 times less than the cross-section maximum of S1s(λ∗).
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Fig. 4. Dependence of the cross-sections S1s(λ∗)
and S2s(λ∗) on wavelength.

Fig. 5. Dependence of the cross-sections S3s(λ∗)
and S4s(λ∗) on wavelength.

The cross-section S2p(λ∗) is very small, which was shown from the plane wave contribution to the
matrix element of momentum operator

P2,1,0(k) =

{
~

a0

k

k

(
a30
V

)1/2
}
i

256πa2
3(γ2 + k2)3

γ62
(γ2 +

1
2)

5
k2∗ Y1,0(k). (63)

Because of the matrix operator is imaginary, its contribution to the dimensionless cross-section (in the
units 10−17 cm2) has the order 10−5. In the case 3s- and 4s-states in the plane wave approximation

P 3s
1 (k∗) =

32
√
π

3
√
3
a1N1(α1, α2)

3/2k∗

×
{

α1

(α2
1 + k2∗)

2

α2
2 − 4/3α2 + 1/2

(α2 + 1/3)5
+

α2

(α2
2 + k2∗)

2

α2
1 − 4/3α1 + 1/3

(α1 + 1/3)5

}
;

P 3s
2 (k∗) = −256

√
π

27
√
2
a2k∗

γ62
(γ2 + 1/3)6

3k2∗ − 22/9γ2 + 1/3

(γ22 + k2∗)
3

;

P 4s
1 (k∗) = 4a1N1(α1α2)

3/2√πk∗

×
{

α1

(α2
1 + k2∗)

2

α2
2 − 3/2α2

2 + 9/16α2 − 1/16

(α2 + 1/4)6
+

α2

(α2
2 + k2∗)

2

α2
1 − 4/3α1 + 1/3

(α1 + 1/3)5

}

(64)

The spectral dependence of the cross-sections S3s(λ) and S4s(λ) is shown in Fig. 5.
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6. Conclusions

Our approach is based on the calculation of two electron wave function of the system “hydrogen
atom + photoelectron” with help of the perturbation theory, namely in the Born approximation.
Its applicability is due not only accounting for the orthogonalization effects, but also because the
calculation of matrix elements of momentum operator in dipole approximation does not contain whole
the wave function F1s(k|r), but its so called p-wave part, which corresponds to the partial wave with
orbital number l = 1 and is small (see. (58)).

Table 2. The photoionization cross-section of the H− ion
in the units 10−17cm2 as the function k∗ ( approximation

for the results of S. Geltman, [10]; our results, [∗]).
k∗ [10] [11] [13] [14] [∗]

0.1000 1.5202 − 1.5650 1.5530 1.5678
0.1414 2.8100 2.7908 2.8620 2.8460 2.8781
0.2000 3.8470 3.9820 3.9120 3.8980 3.9002
0.2100 3.9080 − − − 3.9492
0.2200 3.9388 − − − 3.9668
0.2300 3.9412 − − − 3.9563
0.2400 3.9211 − − − 3.9215
0.2449 3.9029 3.9560 3.9780 3.9650 3.8966
0.2828 3.6314 3.7590 3.7170 3.7080 3.5800
0.3162 3.2846 3.3130 3.3730 3.3680 3.2042

As was shown from the calculation of the
cross-section, S1s(λ∗) according to the ex-
pression (61), the approximation of “hard”
atom is principal, and taking into ac-
count the terms of type {ϕσ1

(r1)χσ1
(k|r2)+

ϕσ1
(r2)χσ1

(k|r1)} gives small corrections,
which are caused by the polarization of atom
by photoelectron. Herewith χ2s(k|r) are the
localized functions in the region of photo-
electron energy εk < 3

4 , that describe the
change of electron distribution structure in
the atom.

Concerning the cross-section of the pho-
toionization process with excited atom, the
most significant is the cross-section for the atom in the state 2s. Other cross-sections are negligibly
small.

