
MATHEMATICAL MODELING AND COMPUTING, Vol. 7, No. 1, pp. 196–205 (2020)
Mathematical

M
odeling

Computing

Mathematic and computer modeling of cohesion effect forces on
spatial deformation processes of soil massif

Vlasyuk A.P.1, ZhukovskaN.A.2, Zhukovskyy V.V.2

1The National University of Ostroh Academy,

2 Seminarska Str., 35800, Ostroh, Ukraine
2The National University of Water and Environmental Engineering,

11 Soborna Str., 33000, Rivne, Ukraine

(Received 20 February 2020; Revised 18 May 2020; Accepted 20 May 2020)

The article presents the modeling and solving of the deformation processes problem of the
soil massif under the forces of cohesion effect. Spatial deformation processes of soil massif
are described by the components of displacements, by normal and tangential stresses,
and by strains. Also, the corresponding boundary value problem includes the mass and
heat transfer equations in a soil massif. The functions of cohesion forces in the soil are
considered that have linear, quadratic and logarithmic dependence. The results of the
studies are presented in the form of graphs of displacement surfaces as well as in percentage
ratios of the corresponding functions. Numerical experiments have shown that on average
the forces of linear dependence have the greatest influence on the displacement while the
logarithmic dependence provides the least effect.
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1. Introduction

The hydrogeological characteristics of the soil massif depend on the influence of various human activity
factors: pollution of groundwater with various salts and fertile lands with radioactive substances, tem-
perature fluctuations, dumping of waste products, construction of nuclear power plants and reservoirs-
coolers near them, etc. At the same time the filtration properties and the stress-strain state (SSS) of
soil massifs and bases may change due to the hydrodynamic forces of the filtration flow and the change
in the proper weight of the soil. This effect is often the cause of emergencies. Furthermore, maintaining
soil fertility is an important task for agricultural production. Mechanical cultivation should provide the
optimum stress-strain state of the fertile layer for the purpose of efficient growth of crops. Therefore,
an urgent question arises about the study of factors that can influence the deformation processes of soil
environments, in particular, taking into account the internal forces of cohesion, which depend not only
on the composition of the soil, its moisture and density, but also on the concentration of salt solutions
in it.

Mathematical and computer simulation is one of the modern methods of scientific deformation
processes prognostication of soil massifs and bases of civil, industrial and hydraulic engineering objects
and structures that fall into the zone of influence of various physical and chemical factors.

2. Analysis of recent research and publications

The study of deformation processes of soil massifs and bases is reflected in [1,2]. Mathematical modeling
and research of the stress-strain state of soil massifs, taking into account mass and heat transfer and the
dependences of the filtration coefficient and the Lame’s coefficients on the concentration of salt solutions
and temperature, as well as the filtration properties of soil massifs are given in [3–6]. The influence of the
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concentration of salt solutions on the forces of cohesion in clay soils was carried out in [7]. Mathematical
models in the assessment of water saturated soil massifs’ deformations under their drainage have been
developed and substantiated in [8]. The mathematical simulation of the landfill settlement was carried
out with consideration of geometric, physical and mechanical parameters of a landfill and its ground
foundation in [9]. Also, the stress-strain state analysis is specifically concerned with solid objects,
because of similarity of fundamental physical lows and that is why there are interesting publications as
well. E.g. the novel numerical solution for reducing two-point static problems of distributed extended
systems in the field of body and surface forces was presented in [10]. This numerical algorithm may be
used for determining power and geometric characteristics of deep water intake of nuclear power plants,
assessing the quality of the diverter and determining the stiffness coefficient of the anchor coupling
of semi-submersible drilling platform. The finite element method (FEM) used for determination the
stress-strain state parameters in the areas of the pipeline part defected by pitting corrosion in [11].
In [12] authors used heterogeneous modeling, boundary element method (BEM), FEM and domain
decomposition method (DDM) for numerical analysis of heterogeneous mathematical model of elastic
body with thin inclusion. Interesting approach for representing solid materials with discrete lattices and
to analysing their behaviour by calculus on discrete manifolds were proposed in [13]. Authors presented
mathematical model for elasticity using calculus on discrete manifolds and made the focus on the
mathematical derivation of the lattice elements by taking into account the stored energy associated with
them. However, the stress-strain state of soil massifs is not considered in these works in consideration
of the mass and heat transfer in it and the presence of cohesion forces.

