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In this paper, a new Blind Source Separation (BSS) method that handles mixtures of noisy
independent/dependent sources is introduced. We achieve that by minimizing a criterion
that fuses a separating part, based on Kullback—Leibler divergence for either dependent or
independent sources, with a regularization part that employs the bilateral total variation
(BTV) for the purpose of denoising the observations. The proposed algorithm utilizes a
primal-dual algorithm to remove the noise, while a gradient descent method is implemented
to retrieve the signal sources. Our algorithm has shown its effectiveness and efficiency and
also surpassed the standard existing BSS algorithms.
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1. Introduction

Blind Source Separation (BSS) aims to recover unknown original sources given only the observed
mixtures without any previous knowledge about the source and the mixing process. In literature,
various techniques were introduced under assumptions of mutual independence between the sources
and only one of the components could have Gaussian distribution, for instance, [1-9]. However, the
issue of BSS is much more complex with dependent components [10-14]. We have:

o(t) := M[s(t)] + v(t) € RP, (1)

where 0(t) € RP are the mixed signals, M -] is the unknown mixing operator, s(t) € R? is the sources
vector, v(t) € RP is an additive noise vector, and ¢ € [0, 7] is the sample index. The model (1) can be
viewed as follows: o(t) = o(t) + v(t), where o(t) := M s(t) denotes the unknown mixed vector in a
noise free environment. In our study, we assume, the number of the signals is equal to the observations
(p = q), the independence between the signals source s and the noise v, and the linearity of the
mixtures. By using the model (1), the estimate of signals source is: Z(t) := W o(t), where W denotes
the de-mixing matrix and Z(¢) € R? is the approximate of s(¢) in the noisy environment. Nonetheless,
Z(+) does not present the best estimation for the source signals s(-). As a matter of fact, the recovered
signals can be formed as: Z(t) :== Wo(t) = Wo(t)+ Wu(t) = z(t) + U(t). The noisy restored
source z(t) is the sum of z(t) := W o(t) the source signals estimate in a free-noise environment, and
vU(t) := Ww(t) is the unknown product of the de-mixing matrix and the noise. Several algorithms
have been developed in recent decades to treat the noisy BSS problem, for example, [15-17].

For a higher quality estimate of the mixing matrix as well as the sources, [18] introduced a new
BSS technique for noisy mixtures of dependent or independent sources by fusing the estimation of
Kullback—Liebler divergence between the copula densities and the total variation (TV) regularization,
however, using total variation in order to remove noise has its deficiencies such as sensitivity to noise
and easiness to blur. To overcome those issues, we propose a progression of the stated work by
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introducing a method based on the bilateral total variation regularization (BTV) which is generated
from the bilateral filter [19]. This filter eliminates the noise completely although retaining the edge
information then we minimize the Kullback-Liebler divergence between the copula densities. Next,
this paper is organized as follows: Section 2 presents a short resume about copulas and some of their
fundamental properties. In Section 3, we go into more details about our approach. Section 4 states how
to implement the proposed methodology utilizing both statistical and numerical skills. In section 5
numerical results are given to illustrate the efficiency and robustness of our proposed approach and
finally a conclusion is given.

2. Copulas

Copulas are functions that link a joint distribution function to its marginal functions. Let
S = (Sl,...,Sp)T € RP, be a random vector with Fg(S) = P (5 < 51,...,5, < Sp), the cu-
mulative d.f. and Fg, (S;) = P(S;<S;),¥j = 1,...,p, the marginal d.f’s. The relationship
between these two using a copula Cg(:), according to the theorem of Sklar [20] is: Fg(S) =
Cs (Fs, (51),...,Fs, (Sp)),¥ S € RP and for every vector v := (v1,...,0,) " € [0,1]P, we have
Cs(v) = P (Fs, (S1) <wvi,...,Fs, (Sp) <wvp), where its density is calculated as follows: cg(v) =

g:iCséz) , Vv € [0,1]P. The statistical independence of the components Si,...,.S, is set iff: Cg(v) =

1; 1v; =: Cr(v),Vv € [0,1]7, Cr(-) represent the copula of independence, consequently, the copula

density of independence, cry(-), writes: cri(v) := 1jg 1jp(v). We consider fs(-), the probability density
of the r.v. S := (51,... ,Sp)T, if it exists, and, fs,(-),..., fs,(-) € RP, their marginal p.d’s. By using
the equations stated above, we can deduct the following;:

(Hfs )cs (Fs,(S1), -, Fs, (S))) . @)

