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This paper explores the finite-time synchronization problem of delayed complex valued
neural networks with time invariant uncertainty through improved integral sliding mode
control. Firstly, the master-slave complex valued neural networks are transformed into
two real valued neural networks through the method of separating the complex valued
neural networks into real and imaginary parts. Also, the interval uncertainty terms of
delayed complex valued neural networks are converted into the real uncertainty terms.
Secondly, a new integral sliding mode surface is designed by employing the master-slave
concept and the synchronization error of master-slave systems such that the error system
can converge to zero in finite-time along the constructed integral sliding mode surface.
Next, a suitable sliding mode control is designed by using Lyapunov stability theory such
that state trajectories of the system can be driven onto the pre-set sliding mode surface
in finite-time. Finally, a numerical example is presented to illustrate the effectiveness of
the theoretical results.

Keywords: sliding mode control, sliding mode surface, time-invariant uncertainty, time
delay, neural networks.
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1. Introduction

Neural networks have always been very significant in recent years for researchers in different fields, such
as parallel computation, pattern recognition in computer science, designing associative memories and
solving optimization problems. It is well known that due to the finite switching speed of amplifiers,
a time delay is likely to exist and occur in signal transmission between neurons in the electronic
implementation of neural networks, which will affect the stability of neural networks. In addition to
time-delayed features of such neural networks, there may also be some complexities, such as disruptions
and component variations, which may lead to very complex dynamic behaviours such as oscillations,
synchronization, bifurcation and chaos. Moreover, most applications depend heavily on the dynamical
behaviours of recurrent neural networks (see [1-7]). As a result, for many decades, several researchers
have focused their efforts on the study and synthesis problems of neural network dynamics.

It is worth noting that most of neural network applications involve complex signals, and hence the
study of complex-valued neural networks is essential for many real-world devices [8-16]. For example, a
single real-valued neuron cannot deal with the problems in the detection of symmetry and XOR. prob-
lems, but a single complex-valued neuron with orthogonal decision boundaries can successfully deal
with them. Therefore for both engineering and science, the analysis of complex-valued neural networks
is very necessary and important. As the extension of real-valued neural networks, complex-valued
neural networks have complex-valued states, complex-valued connection weights, and complex-valued
activation functions. Due to these characteristics, complex-valued neural networks have more abundant
properties than real-valued neural networks. Some important findings have been published in the rapid
development of complex-valued neural networks. For instance, the fixed-time synchronization problem
for complex-valued BAM neural networks with time delay is investigated in [8]. Based on the Lya-
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punov direct method and fixed-time stability theorems, a novel fixed time synchronization condition
is given. In [9], finite-time cluster synchronization of fractional-order complex-valued neural networks
with nonlinear coupling is studied by utilizing the complex non-decomposition method. Finite-time
synchronization between two delayed diffusive complex-valued neural networks with discontinuous ac-
tivations is discussed in [10].

Synchronization phenomena have drawn much attention from researchers since the first discovery of
synchronization made by Huygens in the 17th century. Synchronization or consensus is now commonly
accepted as a kind of collective motion action which is exhibited in many natural systems [17]. In
essence, synchronization is a form of self-organization or emergent phenomenon. It has been demon-
strated that many real-world problems have close relationships with network synchronization. Various
synchronization notations have been extended for its potential applications in various fields, such as
complete synchronization [18|, generalized synchronization [19], phase synchronization [20], projective
synchronization [21], lag synchronization [22|, cluster synchronization [23], and adaptive synchroniza-
tion [24]. To date, most of the existing synchronization results for dynamic networks are asymptotic
synchronization, which means that the convergence rate is at best exponential with infinite time-
setting. In other words, states cannot reach synchronization in the finite time. Obviously, finite-time
synchronization work is more desirable. Finite-time synchronization means the optimality in conver-
gence or settling time. Minimizing synchronization time is therefore necessary for the attainment of
fast communication synchrony. Further research on the problems of finite/fixed time-synchronization
of complex-valued neural networks can be found in [8-10].

In addition, many different control strategies have been developed among the above results, such
as pinning control [4,24], impulsive control [12,14,21], adaptive control [23,24], feedback control [7],
sliding control [25], intermittent control and sliding mode control (SMC). It should be noted that SMC
is an effective control method and the main feature of SMC is to force the system states from the initial
states to some predefined sliding mode surface with the switched control legislation. As a result, the
desired benefits such as robustness, ability to track and insensitivity to external disturbances can be
achieved. SMC has recently been used in various non-linear systems and complex networks. Although
the above neural network synchronizations are widely studied, the neurons in the neural network are
considered to be real-value. However, complex-valued variables are more frequent. As far as we know,
few works have been devoted to the problem of finite-time synchronization for complex valued neural
networks, which provide space to challenge this problem.