As was shown from Table 2, the cross-section S1s(k∗) calculated by us is close to the results of

works [10, 11, 13, 14]. We obtained the value S
(max)
1s (k∗) = 3.9668 at k∗ = 0.22. This gives reasons for

arguing, that the maximal cross-section value is in the limits

3.96 . . . 6 S
(max)
1s · 1017 cm−2

6 3.97 . . . .
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Appendix

The functions a1s0 (k∗, q∗), a
1s
1 (k∗, q∗), ν

1s
0 (k∗, q∗), ν

1s
1 (k∗, q∗) are determined by such expressions:

a1s0 (k∗, q∗) = {10 + k2∗ + q2∗}{1 + q2∗}−1{1 + k2∗}−1{[4 + k2∗ + q2∗]
2 − 4k2∗q

2
∗}−1; (65)

a1s1 (k∗, q∗) =

{(
3

(
q4∗ − 2q2∗ −

1

3

)
k6∗ + 3(q6∗ + 6q4∗ − 3q2∗)k

4
∗

+ 3(−2q6∗ − 3q4∗ − 12q2∗ − 3)k2∗ − q2∗(q
4
∗ + 9)− 2

)
ln

(k∗ − q∗)
2 + 4

(k∗ + q∗)2 + 4

+ 16(k∗ − q∗)(k∗q∗ − 1)
[
k4∗q

2
∗ + (q3∗ + q∗)(k

3
∗ + k∗) + (q4∗ + 4q2∗ + 1)k2∗ + q2∗

]

× arctan

(
k∗
2

− q∗
2

)
+ 16(k∗ + q∗)(k∗q∗ + 1)

[
k4∗q

2
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3
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]
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2

+
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2

)
− 32q3∗(k

2
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∗(k

2
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+ 12k∗q∗
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3
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(
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55

3
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3
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(
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55

3
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3
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− 1

3
(q2∗ + 4)(q4∗ − 9q2∗ + 2)
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24k2∗q

2
∗(k

2
∗ + 1)2(q2∗ + 1)2[(4 + k2∗ + q2∗)

2 − 4k2∗q
2
∗]

]−1

;

(66)

ν1s0 (k∗, q∗) = 4
[
(4 + k2∗ + q2∗)

2 − 4k2∗q
2
∗

]−1
+ (4k∗q∗)

−1 ln
4 + (k∗ + q∗)

2

4 + (k∗ − q∗)2
; (67)

ν1s1 (k∗, q∗) = (2k∗q∗)
−1

{
k2∗ + q2∗
4k∗q∗

ln
4 + (k∗ + q∗)

2

4 + (k∗ − q∗)2

+
[
4(1 + k2∗q

2
∗)− (2 + k2∗ + q2∗)

2
][
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2
∗
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}
.

(68)
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Розрахунок поперечного перерiзу фотоiонiзацiї вiд’ємних iонiв
водню у борнiвському наближеннi

Ваврух М. В.1, Дзiковський Д. В.1, Стельмах О. М.1, Солов’ян В. Б.2

1Львiвський нацiональний унiверситет iменi Iвана Франка,

вул. Кирила i Мефодiя, 8, 79005, Львiв, Україна
2Iнститут фiзики конденсованих систем НАН України,

вул. Свєнцiцького, 1, 79011, Львiв, Україна

Показано, що двоелектронна хвильова функцiя системи “атом водню + фотоелек-
трон” у борнiвському наближеннi забезпечує високу точнiсть розрахунку попереч-
ного перерiзу процесу фотоiонiзацiї негативного iона водню. Розраховано частковi
поперечнi перерiзи, що вiдповiдають рiзним “ns-каналам реакцiї” у шкалi енергiй
фотоелектрона i шкалi довжин хвиль. Виконано порiвняння з результатами iнших
авторiв, одержаних iншими методами.

Ключовi слова: двоелектронна хвильова функцiя, борнiвське наближення, нега-

тивний iон водню, поперечний перерiз фотоiонiзацiї.
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