Therefore, the purpose of this article is to study the deformation processes of soil massifs taking into
account the influence of mass and heat transfer and forces of cohesion in the three-dimensional case, the
construction of the corresponding spatial mathematical model, numerical solution of the corresponding
boundary value problem and computer simulation of the obtained results with the subsequent analysis
of the obtained results.

3. Formulation of the problem

Let us consider the soil massif in the three-dimensional case that occupies the region Ω, taking into
account the mass and heat transfer and the forces of cohesion in it (Fig. 1).
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Fig. 1. The scheme of a soil massif in a
three-dimensional case.

The soil massif is considered within the linear theory
of elasticity with different elastic parameters (Lame coef-
ficients) λ(c, T ), µ(c, T ), which depend on the concentra-
tion of salt solution and temperature. There are gravity,
archimedean and filtration forces influence on the soil .

Let us mark the plane ABCD in Fig. 1 as Γ1,
A1B1C1D1 as Γ2, ABA1B1, CDC1D1 and BCB1C1,
ADA1D1 as Γ3, Γ4 and Γ5, Γ6 respectively. The planes Γ1

and Γ2 are heat insulated and impermeable, and Γ3, Γ4,
Γ5, Γ6 are drained. On the sides of the soil massif there
are water basins with water level H1 and H2 respectively.

The set values of the piezometric header H̃1, H̃2, tem-
peratures T̃1 and T̃2 in the water pools Γ3, Γ5 and Γ4, Γ6

respectively, and H̃1 > H̃2, T̃1 > T̃2. In the left basin, the
concentration of salts C̃1 is given, and in the right — a condition for the rapid removal of salts. As a
result of the pressure differences, the transfer of water-dissolved substances and heat to the filtration
stream is carried out. In this case, the processes of filtration of substances dissolved in water and heat
are subject to the laws of Darcy, Fick and Fourier.

In this area of the soil massif Ω it is necessary to calculate the distributions of the displacements
u(X) = (U(X), V (X),W (X)), the normal components of the strains εx, εy, εz and the tangential
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components of the strains εxy, εxz, εyz, the normal components of the stresses σx, σy, σz and the
tangential components of stresses τxy, τxz, τyz, the piezometric head h(X, t), concentration of salt
solutions c(X, t) and temperature T (X, t), X ∈ Ω, t > 0 with the presence the forces of cohesion.

4. Mathematical model

The mathematical model of the corresponding boundary value problem in the three-dimensional case at
the presence of the forces of cohesion and mass and heat transfer in the generally accepted designations
has the following form [1–8,14]:
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(3)

σx = λ(c, T ) εθ + 2µ(c, T ) εx −
(

3λ(c, T ) + 2µ(c, T )
)

αT T̄ ,

σy = λ(c, T ) εθ + 2µ(c, T ) εy −
(

3λ(c, T ) + 2µ(c, T )
)

αT T̄ ,

σz = λ(c, T ) εθ + 2µ(c, T ) εz −
(

3λ(c, T ) + 2µ(c, T )
)

αT T̄ ,

τxy = 2µ(c, T ) εxy , τxz = 2µ(c, T ) εxz , τyz = 2µ(c, T ) εyz ,

(4)

where εθ = εx + εy + εz, X ∈ Ω; and the equation of convective diffusion in the presence of mass
and heat transfer, convection mass and heat transfer equation, generalized equation of filtration of
salt solutions in nonisothermal conditions and the equation of continuity of the process at appropriate
boundary conditions on the boundaries of the soil massif for the piezometric head, salt concentration,
temperature, displacements and stresses [4].
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Here: (1) is a system of Lame equations describing SSS for displacements taking into account mass
and heat transfer; (2) are the components of mass forces with the cohesion effect present; (3) are the
normal and the tangential strains based on the Cauchy ratios; (4) are the normal and the tangential
stresses based of the generalized Hooke’s law in the inverse form.

