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The advection-diffusion in an inhomogeneous medium with a thin channel is considered.
The multiscale finite element method is applied to solving the formulated model problem.
It is shown that the obtained solution is stable and convergent for sufficiently large Peclet
numbers. Numerical examples are presented and analysed.
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1. Introduction

A large number of heat and mass transfer processes are characterized by the availability of a complex,
inhomogeneous structure of the medium, that often contains homogeneous thin inclusions. Solving
the advection-diffusion problems in such mediums requires a lot of computational costs using standard
numerical methods including the finite element method (FEM) [1]. On the other hand, inaccurate and
even inappropriate results may be obtained without taking into account the small scale features of
the medium. Besides this, solving the advection-diffusion problem by FEM in the case of large Peclet
numbers becomes highly complicated because of the instability of the computational process.

The multiscale finite element method (MsFEM) [2,3] was designed for solving the diffusion problems
in an inhomogeneous medium. It captures correctly the large scale components on the course grid
without accurately resolving all the small scale features of the solution. This effect is achieved by
incorporating the local microstructures of the differential operator into the multiscale basis functions.
It was shown [4-7| that MSFEM is also efficient for solving the advection-diffusion problems with large
Peclet numbers. In [8,9] the advection-diffusion problem in the homogeneous medium with a thin
curvilinear channel was considered. The two-dimensional equation in the channel was reduced to the
one-dimensional case and the bubble functions FEM was applied to solving the obtained problem. In
this paper MsFEM is applied to solving the advection-diffusion problems with sufficiently large Peclet
numbers in an inhomogeneous medium with a thin channel.

2. Formulation of the problem

We consider an inhomogeneous medium with a thin channel (see Fig. 1). Let us construct the curvilinear
coordinate system a1, ao, that is related to the middle curve of the channel so coordinate 1 corresponds
to the direction of curve tangent and coordinate ag corresponds to the direction of curve normal [7-9].
We suppose the middle curve is smooth and is defined by the parametric equation

1 =x1(a1), @2 =w2(m). (1)
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Let us denote by A the Lame coefficient of curve (1) and by K the curvature of the curve [10]

"1 "ol
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According to [7], the advection-diffusion problem in the thin curvilinear channel is as follows:

_ii<A 8U> 19 (AHZ?U)JFwOU_f’ ooy C

Hdoy \Hday) Haday day) " Hday
Ao0U b b AoU . . .
Haal—ﬂ(U Up) on IV Haal—ﬁ(U Us,) on I
Aa—U:q_ on I, —/\8—U:q+ on I,
Jdag Oay

where H = A (1 + a2 K), U(aq, a2) is the unknown function, A = const > 0 is the diffusion coefficient,
w = const is the advection coefficient, f(aq, a9) is the function that characterizes the intensity of inter-
nal sources, ¢~ (a1, a), ¢* (a1, ag) are the given functions, U?,, US, are the values on the boundaries T'?,

I"® respectively.

Let Uy(x1,x2), Us(x1,x2) be the unknown functions in Qy,
Q5 respectively and let 2h be the channel thickness. We assume
that the channel is thin, that is hK < 1. Under this assump- I
tion the solution in the channel can be presented in the form T
of linear function of the variable aq 8] T

Z2

a
Ulor, o) =ui(ag) + fuz(oq), Q o

where uj(aq), ug(ay) are the unknown functions. There- re

z1

fore, the advection-diffusion problem (2)—(4) can be reduced

to the one-dimensional case |7] and the mathematical model of Fig.1. Medium with a thin channel

advection-diffusion in the medium with a thin channel is as follows:

L O A (O hKOupy 1 Ou
Adas A\da; 3 0ay) " AV 0ay

h
1
= ﬁ(/f(l+ong)dozg ~(1+hK)¢gm - (1 —hK)q_), a1, an € €,
Zh

L9 A(0uy 0wy 1 Ou, 3\
Ada A \ day ooy ) A daqg  h2 2

h
1
= % (5 /f(l + asK)asdas — (1+ hK)q" + (1 — hK) q—), a1, a9 € Q,
—h

-V. ()\IVUI) + WIVUI = f17 €1, T2 € Ql)
-V ()\QVUQ) + woVUy = fg, X1, € QQ,

()

(6)

