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In this article, a fuzzy controller tuned by reinforcement learning is proposed. The devel-
oped algorithm utilizes a fuzzy logic theory and a reinforcement learning for fine-tuning
parameters of the membership function for the fuzzy controller. Apart from the fuzzy con-
troller developed, a fuzzy corrector of reference input (set-point) signal to the controller
is applied. The fuzzy corrector changes the input (reference) signal of the system and
takes into account an original reference input and type of external disturbances. Thus,
the designed fuzzy control that is tuned by reinforcement learning is capable to ensure
the stable, optimal, and safe performance of the system and takes into account exter-
nal disturbances. To verify the performance of the proposed controller, the adaptive fuzzy
controller tuned by reinforcement learning is applied to the mathematical model of a wheel
locomotion module of an electric vehicle to advance a traction control system. Therefore,
the effectiveness of the proposed adaptive fuzzy controller is proven through the simulation
results.
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1. Introduction

In a past few decades, various control techniques have been proposed, along with classical, optimal or
intelligent control methods. Although the PID control is widely used for its simplicity and predictabil-
ity, alternative methods are required to deal with complex/nonlinear systems or processes, external
disturbances presence, to ensure desired control performance, etc. Indeed, a PID controller, with its
known tuning process and computational simplicity, is characterized by its constant tuning parameters
and, in general, cannot provide adaptivity or robustness to external disturbances and optimal control
for nonlinear systems.

Due to the demand for optimality of the controller, optimal control methods, whose aim to find
a control policy that optimizes a given criterion for a given dynamical system, might be an alter-
native that provides the robustness to the closed loop transients. However, optimal control problem
requires solving the Hamilton–Jacobi–Bellman equation which usually cannot be obtained for nonlinear
systems [1].

This research is supported by NATO SPS project G5176 – “Agile Tyre Mobility for Severe Terrain Environments” and

Automotive Research Center, Phase V, Cooperative Agreement No.1.A82.

168 c© 2021 Lviv Polytechnic National University

CMM IAPMM NASU



Fuzzy controller, designed by reinforcement learning, for vehicle traction system application 169

Therefore, in recent past, to control the nonlinear systems, the model predictive control (MPC)
and intelligent control methods are widely investigated, including fuzzy logic control, learning control
methods, etc. [2–7]. These control methods can be designed to provide adaptivity to external distur-
bances or system parameters change and, thus, design an adaptive control system. Adaptive control
systems ensure the stability and performance of a closed-loop system in the presence of adverse con-
ditions. Unlike robust control systems, they are not tuned into the worst-case scenario and they can
constantly improve their performance through learning [8].

In this work, the fuzzy logic control is chosen because of its adaptive tuning capabilities, ability
to deal with uncertainty and non-linearity while also its rapid operation [9–12]. Besides, a reinforce-
ment learning algorithm, is utilized for tuning the parameters of membership function of the fuzzy
controller, which minimizes the complexity of fuzzy controller tuning and synthesis. To further en-
hance control transients performance while presence of external disturbances, the fuzzy corrector of
controller reference input signal is utilized. Thus, the whole control system which comprises fuzzy
controller fine-tuned by reinforcement learning and fuzzy corrector is capable to provide a stable and
optimal control policy which is adaptive to external disturbances.

In order to verify the developed control system, it is applied to a mathematical model of a wheel
locomotion module of a vehicle that is one-quarter model of the vehicle. Specifically, the designed
controller is synthesized for traction control of an off-road vehicle’s wheel which is driven by an in-
wheel electrical motor. In order to implement the control system for such vehicular application, the
additional research is carried out to analyze the off-road dynamics of the wheel locomotion module
and wheel/vehicle traction control system.

Improvement of the wheel/vehicle traction performance in off-road condition is a challenging task.
Typically, the traction control algorithms are tuned and calibrated for asphalt road conditions that
might cause issues when operating on different road/terrain conditions. The uncertain road conditions
impact the performance of the control system significantly that opens the challenge for proper vehicle’s
parameters estimation and control [14]. For off-road vehicles, which commonly are heavy-vehicles for
different applications such as agriculture, forestry, constriction, military, the essential factors of traction
control system design are energy efficiency and mobility. The tire slippage optimization is usually
connected with the aim of energy efficiency optimization of traction and main losses during traction
control are due to high values of tire slippage. Mobility of the vehicle characterizes its ability to go or
not to go in certain road/terrain conditions. The control methods for off-road traction control have
to fulfill the task of energy efficient motion without immobilization operation in different/stochastic
terrain conditions [13]. Therefore, an off-road traction control should provide fast and agile control
action decisions that are adaptive to particular road/terrain conditions.