In view of the above analysis, this paper is intended to examine synchronization of complex valued
neural networks with time delays in finite time. This paper’s novelty lies in the following aspects.

1) For the sake of efficient research on synchronization of a class of n-dimensional complex valued
neural networks, respective complex-valued neural networks are transformed into 2n—dimensional
real-valued neural networks.

2) The designed integral sliding mode controller is able to synchronize the slave system with the
corresponding master system in finite time, and the results obtained are less conservative than the
previous works.

3) Those theoretical findings may provide new ideas for complex valued nonlinear systems to solve
some real world problems.

Notations: In this paper, R" is represented as n-dimensional Euclidean space. The Euclidean norm
and 1 norm vector is denoted by || - || and || - ||; respectively.

2. Preliminaries
In this section, few related definitions, lemmas and assumptions are given to find the finite-time
synchronization of time-invariant uncertainty complex-valued neural network (UCVNNs) with time

delay.
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Definition 1. The drive-response systems are said to be finite-time synchronized if there exists a
positive constant T such that it satisfies the condition 0 < T < oo and also it depends on initial

values of drive response systems, for any solution (p1,pa,...,Pn,q1,G2,---,qn)’ of drive system and
(Up, U, ..y Up, V1,V ... ,vn)T of response system, then we have
li (), qi (1)) — (ui(t), vi(t))] = 0
t—i&?}—T’(pl( ),ai(t)) — (wi(t), vi(t))]
and

(Pi(), 4 (1) = (wi(t),vi(8))| = 0, to +T <,
where the norm of R is denoted by |- |.

According to Definition 1, in order to prove the drive response systems are finite time synchronized, it
is enough to prove for any constant T’

i i(t)| = i(t) = T+ tyg <t
tﬁigl-l',-T‘el( ) =0, lei(t)| =0, + 1o

Rest of this paper, we use the following assumptions:
Assumption 1. There exist non-negative constants HfR, HéR, 951 , 9;1 , ’yfR, ’yéR, ’yfl , ’yél such that
\v/plv q1,P2,q92 € R, where b,q = 17 27 RN

R, a) — fEp2.a2) < 0FF|p1 — pa| + 05 g1 — g,
\fE @) = £1 (P2, a2) < 01|y — po| + 0 |01 — g,

195 (p1,a1) — 95 (P2, @2)] <A p1 — pol + 9 |1 — @l
98 (p1.@1) — gl (02, @2)] < AE|p1 — po| + 7 |1 — aal.

Lemma 1. Assume that there is a Lyapunov function V (t) determined in the vicinity U C R of the
origin and it satisfies ‘
V(t)+ oV (t)+xVt) <0, VteU/{0},

where ¢ > 0,x > 0 and a € (0,1). Therefore, the finite time stability of system origin holds and finite

time T meets
PV1=(tg) + x)
X )

1

where t( is the initial value of t.

Remark 1. It should be remembered that very little attention has been paid to finite-time synchro-
nization of interval time-invariant uncertain complex valued neural networks (UCVNNs) with time
delay through integral sliding mode control. To the best of our knowledge, there is no works related
to finite-time synchronization for time-invariant UCVNNs with time delay via integral sliding mode
controller in the previous literatures, which motivates the work of this paper.

2.1. Problem description

In this paper, we consider the following class of time-invariant UCVNNs with time delay as:

2(t) = =D(t)z(t) + A(t) f (2(t)) + B(t)gz(t — 7) + 1, (1)
where z(t) € C" is the state vector; D(t), A(t), B(t) are the n x n dimensional time-variant matrices;
f(), g(-) are the activation functions without and with time delay respectively; the time delay 7
satisfies 0 < 7. The initial condition of system (1) is represented by z(r) = o(r), r € [tg — T, to], where

to = 0, o(r) is complex function on [ty — 7,ty]. Now we can separate (1) into its real and imaginary
parts by using the properties of complex number as follows:

Mathematical Modeling and Computing, Vol. 8, No.2, pp.228-240 (2021)
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@11 (t) = —D(t)a"(t) +AR( )RR (), y! () — AT(0) 1 (27(t), ' (1))
+BR(t g% (x (t—T%yI(t 7)) —Bl(t)gl(xR(t—T%yI(t 7)) + 17, @)
g (t) = )y (t) +AR( V() y' (1) + AT 7f)fR( (1), ' (1)

D(t ),y
+BR('5)9 (@Rt = 1),y (t = 7)) + BT ()" (2Rt — ),y (t = 7)) + I,
where 2% (t), y!(t) are the real and imaginary parts of z(t); A%(t), Al(t), BE(t), BL(t), I®, I', f&(-,),