A (Oup  hK Ouz\ b A [ Oug Our\ b b
A [ Ouq hK Ous e e _i % _ % e e e
1 (71 - T%) =p (ul ul)v A ((9041 hK(?Oq) =f°(uz —u3) on I'° (10)
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8U1 aU2

)\1 an 51 (Ul Ulm) on Fl, )\2 a = ,82 (U2 — Uzm) on Fg, (11)
oUu oU.
Ui = u1 — uog, A— L =q on I, Us = u1 + uog, —Ag—— 2 _ =q¢" onIT. (12)
8&2 8&2
Here \;(x1,x2) are the diffusion coefficients, w; = {w;1,w;2} are vectors that characterize the speed
of the advective transfer, w;; = const are the advection coefficients, f;(x1,22) are functions that
characterize the intensity of internal sources, U™ are the values on the boundaries T;, i,j = 1,2;
h
ul o f Uk dovs, u2 2h2 f_h Uk aodas, k= b,e.
3. Variational formulation
We consider spaces
V= {v(al) |v(a) € Wél)(al{, af)} ,
1
Vk = {1)(331,332) ’U(xl,ajg) S WQ( )(Qk)} s k= 1,2

and bilinear and linear forms
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12(ﬂ2):/b (/ f 1—1—042K)042d042> w9 A dog — /b ((1—|—hK)q+—(1—hK)q_) u9 A daq,
ab a

1

a (Ug, Uy) = —/Q V - (M VUR) Uy dy dao, bi (U, Uy,) :/Q w,VUU,, dxq dzs,
k k

lk(ﬁk) :/Q F1Uy, dy daa, k=1,2,
k

where uy, a, € V, Ug, Uy € V.
Afte~r applying the integration by parts and the Green’s formula to bilinear forms o (U, ),
ar(Ug, Ug), k = 1,2 and using the boundary conditions (9)-(11) we obtain
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We take into account conditions U; lr- = @1 — o, ﬁg|1’*+ = 11 + g, conjugation conditions (12) and
add together all bilinear and linear forms. Note that some of addends on the common boundaries '~
and I'" annihilate each other, so bilinear and linear forms can be written in a simpler form. Therefore,
the variational formulation of the problem (5)—(12) is as follows.

Find functions U; € V1, Uy € Va, u1 € V, ugs € V which satisfy the variational equation

a1 (U1,U1) + as(Us, Us) + o' (U, 1) + a* (U, a2) + by (Ur, U1) + ba (Uz, Us) + b (U, @0y ) + b° (U, i2)
+ (U ) + AU, ig) = 1 (Uh) + 12(Ta) + 1 (1) + 1% (@2)  (13)
and conditions
Vi e VVU, €Vyy, k=T1,2, U=t —as on I'", Uy=a3+u on IT,
where Uy = uy —ug on I'™, Uy = uj + ug on T,
al (U, 1) :/ae oh2 (ﬁ —@%> O oy (U, ) —/2“ <8“2 hKam) 903 11,

l{ 80[1 3 80[1 8@1 8@1 8@1 80[1

ay
vwan = [ onwd™y 2 = [ 2R, N
b (U’ul)_/az{ 2hw8a1u1da1, b (U,u2)—/all) 3 w8a1u2dal’

a2\

_ _ . - N 2h
Cl(U, ul) =2h (ﬁbulullrb + 5 U1U1’Fe> s Cz(U, UQ) = /b TUQUQA d()él-i-? <B Ugug‘rb + ,8 Ugug‘Fe)
aq

af h
MNay) = / </ f(1+ agK)d()zg) Gy Adoy + 2h <5bu§a1|rb + 5@u§a1|Fe> ,

~

[N}
—~
I

061 1
2) = / </ f 1 + OégK)ag da2> 9 A da —l— - (5 u2u2]Fb + B¢ U2U2’Fe>

a (Ug, Uy) = / NeVUL VU day daa, by (Uy, Uy) = / w,VUU,, dxq dzs,
Qk Qk

cx (U, Uy) :/ BxUpUklr, dr,  1x(Uy) :// kakd$1d$2—/ BxU Uklr, dT,  k=T1,2.

4. Multiscale finite element method

We generalize the equations (5)—(8) into the following advection-diffusion equation
Lu=f, (14)

where Q C RY, d = 1,2, Lu = —V - (A\(z)Vu) +wVu, A\(z) is the diffusion coefficient that characterizes
multiscale inhomogeneities of the medium, w is a vector in R? that characterizes the speed of the
advective transfer, u(z) is the unknown function, f(x) is the given function that characterize the
intensity of internal sources, z € R%.