Authors in [15] also pay close attention to control methods, pointing out that this is a significant
factor for the off-road traction control system. In the study, the authors put the problem of the
efficiency and robustness of the traction system as one of the most important for off-road vehicles.
In the current paper, authors want to draw attention to the fact that for off-road vehicles special
treatment should be paid to adaptability rather than robustness, as off-road control systems must
adapt as quickly as possible to rapid and stochastic terrain condition changes.

There are different studies dealing with the traction control systems for off-road mobility and
energy efficiency improvement [16–18]. Most of them agreed that the adaptability of traction system
for off-road conditions causes improvement in energy efficiency. In [16] the adaptive set-point value is
implemented for traction control system. The authors stated the due to changes in terrain conditions,
all the approaches with a fixed set-point are sub-optimal and might lead to low energy efficiency. An
adaptive controller for off-road traction system designed taking into account the change of controller’s
set-point is proposed in [18].

The main contribution of this work is to introduce the adaptive fuzzy controller for stable and
optimal performance control of dynamical systems and to verify the controller on the example of the
wheel locomotion module. The contribution of the applied off-road traction controller is to address the
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wheel angular velocity control taking into account the dynamics of e-motor and wheel while presence
of an external stochastic uncertainties represented by wheel load. The key features are that the fine-
tuning of the controller is carried out by reinforcement learning algorithm and the set-point for the
controller is adaptive to different road/terrain conditions and implemented as a fuzzy corrector.

The reminder of the article starts with the background on reinforcement learning and fuzzy logic
controller. The details on the control method synthesis are presented in Section 3. The control
method proposed in this study is applied to the mathematical model of the wheel locomotion module
described in Section 4.1 while the computational results of the proposed control implementation to the
mathematical model are presented in Section 5.

2. Background

2.1. Reinforcement learning: Q-learning algorithm

Reinforcement learning is a subfield of machine learning. Learning-based applications in ground vehicles
is an emerging and promising technique with a robust ability of the self-adaptation to changes of both
system states and external disturbances. Even though some learning algorithms need to have an off-line
learning phase, they still may be considered for real-time applications.

Reinforcement learning uses the data collected from past experiences in order to develop strategies
for the future actions. In general, reinforcement learning algorithms and, in particular, Q-learning
algorithms utilize a learning approach of “agent–environment” interactions to maximize a reward value
that is observed from the environment (see Fig. 1). The environment herein is a control plant, i.e. a
mathematical model of a physical object. The agent is an algorithm that analyses responses from the
environment and produces control actions based on the acquired knowledge about the environment.
The responses from the environment are represented by state and reward variables. The states are
variables that are chosen to sufficiently characterize the environment and are selected by the algorithm
designer. The reward variables should be scalars that are chosen to clearly depict a desired behavior
of the environment by giving a positive reward in case of the desired behavior and a negative reward
(punishment) for an undesired behavior. The term of a discounted cumulative reward means the sum
of discounted immediate rewards over a simulation as shown by Eq. (1)

Rcum =

t=tsim
∑

t=0

γt · rt (1)

where, the discount factor, γ, is assigned to range [0; 1] to characterize earlier rewards as more valuable
than latest ones, rt is the reward at each simulation step, and tsim is the time of simulation.

Fig. 1. Agent-environment interaction in Q-learning.

The Q-learning algorithm is implemented by utilizing an action-value function update (Q(st, at)-
update) that is also known as a value iteration method presented in [19]

Q(st, at) = Q(st, at) + α
(

rt + γmaxQ(st+1, A)−Q(st, at)
)

(2)

where, Q(st+1, A) is a matrix, each element of which represents a state-action value, st and st+1 are
state variables at time t and t+ 1 respectively, at is the chosen action at time t, A is the vector of all
possible actions, α is the learning rate parameter.
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2.2. Fuzzy logic controller fundamentals

Fuzzy logic (FL) has been employed in variety of engineering systems, including ground vehicles. FL
algorithms are usually characterized by their flexibility and ability to model nonlinear functions with
a required accuracy while being tolerant to imprecise data. Regardless the absence of techniques for
optimal tuning of fuzzy logic systems, they can be tuned for high precision and rapid operation by
utilizing expert knowledge or learning algorithms.