¢, g%, ), ¢'(-,-) are the real and imaginary parts of A(t), B(t), I, f(-), g(-) respectively. The
time-variant matrices D(t), AR(t), BT (t), Al(t), B!(t) are assumed as follows

D) € D = [D7,D%] = {(dij(®)nxn dij < dig(t) < df5, 1< 0,5 <nyt €RY,

Al(t) € AT = [AT ATF) = 3 (afl(t), .t alr

Al(t) e AT = [T~ A7) = {(af;(1),,,, ol (¢

()

) €
) = {(af(1) .., 0B (
AR(t) € BR = [BR~ BRY] = { bR(t) . bR (1) < B
) ( )
) )

B'(t)e B' = [B",B"] = {(b] (1), .., bl (8) S b (t) <bF(1),t e R}, (3)
where,
D~ :(d;)nxn’ AR_ = (af}_)nxn’ BR_ = (bﬁ_)nxn’ AI_ = (al’lj_)nxn’ (bZI] )nxn’
" :(d;;)nxn’ AR+ = (af}+)nxn’ BR+ = (bﬁ+)nxn’ AI+ = (aiI]ﬂ—)an’ BI+ = (bZI]+)an

In order to study the finite-time synchronization behavior of interval time invariant UCVNNs the
following discussion is needed, therefore the time-variant matrices D(t), A%(t), AL(t), BE(t), B'(t)
can be described as:

D(t) =D + AD(t),

ARty =AR 4 AAR (1), Al(t) = AT+ AAT(1),
BE(t) =B" + AB" (1), BY(t) = B + AB(t),
where,
5D 4D (d;j+djj> AD() - Zn:ei AV ED 1) o
2 2 nxn’ = 62(]1) _Ji(j)Ez‘(jl)() jo
gn_ ARy aARt ( g ) LR SO LA
2 2 . = ch;> JOEO )7
pr_ BT+ B (bg— +b§+> AB) zn: . D ED (1)pk P
2 2 . = Zcﬁ? JOED (1)
AT rA (aff +afj+> AT — Z”: B0l
2 2 o = ZCZ(;Q JIED (1)
) - I+ b= 4 plt n ©) O (p\p!
BI:B +B :<w ij >nxn7 ABI(t):'Z ¢ (t) T

Here, El(jk) (t) (k=1,2,3,4,5) are unknown constants satisfying

(k) ®) c(’?)
# < Ez" (t) < v
J(k) Z(f) J Ji(j(f) + CZ(;?)

al., bE bl are constants which satisfy

Where,| |<c k) 0<C()€R dzg, ij> Wijs Oif> UG5

g
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v - R+ _ _R— I+ _ I R+ _ 3 R— I+ pI-
~“:d-»—d/-- aﬁ.zaij —ay; G — 4y (N;R.:bij — b B,I'Zbij —b;;
1] 2 ) iJ 9 ) 2 ) ij 9
The time-varient uncertain matrices AD(t), AAT(t), AAL(t), ABT(t) and AB(t) can be described
in the following vector form:

[AD(t)AAR()AAT () ABR(t)AB(t)] = MCE(t)(C — JE(1))

where M = [M M M M M], N = diag{Nl,Ng,Ng,N4,N5}, J = diag{Jl,Jg,Jg,J4,J5} and
C = diag {C4,Cy,C3,Cy, C5} with

_1N’

M =[My, M, ..., M,], N; = [N}, N5, ...,NL],

i :diag{Jl(’“),Jg’f),...,Jg’ﬂ}, O = diag{C}’“),C(’”, . ,C,g’“)} ,
M; =[e1,ea,... €], Ny = [djlel, d~j262, . ,djnen] ,
Noj = [dﬁel,dﬁeg, .. ,aﬁlen] , N3; = [a§1€17a§262, .. ,a]Inen] ,
Ny; = [l;ﬁel,ggeg,...,bm ] , N5; = |:5§1€1,B§2€2,...,b]n } ,
T :diag{J](’f),JJg),...,Jj(f)}, o) = diag{c}’f),(};;, . ,C}ﬁ)}

and E(t) = diag { E1(t), Ea(t), Es(t), Ea(t), E5(t)} is an unknown time-varying matrix and it is denoted
by

. k k k k k
Ey(t) = diag { E (0), B (0), ... B (0}, B (@) = diag {EY (0), ED (1), R (9)}
i=1,2,...,n.