In this paper, use the semiparametric copula models denoted C(-,0), where § € © C R?, is the
indexing parameter, with nonparametric margins, and we can estimate it by choosing the best estimate
copula model, amid a large set of copula models. leenAa model k, the Bayesian information criterion is:
BIC(k) = —2supy, co, SN log ey (Fs1 (s1(n)),..., Fs, (sp(n)),0k) + dilog(N). The copula model
that minimizes the BIC is the optimal model. We consider, {c(-,0);0 € © C R?} the chosen model,
the copula model parameter 0 is then approxnnated by maximizing the semiparametric log-likelihood

0 = argsupgee Sy log e(Fs, (s1(n)) .., Fs, (s5(n) ).

3. The proposed method

3.1. Denoising the observed data

To extract the noise-free signal o(t) from the noisy observation o(t), with the smallest error, we use
the mean squared error, by solving the least-square problem: inf, 1 f[O,T] [o(t) — o(t)|>dt. We also
consider the bilateral TV regularizer [21], due to its advantages, namely, the ability to smooth away
the noise and small variation in a signal while preserving the major edges or discontinuity, and the
ability of handling and removing high level noise unlike total variation. It is expressed as follows:
BTV(o) =" aVl|jo — GIol|1, where the matrix GY entails a shift right of j samples and m is
the spatial window size. To give a spacial decay effect, we deploy a weight o € [0, 1] to the sum of the
regularization terms. Hence we obtain o, by minimizing the following objective function

1 m . .
inf —/ o — o||?dt + X o — Glo }, 3
{5 [, 1o elfarex Y- oo - Glol, ®

j=—m

where A > 0 is the regularization parameter that measures the performance of the smoothing effect.
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3.2. BSS-denoising procedure

—~

Once having the noise-free observed signals, we can now estimate the source signals 5(¢) := W o(t).
We do so by minimizing, in regards to W the following criterion:

W 5 C(W) = Coep(W) + Creg (2), (4)

where Csep(-) is the separating part, and Creg(z) = 5 OT 2(t) = Z@®) P dt +p>7 alil||z(t) —
GJ z(t)||1, the regularization term, which is applicable for independent and dependent cases. v, p > 0
present the regularization parameters. Let fz(-) be the joint probability density of the r.v. Z €
RP, and fz,,..., fz, their marginal p.d’s. The mutual information of Z writes then as: MI(Z) :=

Jgo log #(;)(zb) fz(z)dz=E (log #%) . This MT is equal to the Kullback—Liebler divergence

between fz(-) and the product of the marginals and it is expressed as such: MI(Z) = K (fz,[ -, fz,) -
and it is always positive and only reaches its minimum value zero iff fz(-) = [[_; fz(-), Le., the
independence of the elements of Z.

3.2.1. The case of independent source components

In this case, we use copula density of independence cp(-), by applying the relation (2):

MI(Z) = /[0 o (c2(0) ez(v) du (5)

- /[o,m log <Z EZ; ) cz(v) dv

B cZ(le(Zl),...,FZp(Zp))
=" <1°g c1(F2(Z1), -, Fz,(Zy))

)ZK(CZ’CH)’

with cz(-) the copula density of Z. This measure is always positive, and only reaches the minimum,

zero iff cz(v) = cp(v), Vo € [0,1]7, ie., iff we reach the independence. Consequently, we have:
Csep(W) = C;ES(W) = K(cz,crq). Hence W — C;ES(W) is non-negative and reaches its minimum

value zero iff W = M ~! with indeterminacies of scale and permutation.

3.2.2. The case of dependent source components case

Here, we assume that the dependency structure is modeled by a semiparametric copula density,
{cg(); # € © C R?}, with a multivariate parameter . In this case three approaches are used:

e The model and the parameter are known: In this case, we estimate W the de-mixing matrix
in a straightforward way: W := arginfy, CS;? (W).

e The model is known and the parameter is unknown: Here the parameter 6 of the de-
pendency model is unknown, hence, we propose to estimate the separation matrix W by: W =
arg infyy infgco Co (W).

e The model and the parameter are unknown: Finally, when we have no knowledge about
the parameter or the model, we consider T different models of copula densities of the source com-
ponents, apply the approach described in the second case for each model, then take the model
that minimizes the criterion, in other words: W = arginfyy infg_ g KL(csek*,cZ), where k* =
arg ming—; 7 infy infg, co, Csep(W'). We propose to estimate the separation criterion defined by:

= in o cz(Fz, (1), -+ F7,(Zp))
Csep(W) T Oeé E <1 g CO(FZ1 (Zl), cee ,FZp(Zp)) )
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4. Discretization and Statistical estimation

4.1. Denoising the discrete observed data

To denoise the observations we use the primal dual algorithm [22,23|. First, we set the following
notations, K = A0 i1 — GY), F(Ko) = A alllo — GVol; and G(o) = 3 [, |o(t) —
o(t)|?dt. The problem (3), is then of the form: inf,{G(0) + F(Ko)}, where F and G are convex
functions and K is the linear operator. The following primal-dual problem is obtained by using
the saddle point problem: inf,sup,{(Ko,p) + G(o) + F*(p)}, where F*(p) = sup,(p,o0) — F(0),
representing the dual of the function F and p present a dual variable with p € RP. After that, we
verify: F*(p) = dp(p) = 0if p € P and = 400 if p € P, where P = {p: ||p|loc < 1}, yet, one
must determine the proximity operator functions F* and G before continuing with the Primal-Dual
algorithm. We have (I +0dF*)~!(p) = Ilp(p), where llp(p) = m, is a projection on P and

||P[loc = max|[p; ;|. Also by relying on the definition of the function G, we have (I+70G)"(0) = Ol'fsa.
Z7j

The algorithm below, summarizes this step, with KT is the adjoint of the operator K presented as

such KT =AY alil(1 —G™).

Algorithm 1 The denoising step using Primal-Dual algorithm.

Data: o the noisy observation.

Result: y the obtained noise-free signal.

Initialization: Given 7, 0 > 0, n € [0,1], (p°,0°) € R™ x R™ and set y" = o°.
Do:

p"t =14 cdF*) L (p+ o Ky"),
=(I +710G) ' (0" — TKTp™1),
,yn—i-l :On+1 +77(On+1 _ On)'

4.2. Statistical estimates of the separation terms
4.2.1. The case of independent source components
We estimate the principle (4) by
W i Cr(W) i= CRA(W) + Cregal(2), (6)
where Cregd(2) = 5% val Z() — z())? + u N, dim all|z(n) — G’z(n)|, denotes the discrete

version of Creg(2), and Cmd(W), the statistical approximate of CI"d(W), and is defined by: W

sep sep

c;gg(W) = LN log (€7(F, 1 (21(3), ooy Fz (1)), where €z(Fz, (21(3)), ..., Fz, (7)) =
)

N Fy, (2 (i) —=Fz, (2(0))
mZZ:1H§:1k< i - >
cz(-), and Fgz(-), Vi = 1,...,p, are the smooth estimates of Fy (-), and it is expressed as

N N
Fz.(r) = %ZK(’H_EJ), where K(-) denotes the kernel k(-)’s primitive, which is a symmet-
=1 !

, denotes the kernel approximate of the copula density

ric centered probability density. We picked up the standard Gaussian probability density as our

kernel. Using the Silverman’s rule of thumb [24] the bandwidth parameters are selected as fol-
1 ~
lows: for all @ = 1,...,p, H, = <p+2>”+4Np+4E and h; = (%)5 _%6'\2', where »; and

o; are the empirical standard deviation of FZZ.(zi(l)),...,ﬁzi(zi(N)) and z;(1),...,2(N), respec-
tively.  We can estimate the source signals by s(j) = Wo(j),j = 1,...,N, where W :=
arg infyy Cind(W), which can be estimated by deploying gradient descent algorithm. The gradient
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in Wof W — EIE(W), is expressed as follows: Cmd(W =¥ Zn 1 d"c"zcé(n + ¥ Zn 1(z(n) —

z(n))(o(n) — B(n))T + % 25:1 Zm_ aldl ([ -G~ J) Slgn( (n) — Gz (n )), where ﬁ = (a‘}?/ij)ij7
L 92z (Fz. (2(n ,...,ﬁ zp(n
iio= Leep o) = Fala).. Py L Ch—

(2p( ) and, 7] =
Fz (2j(m))=Fz, (z;(n)) Py (zz<m 2(n)) d(Fz, (2:(m))—Fz, (2(n)))
NH11 Zm 1HJ L,j#i ( e H; = > ( >H% - aW”’Z ’

i
with %ﬁm)) = Nlhz- nglk (%ﬁl(m)) (0j(n) — 0j(m)). The following Algorithm presents the sum-

mary of the proposed approach:

Algorithm 2 BSS algorithm for separation of noisy independent source components.