Let us consider the application of the multiscale finite element method to the generalized equa-
tion (14). The main idea of the MsFEM is to construct the special multiscale basis functions. Let P
be a partition of the domain € into finite elements by points z;, i = 0,n. We call this partition the
coarse grid and assume that it can be resolved via a finer resolution called the fine grid. Let 90? be
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the piecewise linear (or bilinear in the case 2 C R?) functions, which are the nodal basis functions of
FEM. The multiscale basis functions ¢; can be obtained from the condition

Loi=0 in K, ¢i=¢) on 0K, VKePR, KcbS, i=0,n,

where S; is the support of 4,09, K is a coarse grid block of the partition P.
The next step of MSFEM is the global formulation, or assembling the global matrix on the coarse
grid. We introduce the space

V= {u(az) u(z) € Wz(l)}

and multiply the equation (14) on the arbitrary function v € V. Integrating the result on {2 we obtain
the following variational formulation. Find such function u(x) € V that satisfies the condition

(Lu,v) = (f,v) Yv e V. (15)

We take v = cp?, j =0,n in (15). Analogously to FEM we look for the solution of (14) in the form

n
i(x) = uipi(w)
=0
and obtain the following system of equations
Au = Db,

where A = (ay;) is the global matrix with elements a;; = Y0 [, Lwi(x)¢}(x)dz, i,j = 0,1, b = (b;)
is the vector with elements b; = [, f(:n)gp(;(a:)daj, j =0,n, u= (u;) is the vector of unknown values of

the function u in nodes z; € Py, i = 0,n.

Therefore, the small scale information of the inhomogeneous medium and the local properties of
the differential operator are incorporated into the multiscale basis functions within each coarse grid
element. Then the small scale information is brought to the large scale through the coupling of the
global matrix. Thus, an accurate approximation of the solution is obtained on the large scale without
resolving the small scale details, and the small scale information is correctly captured due to the
multiscale basis functions.

5. Numerical experiments

Example 1. We assume that the medium inside the channel is homogeneous, so A = const, and
the medium outside the channel is inhomogeneous, multiscale and periodic, so A1, Ay depend on the
variables x1, xo and some small parameter € that determines the small scale of the problem. Let us

consider the layered medium shown in Fig.2. Here A = 1, \j(z1,29) = m, Ao(x1, ) =

W@W%)), p = 3.8, ¢ = 0.0078. The speed of the advective transfer is selected so w2 = wyy and
the Peclet number is 150 in the channel and 100 in the inhomogeneous medium. We use the partition
to 8 finite elements on the coarse grid in both x1 and z9 directions in 7 U 29 domain and to 64 finite
elements on the fine grid, that is for every coarse grid block.

For simplicity, we take the homogeneous boundary conditions and the squared medium with the
rectilinear channel in the middle for our experiments, so 1 = [a; a+ %] X [a;b], Qg = [a +
%; b] X [a;b], Q= [a—i— %; a+ %] X [a; b], where hyp;p, is the channel thickness (we
denote by h the size of a coarse grid block). We use the following values of parameters for numerical
experiments: a =0, b = 1, hyy, = 0.015, f = f1 = fo = 1. We take the direction of advection in the
medium the same as in the channel (from a to b along the x4y axis), so w13 = wa; = 0.
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Fig. 2. The layered medium.

In Fig. 3 the multiscale basis functions are presented in €1 and 2, respectively. As we can see, the
multiscale inhomoeeneities are incornorated into these basis functions.
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Fig.4. FEM solution in the layered medium.

Mathematical Modeling and Computing, Vol.7, No. 1, pp. 146-157 (2020)



152 Mazuriak N. V., Savula Ya. H.

For comparison, the solutions obtained in the whole domain € UQ U9 by classical and multiscale
finite element methods are presented in Figs.4-5. It should be pointed out that the MsFEM solution
is much more stable, while the solution obtained by FEM contains unnatural oscillations. Besides this,
the FEM solution behaves in the same way in both multiscale mediums €2 and €9, and even in the
homogeneous channel 2 with higher Peclet number. The MsFEM solution, in contradistinction to the
FEM one, behaves differently in these three mediums and this behaviour corresponds to the natural
advection-diffusion process.

o 1 : : : : 0.016
x 10 ——— ——
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0.8f
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05| | 0.008
04r 0.006
0.3f
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0 0.2 0.4 0.6 0.8 1

Fig. 5. MsFEM solution in the layered medium.