Then the uncertainty matrix is denoted as:

[AD(t) AAR(t) AAT(t) ABR(t) AB'(t)] = MA(t)N

A(t) = diag {Aq (1), Do (t), As(t), Aa(t), As(t)} = CE(X)(C — JE(t)) " (4)
Then we can rewrite the system (2) in the following form:
#(t) = — (D + AD(t)) " (t) + (A" + AAR(®)) (fF(2"(1), 4" (1))
— (A= + AAL(®)) (F1(2R(t), 21 (¢)) + (B + AB® t)(gR t—7),yl(t—1))
(Bf—+ABf(t)) (9"( g:R t—T) I(t—T)))+IR )
§i(t) = — (D +AD(0) y'(t) + AR+AAR £) (f (1), ' (1))
(AT T AA) (PR 1) 4 (B + ABR ) (g7 (@(t — 7).y (t — 7))
+ (B~ + ABL(t)) (g% (2R (t - T) it —71))) + I

If we refer to model (5), as the master system and the corresponding slave system are the following
ones denoted by:

)90 (t ~ 7))) + 17+ ufi(t)
(

where, uft(t), u!(t) are control inputs and the remaining terms are defined in the same way as in the
drive system (2).
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Remark 2. We can know that the system (5) is the real-valued neural networks that correspond to
the complex-valued system (2), according to the above analysis. The problem of finite-synchronization
of the system (2), is then transformed into the problem of finite-time synchronization of the real-valued
system (5). Whereas the time-invariant uncertain neural network (5) and (6) can be asynchronous,
when some of the network’s parameters or time delays are chosen appropriately. Now we will in-
vestigate the finite-time synchronization conditions of the time-invariant uncertain real-valued neural
networks (5) and (6) for the corresponding time-invariant uncertain complex-valued neural networks.

Let

6" (e(t), €' (1) )

¢! (e(t), e (1) = f1 («7(1), 4" (1) — 1 (27 (1), 5" (1)),
R (ef(t —7), et = 7)) = g" (&t = 1),y (t = 7)) — g™ (&7(t = 7), 9" (t = 7))
¢l (eR(t —7), el (t — 7)) = g (a:R(t — 1),y (t - 7)) g (ﬁ:R(t —7), 9 (t — 7))

Now we can derive the error system of (5) and (6) and described them as follows:

efi(t) = — (D + AD(®)) (1) + (AT + AAR(H)) (67 ("(1), ¢ (1)) — (AT + AAN(®)) (6 (e (8), e
BR+ ABR(t)) (€R(eR(t — 7)€l (t — 7)) — (B" + AB' (1)) (¢'(e R( t—1),el(t—1)))
— D+ AD(t) — AD(t)) #7(t) — (A + AAR(®)) (fE(E7 1), 5" (1))
AR 4 AAR(@) (FR@ER),97 (1) — (AT + AAT@®) (1 (2",
I

(1))

(

(D1 e(t), 9

( (t),9'(t)

(A7 +A41(1) (f@"(1).9" () — (B + AB{(t)) (91 (2" (¢ - 7),

(B + AB"(t)) (4" (@™t —7),9"(t — 7)) — (B' + AB'(t)) (¢' (2

(B + AB{ (1)) (fi@"(t —7),9"(t — 7)) + I" = I{* = u"(1), (7)
el(t) = (D +AD(t)) ' (1) + (AR +AAR() (o (" (1), ! (1)) + (AT + AA (D)) (67 (2), ' (1))
+ (B" t))
+(
=
=
=
=

n
n
I
+ I(t—T)))

+(B t—7),5'(t - 7))
+ (BI

+ABR(@)) (€1 (t —7),e! (t = 7)) + (B" + AB' (1)) (¢"("(t — 7). e' (t — 7))
Dy — D+ ADi(t) — AD(®)) 9" (t) + (A% + AAR @) (f1(&% (1), 9" (¢
( (t)

)
j' (1))
I

AT+ AAT®) (] <wR<t> 0)) + (AT +24T®) (F@" (1),

AL+ AAL() (FH@E"R®), 9" (1) + (BT + AB" (1)) (o' @"(t —7),9"(t — 7))

Bi' + AB{(t)) (9 ( (t—T) g'(t =) + (B' + AB'(1)) (¢"(2"(t — 7),9"(t — 7))

Bl + AB{(t)) (¢f @™t —7), 9" (t — 7)) —u'(t) + ' — I]. (8)
Assumptlon 2. From (7) and (8) the Contlnuous activation functions fR( Y, LG, oft ),
¢ (-, ) (' ) 91('7') satisties |fR( () g < Afffef ()l 1@ @), 5" (1) < Al @),
oR (R () ())I! <A@, 167 (ef(t), e ())\ e @), 19" @t = 1), 9" (t — )] <AF|2"(t - 1),

lg? (27 (t — 7), 97 (t — 7))| <~L|9'(t — 7)|. Then the following inequalities are holds:

IFE@R @), 9" @)l < ILE 125, LFE@R @, 9" O < 1Ll @),
lo"(e(2), " ()1l < LT e ()], llo" (" (1), e" (Il < NLlle’ (D),
lg" (@t = 1), 5" (t = 1)) < WL N2 (¢ — 7,
lg™ (@t — ), 5" (¢t = )l < ILEIIG" (¢ = 7).