The mathematical model (1)–(4) uses the following notation: X = (x, y, z), the point of the re-
gion Ω, X ∈ Ω; Γ, the boundary of the region Ω; t, time, t > 0; u = (U, V,W ), the displacements
vector, m; X, Y , Z are the components of mass force, H; εx, εy, εz and εxy, εxz, εyz, the normal
and tangential strains respectively; σx, σy, σz аnd τxy, τxz, τyz, the normal and tangential stresses,
Pа; εθ = εx + εy + εz ; p1, p2, p3, filtration pressure of salt solution, where p1 = γp(h(X, t) − x),
p2 = γp(h(X, t) − y), p3 = γp(h(X, t) − z), Pа; c(X, t), concentration of salt solution, g

l
; T (X, t),

temperature, ◦С; h(X, t), piezometric head, m; f1(c), f2(c), f3(c) are the functions that express the
influence of soil density on its deformation processes due to the forces of cohesion; λ(c, T ) and µ(c, T )
are the Lame coefficients depending on the concentration of salt solution and temperature, Pa; γzv.,
the proportion of the soil that is in a suspended state, Pa

m ; αT , the average coefficient of linear thermal
expansion in the temperature interval (T0, T ) [15].

5. Numerical solution of the boundary value problem

j1, j2, j3

Fig. 2. The nine-point box template.

Let us cover the study area Q̄T = Ω̄× [0, t0] with uniform grid

Q̄(m1,m2,m3,n1) =
(

[0;m1h1]× [0;m2h2]× [0;m3h3]
)

× [0;n1τ ]

with steps h1, h2, h3 and τ according to the variables x, y, z
and time t, where m1, m2, m3, n1 are the numbers of steps for
spatial variables and time, respectively.

To approximate the system of equations (1), we use a fi-
nite difference method, including the nine-point box template
(Fig. 2).

Then the finite-difference analogs of the system of equa-
tions (1) have the next form:

µi,j1,j2,j3Ūi,j1,j2,j3 + (λi,j1,j2,j3 + µi,j1,j2,j3)
Ui,j1+1,j2,j3 − 2Ui,j1,j2,j3 + Ui,j1−1,j2,j3

h21

+

(
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h1
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)
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+
µi,j1,j2+1,j3 − µi,j1,j2,j3
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h2

+
µi,j1,j2,j3+1 − µi,j1,j2,j3

h3

Ui,j1,j2,j3+1 − Ui,j1,j2,j3

h3
= f1

i,j1,j2,j3
(Vi,Wi, Ti), (5)

µi,j1,j2,j3V̄i,j1,j2,j3 + (λi,j1,j2,j3 + µi,j1,j2,j3)
Vi,j1,j2+1,j3 − 2Vi,j1,j2,j3 + Vi,j1,j2−1,j3

h22

+

(

λi,j1,j2+1,j3 − λi,j1,j2,j3

h2
+ 2

µi,j1,j2+1,j3 − µi,j1,j2,j3

h2

)
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+
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+
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(Ui,Wi, Ti),
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µi,j1,j2,j3W̄i,j1,j2,j3 + (λi,j1,j2,j3 + µi,j1,j2,j3)
Wi,j1,j2,j3+1 − 2Wi,j1,j2,j3 +Wi,j1,j2,j3−1

h23

+

(

λi,j1,j2,j3+1 − λi,j1,j2,j3

h3
+ 2

µi,j1,j2,j3+1 − µi,j1,j2,j3

h3

)