Fuzzy logic defines a mapping of the input data into a scalar output, using fuzzy rules. Generally,
a FL reasoning includes a fuzzification, inference, and defuzzification stages, which are shown in Fig. 2.

Fig. 2. Fuzzy logic system stages representation.

During the fuzzification, a fuzzy logic system utilizes input values to determine a degree to which the
inputs belong to each of the fuzzy sets through membership functions. Fuzzy membership functions
represent fuzzy term sets, which, in turn, represent the linguistic terms such as small, large, slow,
fast, etc. Typically, linear (triangular, trapezoidal) and nonlinear (gaussian, sigmoidal) shapes of
membership functions are utilized at the fuzzification stage as presented in Figure 3. In Figure 3a
three membership functions (designated as µ1, µ2 and µ3) are presented for each of the fuzzy set. For
small inputs a R-trapezoidal membership function is used, triangular membership function is used for
medium inputs and L-trapezoidal membership function is used for large inputs. Similarly, sigmoid
membership functions (designated as µ4 and µ5) are used for fuzzy sets “slow” and “fast” respectively,
and are demonstrated in Figure 3b.

a b

Fig. 3. Membership functions of the fuzzy logic controller.

During fuzzification, the degree of membership to particular fuzzy set (small, large, slow, fast,
etc.) is assigned to every crisp input value. In Figure 3b the input signal is fuzzified by using sigmoid
membership function as described as follows

µ4(ε, a, c) =
e−a(ε−c)

1− e−a(ε−c)
(3)

where, c is the parameter that specifies the value of the control error, ε, at which the value of member-
ship function is equal to 0.5 and a specifies the parameter that defines the degree of the membership
function slope at point µ4(ωerr, a, c) = 0.5 (see Figure 3b). The second membership function is defined
as µ5 = 1− µ4.

The rule base for inference stage contains linguistic rules that are provided by experts. It is also
possible to extract rules from numeric data. The inference phase defines the output fuzzy sets by
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determining a degree, to which the antecedent is satisfied for each rule. In this study, the Takagi–
Sugeno fuzzy model is utilized. The Rl rule of the rule base is described as follows

Rl : IF (|Input| ∈ Am) THEN uck = fk ·
∑

i

kixi (4)

where, Input is the input signal of the system, Am is the set of terms of the input variable (e.g. large,
small, etc.), xi are system states, ki are the feedback gains synthesized with the use the characteristic
polynomial of the system, fk ·

∑

i kixi is the output function of the rule, which, in this study, is a
polynomial of a standard linear form that depends on the state vector of the system, x̄i. Therefore, to
obtain fuzzy output of the rule, uck , the characteristic polynomials (see Table 1) can be used. The ω0 is
a compound root of a closed loop system. The value of ω0 depends on the system under investigation.

The crisp output of the FLC can be obtained by using the centroid defuzzification method as follows

uc =

∑

k µk · uck
∑

k µk

(5)

where, uc is the output of the system, µk is the rule’s activation degree.
In this study, a fuzzy logic polynomials controller is synthesized for a dynamical system. The

designed fuzzy logic controller (FLC) is tuned by applying a reinforcement learning algorithm as
described in the following section.

3. An adaptive fuzzy controller design

The ultimate aim of this paper is to develop the controller that is able both to increase transients of a
dynamical system without significant overshoot and to provide energy efficient behavior of the system.
The developed controller should fulfill its goals for multiple sets of external disturbances. The last
requirement is more challenging for environment with significant power losses of the system caused by
interaction with the environment. Application of fuzzy theory opens possibilities for creating intelligent
and adaptive control systems.

3.1. A polynomial fuzzy controller

As stated before, the aim of fuzzy polynomial controller is to control the output signal of the system
concerning different external disturbances. In this study, it is proposed to synthesize the fuzzy controller
which is able to control the output signal adaptively with respect to control input demand, i.e. engaging
slow or fast transient dynamics if needed. Hence, the designed fuzzy polynomial controller ensures
smooth switching between two subsystems (slow and fast), which characteristics polynomial are tuned
to activate closed loop control system with different transients. The main feature of the fuzzy controller
is to engage fast dynamics while output signal is far from the steady-state and engage slow dynamics
while output signal approaches the steady-state. The details on synthesis of the developed fuzzy
polynomial controller is presented onward.