Assumption 3. Due to the limit of the error signals, we can get [|ef(t)|l1 < &, |le®(@)| < &,
le’ @)l << le" ()]l < ¢, for any positive constant ¢{Y, (3, ¢f, ¢3°
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Remark 3. The main goal of this paper is to develop the sliding mode control (SMC) method and
construct the suitable SMC for to achieve the master-slave finite-time synchronization of the complex-
valued neural networks and it can be conveniently obtained in the next sections.

3. SMC design

In this section a new type of integral SMS (sliding mode surface) will be designed by using errors (7)
and (8) which is different from [26,27|. In addition, using this integral SMS we can construct the
integral SMC for the finite-time synchronization of the errors (7) and (8).

The novel integral SMS is firstly constructed as follows:

¢
$(t) = efi(e) + [ [wftefr) + et ()] signr) dr
0
t
Sl(t) = el(t) +/ [w{el( )+ Clea{ (7‘)} sign(r) dr,
0
and suitable sliding mode controller (SMC) is

{ ul(t) = pf(t <>s1gn( R<t>>+w28 (1) + ¢iseb ), 10)
ul (t) = p! (t) sign (s7(1)) + whs! () + (1572 (¢),

where,

() = (1D + (1) + 1B5) 6™+ (") + [19B7]]) 6™ + wi] ¢° + [ + [|B5[[)6™
+ (2 -+ 19711) 6™1¢z + [0+ (I + =) (L] 2@l + [ LCE
+ LTI 19" @I+ (1B L5 + 1181 HHﬁ I 1275 =)l + (1B 112
HIBINLN] 19 =) + (Gef) ™ + 11 = 1,
pl () = (DI + (127 + (B 6% + (7] + 1B ) 6% + wif] ¢F + [(I=7]] + [1B7 )8!
+ (1] + 198) 6"+ wi] G + (1D + (N + =) 1] 9" @l + [ Ll
HIRLLEN] N2 ON + [IBFNLT + IBFNIL] 127 — )l + (1B L5
HIBLINLEN] 19 & = 7).
Theorem 1. Suppose we take the integral SMS shown in (9) and the corresponding SMC' shown
in (10), then the finite-time synchronization can be guaranteed between the time-invariant uncertainty
neural networks (5) and (6).
Proof. From equations (9) we have,
S(t) = é(t) + Uy sign(t) — ¥4 sign(0)
B { o sign(0), t >0,

é(t), t=20,
where,
S(t) =($"(), 5 (1)", ét) = ("@), @), 0= (19R775‘I)T U = (ﬁﬁ%,ﬂj)T, 0= (" o),
193 [MER(t + e (1)), 9] = [wie! (1) + e (1), = [wie™(0) + et (0)],
= [wie! (0) +€7e(0)], o = [e™(t) +wilel(t) + &fte (e ], = [¢'(t) +wie! (1) + & e (1)

When we choose t > 0
S (t) = — el (t) + el (2 (1), y(1) — Ao (e (x(t),y(1))) + B YT (R (a(t — 1), y(t — 7))
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— Byl (el (2t — 1), y(t — 7)) + D) — AT (#(1), 5(1) + AR FR(a(t), y(t))
— A fR((t),y(t) + W (@ (t), y(t) + BTGT (@t — ), 5(t — 7)) — BEGE (@(t — 7),4(t — 7))
93”@6(75 7),9(t — 7)) + Blgl (@(t — 7),9(t — 7)) + I — [T + wlel (1) + feoT (¢)
— pP(t)sign (SE(t)) — wlisT(t) — efiseelt), (11)
ST(t) = —De! (t) = A (&7 (e7(2), € (1)) + A (9% (e"(1), € (1)) + B (¢ (Rt — 7)./ (¢ — 7))
+ B! (Rt — 1), (t - >)+ro*ft>+mR(f< (), 57 (8))) — A (A @R, 5 (1))
(f +%R( (m

+ 2" (FR@R@), 9" (1)) — o] (@70, 9' (1) (t—7).9'(t — 7))
— B (g1 (27(t —7),5'(¢ T>>+%I(R Bt —1),9"(t — 7))
— B (g (@™t - >y1<t—7>>)