Wi,j1,j2,j3+1 −Wi,j1,j2,j3

h3

+
µi,j1+1,j2,j3 − µi,j1,j2,j3

h1

Wi,j1+1,j2,j3 −Wi,j1,j2,j3

h1

+
µi,j1,j2+1,j3 − µi,j1,j2,j3

h2

Wi,j1,j2+1,j3 −Wi,j1,j2,j3

h2
= f3

i,j1,j2,j3
(Ui, Vi, Ti),

where

Ūi,j1,j2,j3 =
Ui,j1+1,j2,j3 − 2Ui,j1,j2,j3 + Ui,j1−1,j2,j3

h21
+

Ui,j1,j2+1,j3 − 2Ui,j1,j2,j3 + Ui,j1,j2−1,j3

h22

+
Ui,j1,j2,j3+1 − 2Ui,j1,j2,j3 + Ui,j1,j2,j3−1

h23
,

V̄i,j1,j2,j3 =
Vi,j1+1,j2,j3 − 2Vi,j1,j2,j3 + Vi,j1−1,j2,j3

h21
+

Vi,j1,j2+1,j3 − 2Vi,j1,j2,j3 + Vi,j1,j2−1,j3

h22

+
Vi,j1,j2,j3+1 − 2Vi,j1,j2,j3 + Vi,j1,j2,j3−1

h23
,

W̄i,j1,j2,j3 =
Wi,j1+1,j2,j3 − 2Wi,j1,j2,j3 +Wi,j1−1,j2,j3

h21
+

Wi,j1,j2+1,j3 − 2Wi,j1,j2,j3 +Wi,j1,j2−1,j3

h22

+
Wi,j1,j2,j3+1 − 2Wi,j1,j2,j3 +Wi,j1,j2,j3−1

h23
,

f1
i,j1,j2,j3

(Vi,Wi, T i), f
2
i,j1,j2,j3

(Ui,Wi, Ti), f
3
i,j1,j2,j3

(Ui, Vi, Ti) are some known functions; j1 = 1,m1 − 1,

j2 = 1,m2 − 1, j3 = 1,m3 − 1, i = 1, 2.

Here: λi,j1,j2,j3 = λi,j1,j2,j3

(

c
(s)
i,j1,j2,j3

, T
(s)
i,j1,j2,j3

)

, µi,j1,j2,j3 = µi,j1,j2,j3

(

c
(s)
i,j1,j2,j3

, T
(s)
i,j1,j2,j3

)

at j1 =

1,m1 − 1, j2 = 1,m2 − 1, j3 = 1,m∗
3 − 1, s = 0, n1, i = 1, 2 and λi,j1,j2,j3 = λi,j1,j2,j3

(

T
(s)
i,j1,j2,j3

)

,

µi,j1,j2,j3 = µi,j1,j2,j3

(

T
(s)
i,j1,j2,j3

)

at j1 = 1,m1 − 1, j2 = 1,m2 − 1, j3 = m∗
3,m3 − 1, s = 0, n1, i = 1, 2.

Finite-difference analogs for mass forces (2) have the form

Xi,j1,j2,j3 =







(p1)j1+1,j2,j3 − (p1)j1−1,j2,j3

2h1
+ f1

(

c
(s)
j1,j2,j3

)

, j3 = 1,m∗
3, i = 1,

0, j3 = m∗
3 + 1,m3 − 1, i = 2,

Yi,j1,j2,j3 =







(p2)j1,j2+1,j3 − (p2)j1,j2−1,j3

2h2
+ f2

(

c
(s)
j1,j2,j3

)

, j3 = 1,m∗
3, i = 1,

0, j3 = m∗
3 + 1,m3 − 1, i = 2,

(6)

Zi,j1,j2,j3 =







γzv. +
(p3)j1,j2,j3+1 − (p3)j1,j2,j3−1

2h3
+ f3

(

c
(s)
j1,j2,j3

)

, j3 = 1,m∗
3, i = 1,

γpr., j3 = m∗
3 + 1,m3 − 1, i = 2,

where (p1)j1,j2,j3 = γp
(

h
(s)
j1,j2,j3

−j1h1
)