The Tagaki–Sugeno type fuzzy logic controller is utilized in this study. The input (crisp value) of
fuzzy logic controller is the absolute value of the error signal, ωerr, i.e. absolute of a difference between
desired and actual value of the output signal of the system. This input signal is fuzzified by using
sigmoid membership function as described earlier in Eq. (3).

The rule base Rl of the proposed controller is described as follows from Eq. (4). To obtain the fuzzy
output, uck , that is the output function of the rule, the following standard polynomial forms are used:
4th order Binomial and 4th order Bessel polynomial forms (see Table 1).

And finally, the crisp output from the fuzzy output, uck , the centroid defuzzification method is
utilized as described in Eq. (5).
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Table 1. Standard linear forms of Binomial, Bessel and Butterworth polynomials.

Polynomial standard
linear form

2nd order characteristic polynomial coefficients
s2 + a1ω0s+ a2(ω0)

2

a1 a2
Binomial 2 1

Bessel 3 3

Butterworth 1.4142 1

3rd order characteristic polynomial coefficients
s3 + a1ω0s

2 + a2(ω0)
2s+ a3(ω0)

a1 a2 a3
Binomial 3 3 1

Bessel 6 15 15

Butterworth 2 2 1

4th order characteristic polynomial coefficients
s4 + a1ω0s

3 + a2(ω0)
2s2 + a3(ω0)

3s+ a4(ω0)
4

a1 a2 a3 a4
Binomial 4 6 4 1

Bessel 10 45 105 105

Butterworth 2.613 3.414 2.613 1

3.2. Reinforcement learning algorithm for tuning the parameters of membership function

Generally, the fuzzy controller requires an expert knowledge for its tuning or, at least, sufficient ex-
perience in fuzzy logic theory. Even in our case when there are only two subdomains and the tuning
process can be shortened to matching two appropriate parameters of membership function that are
a and c from Eq. (3), it could be hard to find the pair of them which would give the desired control
system response. Even more complicated and more important is to construct the methodology of such
parameter matching for other control applications. Bearing this in mind, it was decided to implement
the algorithm that completes the fine-tuning of the parameters of the membership function. There-
fore, in this study, the reinforcement learning algorithm is utilized for tuning the fuzzy polynomial
controller.

The developed reinforcement learning algorithm is utilized to adjust the membership function
parameters of the fuzzy logic controller exactly as described below. It should be stated that if the
parameters of membership function would be changed at each time step of simulation (or at each
sensor reading cycle during system operation) the unexpected behavior might appear due to system
parameter change or emergence of unexpected external uncertainties. In this regard, the reinforcement
learning algorithm that tunes FLC update its action once per episode of learning that, in our case, is
one time per simulation which corresponds to the duration of acceleration process.

For the learning method developed, the Q-update formula is utilized from the Q-learning algo-
rithm [19]. As the learning process is implemented once per episode, the environment state is the
vector of three parameters that is observed at the end of each episode and is presented as follows

st = (|max ε|, Tset, εss) (6)

where, |max ε| is the absolute value of the maximal overshoot of the output value, ε is the control
error, Tset is the settling time, i.e. the time it takes to reach and stay within the range of ±2% of the
reference signal (different percentage can be used depending on a kind of dynamical system, ±2% is
one of a commonly used [20]) and εss is the steady-state error at the end of the episode.

Actions: an action is the vector of the parameters of membership function (parameters a and c from
sigmoidal membership function in Eq. (3)) that are applied to the fuzzy polynomial controller at the
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each episode of learning. During the learning process, the range of change for each of the parameter a
and c is from 0 to 10. Thereby, in this study, the finite number of actions are utilized and the complete
action space is equal to 10 thousand of different actions (i.e. different a and c pairs).

The reward function after each episode of learning is based on the environment states and on the
ITAE criterion for control systems analysis [9, 21] as follows

rt =















5000 − 100 · |max ε| − 100 · Tset − 500 · |εss|, if |ε| < 0.1 for 1.5 sec,
ITAE

2
− 100 · |max ε| − 100 · Tset − 500 · |εss|, if |ε| < 0.5,

ITAE− 100 · |max ε| − 100 · Tset − 500 · |εss|, else ,

(7)

Computer simulation results of the fine-tuned fuzzy polynomial controller by reinforcement learning
algorithm are provided in Section 5.