—af(t) + 1" = I +wiel (1) + &le™ (1) — p' (1) sign (S7(¢)) — w387 () — 5% (8), (12)
where, ® = D + AD(t), AR = AR 1 AAR(t), Al = AT + AAL(t), BE = BR + ABR(t), B! = B! +
AB!(t), ©* = D1 —D+AD:(t) - AD(t), A5 = AR+ AAL (1), Al = Al +AAL(t), B = B+ AB{(t),
B! = Bl + ABL(#).
Let us construct the following Lyapunov functional candidate
V(t) = %SRT )SE(t) + %SIT S (1) (13)
Taking the time derivative of (13) we can get
V(t)= 5" (0)87(t) + 5" (1)S' (1)
= 5" ()] - De” <>+mR R (t), y(0) - mf«z»f( (o(t), 5())) + BEYR (e~ 7), (¢~ 7))
=BT (e (2t —7),y(t — 7)) +D*E(t) — A1 (2(1), §(2)) + A7 f (2 (t), y (1))
— ALz (t),y(t) + Ql{fl (z(t),y(t)) + ‘BR g (@t —7),9(t — 7)) — BLgi (&(t — 7),9(t — 7))
—Blg! (a(t = 7),9(t — 7)) + Blgl @t —7),9(t — 7)) + I = If + wfeR (1) + el (1)
)

— pf(t) sign(ST () — waS(t —555“2<>]+SIT<>[ De! () — AP (" (t), € (1))
+ A (o7 (1), €' (1)) + BT (N (et —7), e (t = 7)) + BT (et —7),e! (t — 7))
+ 2% () + AR (F1(@7 @), 97 (1)) - mR(fl t),9' () + A" (FRE"®), 9" (1))

= (@ (0,9 (1) + B (o' @"(t - 7),5 (t—T))) B (g1 (2"t —7),9"(t— 1))
+ 987 (g7 (@t —7),5"(t = 7)) — B (91 (@7t —7), 5" (¢t — 7)) —ai(t) + I' — [ +wie!(t)
+€lei (8) — p! (1) sign(S” (1)) — w2 S (£) — £3.5° (1))
= [|ST@ Il @) + 2o (e (1), e ) + 1A [l (e (2), " ()]
+ BTNt — 1) el (t =) + 1B N7 (7 (e — 7)€ (¢ =) + 12|17
+ IR @), g+ I @ @), 5 O + I AT @ (1), 9" ()]
IR @@,y @)+ IBE gt @t = 7), 5" (¢ = D) + BT lg1 (27t —7),9" (¢ — 7))
+ (117 = 1 + wffleR )l + e ROl = @SR (0l — waS™ ()™ (1)

— & ZS(”“ +ISTONIIDNe" @1 + 1% (lllo* ("), e ()]l

+ A" (e"(2), e ()l + H%RHIKI(eR( 7).l (t = )| + 1B 1€ (t — 7)€’ (t = 7))
DG @+ 12 @ @), 7" @)+ 1A (@), 9" ()]
@R, g O+ 1A @@, g O+ B 9" (@ = 1), 5" (t = 7))
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+ 181 gl @t = 1), 5" (= D) + 1B g™ @t = 1), 5" (t = 1)
+IBLgr @t =), 9" (¢ = o)+ 1T = FI] + wille! O + €l @] — o' 015 (1)1

— ST ()57 (1) — €13 5/ V1)

Then we set the inequalities [ST(t)|| < HSR( Wi, [1ST® < 1S7@))1 and [eB(t)]| <
e @ 1jan) = HEFOII [ O < €401/ = (1O, (1/2 < ar < 1, [eF@)] <
SNt <& e O < &, e ()l < &2,
V(e) < ISP [Nl @1 + 12765 (), e )] + I [l ¢7 (e (2), e ()]
+ Bl (et — 7). el (t =)+ IBIIlET (2 — 7), e (¢ — 7)) + |7 127
IR @), gD+ IR @), y @O+ Iz, y @D+ [T @), y(0)]
+ 1B lg™ (@ (¢ — ), 5t — 1) + BT [|97 (@(¢ — 7), 5t — 7))
+ 1B lg" (2t = 7), 9t = 7)) + 1B1[lllg1 (2t = 7). 9(t = 7)) + [11{ = I

n

+ e t)] + el et ()] — pR(t)] — w2 ST (2) 55255“2“

+IST@) LD (@) + 1A%l (R (t), el ()]

+ I [l (R (e, e ()] + 1B €T (Rt — 1), (t — 7))I| + 1B 1% (Rt — 7)€ (t — 7))
1D 5 Ol + IR @R @), 97 )] + I A @R (), 57 ()]