Example 2. Next we consider the same multiscale medium in both 7 and Qg with A\ (z1,22) =

Ao(x1,29) = 4+p(sin(27r%1l)+sin(27r%2)), p = 1.9 shown in Fig. 6. The speed of the advective transfer here

is selected so wio = woo and the Peclet number is 100 in the channel and 70 in the inhomogeneous
medium.
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Fig. 6. The multiscale medium.

It was shown in [3| that the MSFEM solution converges to the homogenized solution in the ho-
mogenization limit, that is as € — 0. The estimate in the case h > € is O(h + \/%), where h is the
size of a coarse grid element. This estimate is obtained for the diffusion problem, but it is easy to see
that it can be obtained also for the advection-diffusion problem in the same way. In order to confirm
the given theoretical estimate we use the partition to 4, 8 and 16 finite elements in both z; and x»
directions on the coarse grid and 16, 32 and 64 finite elements respectively on the fine grid in our
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following numerical experiments. As e should be less than the coarse grid element size, grater than
the fine grid element size and tend to zero, we use 0.0625, 0.0156 and 0.0039 values for &, so the ratio
7 is i, % and % respectively. All our next experiments are obtained in €2y U Q U Q5 domain.

For comparison, we show the homogeneous results together with the multiscale one, so it is easy to
see how the MsFEM solution converges when € — 0, h — 0 and h > €. We take the average value of \;,
i = 1,2 in the multiscale medium and use it for obtaining the homogeneous results, so A\ = Ay = Ap,
Ap = const and Ay is different for every € and independent of xy and xo. In Figs.7, 9, 11 the
homogeneous and multiscale basis functions are presented for 4, 8 and 16 finite elements respectively.
Note that the multiscale basis functions contain the medium inhomogeneities and converge to the

appropriate homogeneous basis functions.
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Fig. 7. Homogeneous (top) and multiscale (bottom) basis functions for n = 4.
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Fig. 8. Homogeneous (left) and multiscale (right) MsFEM solutions for n = 4.
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In Figs. 8, 10, 12 the homogeneous and multiscale solutions for 4, 8 and 16 finite elements respec-
tively are shown in isolines view. In Fig. 13 the homogeneous and multiscale solutions for 16 finite
elements are shown in 3D view. As we can see, the MsFEM solution is stable and indeed converges to
the homogeneous solution in the homogenization limit.
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Fig. 9. Homogeneous (top) and multiscale (bottom) basis functions for n = 8.

Fig.10. Homogeneous (left) and multiscale (right) MSFEM solutions for n = 8.
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Fig. 12. Homogeneous (left) and multiscale (right) MsFEM solutions for n = 16.
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The convergence results of the above experiments are shown in Table1 for different norms. Here

is the MsFEM solution, uy is the homogeneous solution,
n 2 2
auij 8uij
lulbmar = g gl Jully = | > (u%j H(52) + (52)).
0<j<n ,j=0
n n
llle = | D2 uh Al = max > fus.
,j=0 =0

The obtained results confirm that the MSFEM solution converges in the homogenization limit for
sufficiently large Peclet numbers.

6.

Table 1. Convergence results.

n £ i | lum = unllmas | llum = unllyo0 | llum = unllF | [lu; = usll
4 | 0.0625 % 0.0141 0.1301 0.0355 0.0526
8 | 0.0156 % 0.0082 0.0708 0.0180 0.0292
16 | 0.0039 % 0.0061 0.0500 0.0129 0.0165

Conclusions

The multiscale finite element method was applied to solving the advection-diffusion problem in the
inhomogeneous medium with a thin channel. The case of large Peclet numbers and the multiscale
medium was considered. It was shown that the solution obtained by MsFEM is stable and corresponds
to the natural advection-diffusion process, while the FEM solution contains unnatural oscillations and
does not take into account the small scale inhomogeneities. Numerical experiments confirm that the
MsFEM solution converges to the homogenized one in the homogenization limit. Therefore, the mul-
tiscale finite element method is efficient for solving the formulated problem with large Peclet numbers
in the multiscale medium.
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