3.3. A fuzzy corrector of a reference input to fuzzy controller

The aim of the designed fuzzy corrector is to alter the inappropriate reference input signal and to
provide smooth input to fuzzy polynomial controller that is adaptive to external uncertainties. The
details on the adaptive fuzzy corrector synthesis is provided onward.

In this paper, the fuzzy corrector is utilized to smooth the ramp input signal taking into account
the reference input and type of external disturbances. Four different types of stochastic disturbances
are studied, which characteristics parameters were taken from [13]. Thereby, the fuzzy corrector
implementation stages correlate with the designed fuzzy polynomial controller from Section 3.1. At
the first stage the fuzzification is performed by triangle membership function that divides the fuzzy set
into four linguistic terms (subsets), namely, small (S), small-medium (SM), medium-large (ML) and
large (L) as can be seen in Figure 3a.

The fuzzy corrector utilizes the Takagi–Sugeno fuzzy model, and the output of each rule in rule
base which is also a function based on a polynomial of a standard linear form. For the fuzzy corrector
synthesis, the output function of the fuzzy rule is defined according to the second order Butterworth
polynomial form is utilized (see Table 1). Herein, the compound root, ω0, corresponds to a certain type
of road/terrain conditions and impacts the rate of change of the input signal.

The centroid defuzzification method (see Eq. (5)) is also utilized in the fuzzy corrector to obtain the
crisp values of the smoothed reference signal of the input to, previously described, fuzzy polynomial
controller.

When the fuzzy corrector is implemented, the whole adaptive controller is completed and fine-tuned
(see Figure 4).

Fig. 4. Block diagram of the developed control system.

The approach described in this section may be applied to multiple types of dynamical systems. In
this article, the application of the introduced approach to the wheel locomotion module is investigated
onward. In Section 4 the mathematical model of the wheel locomotion module is introduced and in the
following section the results of application of adaptive fuzzy logic controller to the case of one-quarter
car model are presented.
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4. Application of the adaptive fuzzy controller to the off-road traction system in a
wheel locomotion module

As the off-road conditions are typically characterized by the stochastic external uncertainties presence
and rapid changes of the road/terrain parameters it is important to provide the appropriate control
actions in order to ensure safety, energy efficiency and mobility of vehicle motion. It is of particular
importance for traction control systems (TCS) that are aimed to prevent immobilization and extra
power losses during wheel/vehicle acceleration. This is commonly achieved by brake based controlling
of the angular velocity of the wheel for the purpose of preventing significant tire slippage occurrence.
Therefore, the adaptive control laws have the prospective advantages for application to the traction
systems for off-road vehicles, particularly, when the road/terrain operation conditions might be changed
rapidly and frequently. The ultimate goal of the adaptive control algorithms for off-road traction
systems is to adapt control decision making to each of the working conditions and ensure the mobility
performance and prevent energy losses during its operation.

4.1. Wheel locomotion module dynamics

As a concept of modularity in design, a wheel locomotion module is the assembly unit of the 4x4
electric vehicle with the individual e-motors. Such wheel locomotion module can be considered as a
one quarter of the vehicle that comprises the suspension, e-drive, steering, breaking system and the
wheel itself. In this research, the wheel locomotion module is a quarter of the 9-ton off-road vehicle.
It is represented by a nonlinear mathematical model not taking into account the lateral behavior of
the wheel. The wheel locomotion module’s dynamics includes equations for representing the module’s
rotational, longitudinal and vertical dynamics. Modeling of dynamic processes in a heavy off-road
vehicle has multiple peculiarities which are outlined below with corresponding references to the relevant
literature for the interested reader.

In this study, an electric drive-line of the module is represented by the rotational dynamics model
that includes rotational inertial of the e-motor and the rotational inertial of the wheel (see [22]), and
can be represented by the following differential equations















































dIm

dt
=

1

La
·

(

−Ra · Im − kemf · ωm + uc ·
kbat

ucmax

)

,

dωm

dt
=

kr · Im − krg · Ts

Jm
,

dTs

dt
= ks · (krg · ωm − ωw),

ωw

dt
=

1

Jw
(Ts − Twload −Bfw · ωw)

(8)

where, Im is the motor electric current, Ra is the armature resistance, La is the armature inductance,
kemf is the back EMF constant, kbat is the maximum output of the PWM battery, uc and ucmax

are
the control input and maximum control input respectively, ωm is the angular velocity of the e-motor,
Jm is the rotational inertia that includes the inertia of the motor and inertia of the gear reduction set
that connects the motor with the wheel, kt is the DC motor constant, krg is the speed ratio of the
gear set, Ts is the elastic torque of the gear set, ks is the rotational stiffness of the gear set, ωw is the
angular velocity of the wheel, Jw is the rotational inertia of the wheel, Twload is the wheel load torque
that comes from stochastic terrain, and Bfw is the viscous friction coefficient of the tire.