IR @R ), 9T )] + IR @R @), 57 O] + IB ) g (@7t — 1), 57 (¢t — )
+IBEIlgf @7 — 1), 97t — o) + 1B Nlg™ @Rt — ), 5" (t — )]

B @™ — 1), 97t — o)+ 1T — HNl + ol el ()] + €l lled )] — o' (2)]
—wn ST ()5 (t) — 5225““2*” (t)

=1
SO (1D + (R + BN+ (] + 1B 16" + wif] ¢ + [T + [B7))6™
+ (12 + 1871)6™ 165 + (1D 1+ (=) -+ IRAFIDILTN 12" @)+ [ 5
RN IG" @1 + (1B LS+ 1BLLs ]2 = )l + [H%IHIWH

+IBIILANIGE = T+ (Ges) R+ I — IR - pR(t)] — woST () gRZSQQH t)
IS O [[I1D1 -+ AT+ B + (1) + 1987 1)0"F + wii] &5 + [(HﬁlRH + H%RH)W

+ (2] + 1B )™ + wz] ¢z + (1971 + (2] + I=E DI @1 + [ L5
+IIMLENT 12 ON + [IBENILI + IBENLNNET @ =)l + (1B 1L

HIBINILRNG (£ = )l = ()] — waST" (1) ST (¢) — €] Z slea )’ gy

< —wnS™ (SR (1) — &' Y ST —weST (5T (1) — 8 Y s ),
1=1

1=1
— 2 (SRT (t)SR(t) + SIT (t)SI(t)) _ 522((124-1)/2 (V(a2+1)/2 (t)),
2wV (t) — 2002 D/2 (V2 4D)/2 (1)) (14)

When t = 0 we have, .
V(t) < —2waV (t) — &2zt /2 (Y (02t D)/2(4)), (15)
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From Lemma 1, (14) and (15) there exists ¢s such that t; < ﬁ where, ¢ = In(waV1722(0) +

(2(0211)/2) /¢,2(02+1)/2 quch that V(t) = 0. This ensures that the synchronization errors (7) and (8)
must converge to zero in a finite time t; + t. for any given finite time ¢. Thus, the finite-time synchro-
nization between time-invariant uncertainty neural networks (5) and (6) is ensured by the predefined
SMS and the corresponding designed SMC. This completes the proof of theorem. ]

4. Numerical example

In this section, one numerical example is presented to illustrate the effectiveness of the theoretical
results derived in the previous section.
Consider the following parameters for time invariant uncertainty neural networks (5)

wg((t)) = gog{;(t%w?}(lt();? #I(t) = (@i (1), x0T, fI() = fI() = f50) = £10) = 7' ()
g7() =g () = tanh(.),

A% = ( 1?8 11712 > Aff = < 1?8 11712 ) Al = ( 11.593 11725 ) A = ( 11.593 11725 )
B (1 ) E= (0 ) = (1 e ) B = (1 T )
D = diag (5,5), AD(t) = diag (0.02sin(t — 0.1), —0.1sin(t — 0.1)),
AAR(t) = diag (0.01sin(t — 0.1), —0.1sin(t — 0.1)),

AAL(t) = diag (0.01sin(t — 0.1), —0.1 sin( ,
AAR(t) = diag (0.011 sin(t — 0.1), —0.1sin(t — 0.12)),
AAL(t) = diag (0.011sin(t — 0.1), —0.1sin (¢ — 0.12))
ABE(t) = diag (0.02sin(t — 0.1), —0.1sin(t — 0.12)),
AB!(t) = diag (0.02sin(t — 0.1), —0.1sin(t — 0.12)),
ABE(t) = diag (0.01sin(t — 0.1), —0.1sin(t — 0.2)

ABI(t) = diag (0.01sin(t — 0.1), —0.1sin(t — 0.2)

(6

~—

and
91 (")

~0.1))

)
).
From Figs. 1-3, the finite-time synchronization behavior of the neural networks (5) and (6) is given

with different time delays (i), time varying delays 7(¢) = 1.7¢, 0.3¢' and (ii) constant delay 7 = 0.6.
This shows the correctness of the theoretical results.

[":. 1 L] L] L] L]
Il
T 05 .
5
<
é 0
E
5-05 i
5

_1 1 1 1 1

0 10 20 30 40 50

Time

Fig. 1. Error vectors of (5) and (6) with given parameters in the numerical example section.
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1 1
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Time Time

Fig. 2. Error vectors of (5) and (6) with 7(¢) = 0.3¢ for given parameters in the numerical example section.

=0.6

0.5 -

-05F -

Sate of errors with time delay 7(t)

_1 1 1 1 1 1 1 1 1 1

0 5 10 15 20 25 30 35 40 45 50
Time

Fig. 3. Error vectors of (5) and (6) with given parameters in the numerical example section.