, (p2)j1,j2,j3 = γp
(

h
(s)
j1,j2,j3

−j2h2
)

, (p3)j1,j2,j3 = γp
(

h
(s)
j1,j2,j3

−j3h3
)

,

j1 = 1,m1 − 1, j2 = 1,m2 − 1, s = 0, n1, i = 1, 2.
The normal and tangential strains (3) are approximated as follows:

(εx)i,j1,j2,j3 =
Ui,j1+1,j2,j3 − Ui,j1−1,j2,j3

2h1
,

(εy)i,j1,j2,j3 =
Ui,j1,j2+1,j3 − Ui,j1,j2−1,j3

2h2
,
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(εz)i,j1,j2,j3 =
Ui,j1,j2,j3+1 − Ui,j1,j2,j3−1

2h3
,

(εxy)i,j1,j2,j3 =
1

4

(

Ui,j1,j2+1,j3 − Ui,j1,j2−1,j3

h2
+

Vi,j1+1,j2,j3 − Vi,j1−1,j2,j3

h1

)

,

(εxz)i,j1,j2,j3 =
1

4

(

Ui,j1,j2,j3+1 − Ui,j1,j2,j3−1

h3
+

Wi,j1+1,j2,j3 −Wi,j1−1,j2,j3

h1

)

,

(εyz)i,j1,j2,j3 =
1

4

(

Vi,j1,j2,j3+1 − Vi,j1,j2,j3−1

h3
+

Wi,j1,j2+1,j3 −Wi,j1,j2−1,j3

h2

)

,

j1 = 1,m1 − 1, j2 = 1,m2 − 1, j3 = 1,m3 − 1, i = 1, 2.

The finite-difference analogs of normal and tangential stresses (4) have the following form:

(σx)i,j1,j2,j3 = λi,j1,j2,j3(εθ)i,j1,j2,j3 + 2µi,j1,j2,j3(εx)i,j1,j2,j3 − (3λi,j1,j2,j3 + 2µi,j1,j2,j3)α
(i)
T T̄

(s)
i,j1,j2,j3

,

(σy)i,j1,j2,j3 = λi,j1,j2,j3(εθ)i,j1,j2,j3 + 2µi,j1,j2,j3(εy)i,j1,j2,j3 − (3λi,j1,j2,j3 + 2µi,j1,j2,j3)α
(i)
T T̄

(s)
i,j1,j2,j3

,

(σz)i,j1,j2,j3 = λi,j1,j2,j3(εθ)i,j1,j2,j3 + 2µi,j1,j2,j3(εz)i,j1,j2,j3 − (3λi,j1,j2,j3 + 2µi,j1,j2,j3)α
(i)
T T̄

(s)
i,j1,j2,j3

,

(τxy)i,j1,j2,j3 = 2µi,j1,j2,j3(εxy)i,j1,j2,j3 ,

(τxz)i,j1,j2,j3 = 2µi,j1,j2,j3(εxz)i,j1,j2,j3 ,

(τyz)i,j1,j2,j3 = 2µi,j1,j2,j3(εyz)i,j1,j2,j3 ,

where (εθ)i,j1,j2,j3 = (εx)i,j1,j2,j3 +(εy)i,j1,j2,j3 +(εz)i,j1,j2,j3 , T̄
(s)
i,j1,j2,j3

=, j1 = 1,m1 − 1, j2 = 1,m2 − 1,

j3 = 1,m3 − 1, i = 1, 2, s = 0, n1.
An approximation of the boundary conditions for displacements is given in [6] as well as approxima-

tions of concentration and temperature mode in [3]. To find the displacement values U(X), V (X) and
W (X) and the piezometric head h(X, t), the Gauss–Seidel iteration method was used and described
in [6]. To find the concentration of salt solution c(X, t) and temperature T (X, t), a sweep method [16]
was used.