The 4th equation of the system (8) reflects the longitudinal dynamics of the wheel as follows. The
wheel load torque, acting on the wheel module, is derived from the power balance in the contact patch
between the tire and its surface of motion according to the following formula from [13]

Twload = Fxr
0
w = (Rx + Fframex +Da + Fa) · r

0
w (9)
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where, Fx is the is the wheel circumferential force also known as wheel longitudinal force and r0w is the
tire rolling radius in the driven mode, i.e. when there is no driving torque applied to the wheel (more
details on driven/driving/braking/free/neutral wheel power-loading modes can be found in [9, 23–25],
Rx is the rolling resistance that is computed from the Bekker–Wong model [24, 26], Fframex is the
vehicle frame force, Da is the air drag force, Fa = M · dVx

dt
is the force needed to increase the kinetic

energy of a wheel in translational motion, M is the module gross mass.
It should be noted that in addition to the dependence of wheel load torque or the wheel cir-

cumferential force, Fx, on longitudinal tire/terrain characteristic, such as rolling resistance, air drag,
longitudinal inertia forces, etc.; the force Fx is dependent on the wheel normal dynamics described by
the wheel normal reaction force, Rz, that can be defined from Eq. (10), showing a nonlinear dependence
of the wheel circumferential force on the tire slippage (more details are presented in [13])

Fx = µpxRz

(

1− e−ksδ
)

(10)

where, µpx is the peak friction coefficient also known as road grip, k is an empirical factor that depends
on the properties of the tire and the surface, Rz is the tire normal reaction and sδ is the tire slippage.
Thus, Eqs. (9)-(10) represents the modeling of the longitudinal and normal dynamics of the wheel
locomotion module.

In order to model the dynamics of wheel module motion, the stochastic modeling of road/terrain
parameters (see [27]) for asphalt, meadow, soil, snow is performed using the data from [13]. Corre-
sponding results are presented in Section 5.

4.2. Application of the off-road traction control

For the purposes of measuring the accuracy and performance of the traction control, the tire slippage
can be computed during the wheel acceleration process with the aim of the formula that is reasonable
for off-road applications

sδ =
Vt − Vx

Vt

=
ωmr0w − Vx

ωmr0w
= 1−

rw

r0w
(11)

where, Vt is the theoretical longitudinal velocity at zero slippage, Vx is the actual velocity of the wheel’s
center, ωw is the angular velocity of the wheel and rw is the tire rolling radius in the driving mode.

Apart from tire slippage analysis, a wheel mobility index is introduced in [28] for online computation
of mobility performance of the wheel and is presented as follows

WMI = 1−
Fx

Rzµpx

(12)

here, WMI is the wheel mobility index.
These two variable are used for the verifying the performance of the controller designed in this

article.

5. Results and discussion

Although the developed fuzzy polynomial controller is synthesized for linear model of the wheel loco-
motion module that includes only rotational dynamics (presented in Eq. (8)), further, the controller is
applied to the nonlinear wheel locomotion model with rotational, longitudinal and normal dynamics
modelled (see Eqs. (8), (10)). Then, the fuzzy corrector together with the fine-tuned fuzzy polynomial
controller form the off-road traction control system of the wheel locomotion module.

In this section, the simulation results of the developed adaptive polynomial fuzzy controller are
presented during each step of the control system development process. The logic flow of the presented
simulation results in this section is constructed in the same order as controller synthesis is presented
in Section 3.
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Firstly, it should be noted that the four different road/terrain conditions are simulated using
stochastic road/terrain parameters. Thus, each of the simulated road/terrain profile is character-
ized by stochastic variation of road height, road grip coefficient (peak friction coefficient) and rolling
resistance coefficient. The stochastic variation of these road/terrain parameters is performed basing
on the road profile generation method from [27] and is presented in Figure 5. The Figures 5a–d show
the road height variation for each of for road/terrain types which is presented as a function of distance
in meters. It can be seen that the road height for asphalt road is rather small (up to 20mm) and
does not have steep fluctuations with respect to distance traveled, however, for soil terrain condition
the fluctuations are much steeper and the road height can reach up to 100mm. Figure 5e presents the
peak friction coefficient (road grip) µpx variations with respect to road distance. It is clear that the
peak friction coefficient is quite different for each of road/terrain types that correlates with the data
from [13, 26]. In addition, the fluctuations of peak friction coefficient are more obvious for road snow
conditions (see curve 4 in Figure 5e). Figure 5f shows the rolling resistance coefficient f variation with
respect to distance where the lowest resistance as expected can be observed for asphalt road. Hence,
these profiles of road/terrain parameters are utilized for modeling of the wheel locomotion module run-
ning on four road/terrain types: asphalt road, meadow, soil and snow road. The controller verification
has to be conducted for each of the road/terrain types.