Remark 4. In [28], to address the problem of finite time synchronization of nonidentical delayed
recurrent neural network, an improved sliding mode control approach is presented by means of drive
response concept and suitable sliding mode controller is designed for the synchronization error system
of real valued delayed recurrent neural networks. But in this article, we consider the complex valued
neural networks with time variant uncertainty connection weight matrices and the generalized neural
network structure of (1) in 28] and introduced the time variant matrices, when choosing the time
variant matrices as a constant one. Therefore, the above findings are extremely generalize the existing
works on the finite time synchronization of delayed recurrent neural networks.

5. Conclusions

In this paper, we have derived the finite-time synchronization problem of delayed complex valued neural
networks with time-invariant uncertainty through improved integral sliding mode control. Firstly, the
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master-slave complex valued neural networks are transformed into two real valued neural networks.
Meanwhile, the interval uncertainty terms of delayed complex valued neural networks are converted into
the real uncertainty terms. Secondly, a new integral sliding mode surface is designed by employing
the master-slave concept and the synchronization error of master-slave systems such that the error
system can converge to zero in finite-time along the constructed integral SMS. Next, a suitable SMC
is designed by using Lyapunov stability theory such that state trajectories of the system can be driven
onto the predefined SMS in finite time. Finally, a numerical example is given to find the effectiveness
of the theoretical results.
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CuHxpoHi3ayisa iHBapiaHTHUX LWO0A0 Yacy HEeBU3HAY€HUX HEMPOHHUX

MepexXx 13 3aTPUMKOKO Ha CKIHYEeHHUI 4ac 3a PaxXyHOK
BOOCKOHAJ/1IEHOIro KkepyBdHHsa pe>xxnmMmoM KOB3aHHA

Jxasuri H.', Cantakymapi P.12

L Vpadosuti koredorc mucmeuyms, Koimbamopi, Indis
2 Koaedote mucmeuyms i nayku Ilpi Pamaxpiwna, Koimbamopi, India

Y cTaTTi J0CTiKYEThCA 33/1a9a IaCOBO-CKIHIEHHOT CUHXPOHIZAIN] CKIAIHNX HEHPOHHUX
MepeK 13 3all3HIOBAHHAM Ta iHBapiaHTHOIO MO0 YaCy HEBU3HAYEHICTIO MIJIAXOM BJIOCKO-
HaJIeHHs IHTerpajbHOIO KEPYBaHHS PeKUMOM KoB3aHHs. [lo-miepiie, KomnsiekcHi HefipoHHi
Mepexi “Beayunii-—BeIeHniT”’ epeTBOPIOIOTHLCS Ha, Bl MiicHI HEHpOHHI MeperKi 3a JOIOMO-
rOI0 METOJIy TOJILTY KOMIIJIEKCHUX HEfDOHHUX MepesK Ha [JificHy Ta ydaBHY dacThHH. Kpim
TOrO, YIEHU 1HTEePBaJIbHOI HEBU3HAUEHOCTI KOMIIEKCHIX HEHPOHHUX MepexK i3 3aIli3HIO-
BAHHSIM II€PETBOPIOIOTHCS HA JIilicHI yMoBu HeBu3HadeHocTi. Ilo-apyre, HOBa inTerpajbna
MIOBEPXHs KOB3HOTO PE2KUMY pO3pobJieHa 3 BUKOPUCTAHHSIM KOHIIENII] “Be Iy aunii—Bemennit’
TakK, IO CHCTEMa IIOMUJIOK MOXKe 306iraTucsd J0 HyJd 3a CKIHYEHHHUI 4Yac B3/IOBXK I100Y-
JOBAHOI iHTerpaJIbHOI TOBEPXHI peKNMy KoB3aHH. Jlaji, 3a T0moMororo Teopil cTiiKOCTI
JIstryrOBa pO3pOOJIEHO BiIOBITHE KEPYBAHHS PEKUMOM KOB3AHHS, 3aBISKI SKOMY TPAEK-
TOpil cTaHy cHCTEMU MOXKYTb OyTH IepeBeJieHi Ha MOIEPeIHbO 3aaHy MMOBEPXHIO PEXKU-
My KOB3aHHS 3a cKindeHuuil gac. Haperrri, mogano unceabHuit TpUKIa, AKUil i10cTpye
ePeKTUBHICTD TEOPETUIHUX PE3Y/IbTATIB.

KntouoBi cnoBa: xepysants pestcumom Ko63aHHA, NOBEPTHA PENHCUMY KOB3UHHIA, “ACOBA
HEBUSHAYEHICTD, YACO6a, 3GMPUMKA, HETUDPOHHTL MEPEIHCT.
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