6. Experiments and their analysis

For numerical solving and computer simulation of the corresponding boundary value problem, a soft-
ware package for the capabilities of the Microsoft Visual Studio 2017 framework for Windows Desktop
in the C# programming language was created, in which graphs and table data show the displacement
fields distributions, the component of normal and tangential strains and stresses, as well as pressure,
concentration of salts and temperature in the studied area, taking into account and without taking
into account the influence of mass and heat transfer and the presence of the forces of cohesion.

As an example, the spatial stress-strain state in a soil massif in the region Ω = {X = (x, y, z) : 0 6

x 6 l1, 0 6 y 6 l2, 0 6 z 6 l3}, which has the shape of a rectangular parallelepiped of l1 = 10m length,
l2 = 10m thickness and l3 = 10m height with αT = 1 · 10−6 1

grad , γzv. = 1.3 · 104 Pa
m , γp = 1 · 104 Pa

m and
with the following functions f1(c) = f2(c) = f3(c) = f(c), is considered:

а) f(c) = a c+ b, a = const, b = const (linear function);
b) f(c) =

√
a c+ b, a = const, b = const (quadratic function);

с) f(c) = a · ln(cb), a = const, b = const (logarithmic function).
The dependences of the Lame coefficients and the filtration coefficient on the concentration of salt

solutions is taken from [17].
A series of numerical experiments was conducted, the results of which are presented in the form of

graphs at t = 1080days.
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Fig. 3 shows the displacements graphs U(X), V (X) and W (X) in the section of the plane xOy at
z = 5m, taking into account the mass and heat transfer and the presence of cohesion forces at a = 1
and b = 1.
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Fig. 3. Distributions of displacements U(X) (a), V (X) (b) and W (X) (c) with logarithmic dependence of
cohesion forces function.

Similar graphs are obtained for components of the normal and tangential strains and stresses. Based
on the results of numerical experiments the following conclusions were obtained:

1. The displacements along the Ox axis (U(X)), taking into account the linear function of the
forces of cohesion, decreased by an average of 1.37%, quadratic function by 0.09% and logarithmic
function by 0.03% compared with the displacements along the Ox axis without taking into account
the forces of cohesion [5].

2. The displacements along the Oy axis (V (X)), taking into account the linear function of the forces
of cohesion on average decreased by 1.37%, quadratic function by 0.09% and logarithmic function by
0.03% compared with displacements along the Oy axis without taking into account the forces of
cohesion.

3. The displacements along the Oz axis (W (X)), taking into account the linear function of the
forces of cohesion, on average decreased by 3.61%, the quadratic function by 0.24% and logarithmic
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function by 0.09% compared with the displacements along the Oz axis without taking into account
the forces of cohesion.

4. The normal strains along the Ox axis (εx), taking into account the linear function of the forces
of cohesion, on average decreased by 1.15%, the quadratic function by 0.03%, the logarithmic function
by 0.001% compared with the normal strains along the Ox axis without taking into account the forces
of cohesion.

5. The normal strains along the Oy axis (εy), taking into account the linear function of the forces of
cohesion, on average decreased by 39.79%, the quadratic function by 1.17%, the logarithmic function
by 0.07% compared to the normal strains along the Oy axis without taking into account the forces of
cohesion.

6. The normal strains along the Oz axis (εz), taking into account the linear function of the forces
of cohesion, on average decreased by 2.12%, the quadratic function by 0.08%, and the logarithmic
function by 0.01%, as compared to the normal strains along the Oz axis without taking into account
the forces of cohesion.

7. The normal stresses on the Ox axis (σx), taking into account the linear function of the forces
of cohesion, on average decreased by 0.33%, the quadratic function by 0.13%, logarithmic function by
0.07% compared with the normal stresses on the Ox axis without taking into account the forces of
cohesion.

8. The normal stresses on the Oy axis (σy), taking into account the linear function of the forces
of cohesion, on average decreased by 0.48%, the quadratic function by 0.06%, logarithmic function by
0.04% compared with the normal stresses on the Oy axis without taking into account the forces of
cohesion.