As it was mentioned above, for the linear model of the locomotion module (see Eq. (8)) the fuzzy
polynomial controller was synthesized. It should be noted, that the designed fuzzy polynomial con-
troller is dependent on the system states values that in this study are simulated by the ideal sensors,
however, it can be extended for using the state observers that are being developed for the wheel
locomotion module in [29].

The tuning of the fuzzy polynomial controller is performed by the reinforcement learning algorithm
as described in Section 2.2. Thus, Figure 6 shows the transients of fine-tuned fuzzy polynomial con-
troller for four different simulated wheel load torques, Twload. Such arbitrary chosen wheel load torques
are used while tuning the fuzzy polynomial controller to roughly represent different stochasticity of
wheel load from road/terrain. As can be seen from the transients in Figure 6, the tuned fuzzy controller
is capable to ensure the specified angular velocity at each of the wheel load torques simulated.

Then, the tuned by reinforcement learning algorithm fuzzy polynomial controller for linear model is
applied to the nonlinear model of the wheel locomotion module which includes rotational, longitudinal
and normal dynamics of the wheel (see Eqs. (8), (10)). This fuzzy polynomial controller was verified
on four aforementioned road/terrain types, namely, asphalt road, meadow, soil and snow road. The
transient processes of the obtained control system are presented in Figure 7. It was found out from
these transients that, despite the output signal of the system is controlled at the specified value of input
signal, the fast ramp input signal causes inappropriate high e-motor current values Im (see Figure 7),
and even if these currents could be provided the tire slippage and wheel mobility loss would occur
during early phase of acceleration (can be seen further in Figures 10–11). One of the reasons of such
behavior is that the inappropriate (raw) input was accepted by the controller. This problem may be
solved by adding corresponding term to the reward function. However, this would make the learning
process much longer and complicated. Therefore, in this paper a fuzzy corrector was applied to solve
this problem. Typically, the reference wheel velocity signal, which is either when the acceleration
pedal or upper level controller (in case of autonomous vehicle), increases following ramp trajectory and
provides an input to velocity controller.

Therefore, a control input signal correction algorithm is applied based on the fuzzy logic corrector
that is described in Section 3.3. As the developed fuzzy corrector is dependent on (i) character of the
received input signal itself (ramp input) and (ii) type of the road/terrain condition, it produces the
different control inputs for the fuzzy polynomial controller for different types of terrain (see Figure 8).

Finally, the traction controller is developed using integration of fuzzy polynomial controller tuned by
reinforcement learning algorithm with the fuzzy corrector for controller input signal. The comparison of
the simulation results for four road/terrain conditions with and without control input signal correction
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Fig. 5. Stochastic variation of the road/terrain parameters.

Fig. 6. Transients of the linear rotational model of the wheel locomotion module with fuzzy polynomial
controller tuned by reinforcement learning algorithm.
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Fig. 7. Transients of the nonlinear model of the wheel locomotion module with fuzzy polynomial controller
tuned by reinforcement learning algorithm.

is presented in Figure 9. From the simulation results it can be seen that the acceleration time on
asphalt road is approximately equal to acceleration time using ramp input (see Figure 9a). On other
road/terrain conditions, namely, meadow, soil and snow road, the acceleration takes more time when
using a fuzzy corrector. However, it should be noted that in this case the e-motor current Im is in safe
ranges (see Figure 9), and, furthermore, the safety, energy efficiency and mobility is ensured during
acceleration with utilizing fuzzy corrector, which is the primary goal of traction control system. The
comparison of tire slippage and wheel mobility index during the whole acceleration process is presented
in Figures 10–11. The values of tire slippage and wheel mobility index can be estimated in real-time
using the Eqs. (11)–(12).

Fig. 8. Results of fuzzy correction of the reference
input signal to fuzzy polynomial controller.

Wheel mobility index WMI is the value in per-
centage that was introduced in [28] to determine the
margins of mobility performance of the wheel in dif-
ferent road/terrain conditions and at every particular
moment of time. In general, 0% of wheel mobility in-
dex means the wheel have lost mobility (is spinning
or skidding) and is out of control at the particular
moment that could cause critical motion situations.
In Figure 10, it can be seen that the wheel mobility
index without utilizing the corrected input to fuzzy
polynomial controller drops down to 0% for all types
of the road/terrain conditions (Figure 10a–d causing
the loss of mobility and unsafe motion conditions.
However, while utilizing correction of the control in-
put, the controller maintains the wheel mobility mar-
gin is away from 0%, thus, improve the safety and mobility performance of the traction control system.

Tire slippage values, sδ, are also used for the developed controller verification. Tire slippage can
vary from 0 to 1 for acceleration (1 means fully slipping and 0 means no slipping). Figure 11 shows that
the tire slippage during acceleration with fuzzy correction of control input prevent the unsafe situation
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Fig. 9. Comparison of the control system transients with and without fuzzy correction of the reference input
on: a) asphalt road; b) meadow; c) soil; d) snow road.

Fig. 10. Wheel mobility index estimations during acceleration on: a) asphalt road, b) meadow, c) soil and d)
snow road.

of large slipping on all of the road/terrain types (see Figure 11a–d) while maintaining the tire slippage
at safety level even for such severe road/terrain conditions as soil and snow road.

Therefore, the computational results show that the designed adaptive fuzzy polynomial controller
tuned by reinforcement learning algorithm ensures lower values of tire slippage during acceleration
while also preventing wheel mobility losses that is the ultimate goal of the off-road traction control
system.
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Fig. 11. Tire slippage estimation during acceleration on: a) asphalt road, b) meadow, c) soil and d) snow road.

6. Conclusions

In this study, the adaptive fuzzy polynomial controller tuned by reinforcement learning with the fuzzy
input corrector is presented. This controller ensures the stable, optimal, and safe performance of the
system and takes into account external disturbances. Stability of the controller is ensured by utilization
of fuzzy logic controller that is designed to switch between the subsystems that ensure stable closed loop
transients. Optimality, with respect to the reward function, is ensured by utilization of reinforcement
learning. External disturbances influence the input signal of controller via fuzzy corrector ensuring
smooth and, hence, energy-efficient transients.

The performance of the introduced controller is verified on the example of the wheel locomotion
module. Four different types of stochastic road/terrain conditions are modeled for the purpose of
controller verification in off-road conditions. The proposed controller does not influence acceleration
time on firm terrains. However, the acceleration time is automatically adjusted by it to maintain
safety and energy efficiency on loose soils and snow roads which coincides with the behavior of the
experienced driver. The designed controller is capable to significantly reduce tire slippage and increase
wheel mobility during the acceleration phase.
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У цiй статтi представлено нечiткий регулятор, що налаштовується методом навчання
з пiдкрiпленням. Розроблений алгоритм використовує теорiю нечiткої логiки та мето-
ди навчання з пiдкрiпленням для пiдбору параметрiв функцiй належностi нечiткого
регулятора. Крiм цього, iмплементовано нечiткий задавач iнтенсивностi вхiдного сиг-
налу (сигналу завдання) нечiткого регулятора. Нечiткий задавач iнтенсивностi змi-
нює вхiдний сигнал регулятора враховуючи оригiнальне значення вхiдного сигналу
та тип зовнiшнiх збурень у системi. Таким чином, розроблена система керування з
нечiтким регулятором налаштованим за допомогою методу навчання з пiдкрiпленням
забезпечує стабiльну, оптимальну та безпечну роботу системи, та враховує зовнiшнi
збурення в системi. Для перевiрки роботи запропонованого методу керування, йо-
го було синтезовано до математичної моделi колiсного модуля електроавтомобiля,
щоб покращити антибуксувальну систему транспортного засобу. Ефективнiсть роз-
робленої системи керування на базi нечiткого регулятора пiдтверджено результатами
iмiтацiйного моделювання.

Ключовi слова: навчання з пiдкрiпленням, нечiткий регулятор, антибуксувальна

система, мобiльнiсть транспортного засобу.
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