9. The normal stresses on the Oz axis (σz), taking into account the linear function of the forces of
cohesion, on average decrease by 0.21%, the quadratic function by 0.15%, and the logarithmic function
by 0.09% compared to the normal stresses on the Oz axis without taking into account the forces of
cohesion.

10. The tangential strains to the xOy plane, taking into account the linear function of the forces
of cohesion, on average decreased by 55.04%, the quadratic function by 1.61% and the logarithmic
function by 0.1% compared to the tangential strains to the xOy plane without taking into account the
forces of cohesion.

11. The tangential strains to the xOz plane, taking into account the linear function of the forces of
cohesion, on average decreased by 4.84%, the quadratic function by 0.14%, the logarithmic function
by 0.01% in comparison with the tangential strains to the xOz plane without taking into account the
forces of cohesion.

12. The tangential strains to the yOz plane, taking into account the linear function of the forces of
cohesion, on average decreased by 0.92%, the quadratic function by 0.03%, the logarithmic function
by 0.001% in comparison with the tangential strains to the yOz plane without taking into account the
forces of cohesion.

13. The tangential stresses to the xOy plane, taking into account the linear function of the forces
of cohesion, on average decreased by 0.65%, the quadratic function by 0.03%, and the logarithmic
function by 0.03% compared with the tangential stresses to the xOy plane without taking into account
the forces of cohesion.

14. The tangential stresses to the xOz plane, taking into account the linear function of the forces
of cohesion, on average decreased by 0.89%, the quadratic function by 0.04%, and the logarithmic
function by 0.04% compared with the tangential stresses to the xOz plane without taking into account
the forces of cohesion.

15. The tangential stresses to the yOz plane, taking into account the linear function of the forces of
cohesion, on average decreased by 0.26%, the quadratic function by 0.01%, the logarithmic function
by 0.01% in comparison with the tangential stresses to the yOz plane without taking into account the
forces of cohesion.
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Thus, taking into account the cohesion forces in the soil massif considered changes the distributions
of the displacements, the components of normal and tangential strains and stresses. In particular, the
greatest effect occurred with the linear function of the cohesion forces dependence, and the smallest
with the logarithmic function.

7. Conclusion

The article formulates the problem of mathematical and computer simulation of the spatial stress-
strain state of the soil massif, taking into account the influence of mass and heat transfer and the
presence of cohesion forces. Numerical solution of the corresponding boundary value problem is found.
The software package of the Microsoft Visual Studio 2017 Framework for Windows Desktop in the
C# programming language has been created for computer simulation, and the soil massif, which has
the shape of a rectangular parallelepiped, is considered. The results of computer simulation and
numerical experiments are obtained. They demonstrate the cohesion forces effect on the overall spatial
deformation processes in the soil massif in non-isothermal conditions.
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Математичне i комп’ютерне моделювання впливу сил зв’язностi
на просторовi деформацiйнi процеси грунтових масивiв
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Стаття присвячена моделюванню та розв’язанню задачi впливу сил зв’язностi на де-
формацiйнi процеси грунтового масиву. Просторовi деформацiйнi процеси грунтового
масиву описуються компонентами змiщень, нормальних i дотичних деформацiй та на-
пружень. Також поставлена крайова задача включає рiвняння тепло- та масоперене-
сення в грунтовому масивi. Розглянуто функцiї сил зв’язностi в грунтовому масивi,
що мають лiнiйний, квадратичний та логарифмiчний вигляди. Наведено результа-
ти дослiджень у виглядi графiкiв поверхонь змiщень та процентних спiввiдношень
шуканих функцiй. Як показали проведенi чисельнi експерименти, в середньому най-
бiльший вплив на змiщення мають сили зв’язностi лiнiйного вигляду, а найменший
— логарифiчного.

Ключовi слова: математичне i комп’ютерне моделювання, грунтовий масив, де-

формацiйнi процеси, сили зв’язностi.
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