Data: o the noise free observations

Result: s the approximation of the source signal
Initialization: Calculate o =0 —[],,0

from Algorithm 1, W(©) = I, 20 =W o, Givene >0, v >0.
Do: Update W and z: -

dCind (W)

(a+1) — wia) _
w W v W

2a+1) — wietl) o

Until ||[W@) - w@|| < ¢,
§ — z(Q'f‘l).

4.2.2. The case of dependent source components

The criterion (4) in this case, is given as follows

CIP(): W s CIP(W) 1= CIP (W) + Creg(2). (7)

sep

We suggest to estimate the principle (7) by: W C/df’(W) = CoP (W) + Creg.d(2), where CS:E(W)

present the approximate, of Csep (W), and it writes: CS;? (W) := % Zf\il log (EEZ((I%Z;((:((Z))))::;ZZ: ((ZZ: ((;)))))) > :

The source signals are approximated as follows: §(i) = ﬁ\/o(i), i = 1,...,N, where
W = arginfy CdP(W), which is estimated using the gradient descent algorithm. In
fact, the gradient of the approximated criterion, with respect to W, is calculated as fol-
—— d ~
dCder (W) cz(v(n aw ¢g(v(n)) - _
ows S = % T [RERG Ty | + ¥ S+ — S(el) — )T+

& 25:1 Zj:_m alil (I — G77)sign(z(n) — G’2(n)), where v(n) := (ﬁzl(z(n)), . ,ﬁzp(zp(n))); the
gradients ﬁ’c\z('v(n)) and dgVAe( (n)) can be calculated in a similar manner as in Subsection 4.2.1.
We summarize the approach above in the following Algorithm.

5. Simulation results

In order to test the performance of the suggested approach, various simulations were conducted on
four signal types: uniform i.i.d sources with independent components, dependent uniform i.i.d sources
from Clayton copula [25]|, with § = 1.5, dependent uniform i.i.d sources from FGM copula [26], with
6 = 0.8 and dependent uniform i.i.d sources from Gumbel copula [27], with § = 2.5. For each source
we have N = 3000 samples, and a centered Gaussian noise with deviation equal to 0.01 added, to gain
two different signal-to-noise ratio (SNR) values: —25dB and —15dB. Considering the mixing matrix
M :=[10.70.7; 0.710.7; 0.7 0.7 1], the gradient descent parameter v = 0.1, while for the denoising
part, we adopted 7 = 0.1, ¢ = 0.01, n = 0.01, v = 0.01, x = 0.01 and € = 0.001. To calculate the
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Algorithm 3 BSS algorithm for separating noisy dependent source components.

Data: o the noise free observation
Result: s the approximation of source
Initialization: Calculate o =0 —[[,, 0

from Algorithm 1, w0 = I, 20 =wO o, Givene>0,v>0.
Do: Update W and z: -

dCder (W)

(¢+1) — wia) _
w w v W

2(a+1) — pwietl) o

Until ||[W) - w@|| < ¢,
/S\ = z(qu‘l)_

quality of the estimated sources, the SNR was used. We also compare our experimental result with
the result of [18] and those of [17], [28] (JADE), [29] (FastICA) and [30] (RADICAL), penalized by

the same BTV and T'V-regularization versions.

Table 1 shows that our proposed approach is satisfying performance at different noise level in the

independent components case.

Table 1. Output SNR’s for independent source components.

Noise -25 -15

Sources S1 S2 S3 S1 S2 S3
Our method 36.547 36.720 36.314 28.332 28.181 28.356
Copula-TV 34.451  34.795  34.541 26.924  26.815  26.723
MI-BTV 34.639 34.841 34.412  26.721 26.302  26.510
MI-TV 33.429 33.772 33.851 25.872  25.836  25.869
FastICA-BTV 33.703 33.936 30.424  26.521 < 25.697 24.729
FastICA-TV 32,534 32913 29.183  26.901 25.348 24.199
JADE-BTV 34.634  34.147 33.881 26.289  26.644  26.781
JADE-TV 33.513 33.371 33.209  26.355 26.210 26.732
RADICAL-BTV 34.783  33.839 34.137  26.418 25983  26.027
RADICAL-TV 34.168 32953 34.243  25.852 25939  25.527

For dependent sources, our approach scored the highest SNR. values for the three samples, proving
its superiority compared to the other methods. The comparison results are summarized in Table 2,

Table 3 and Table 4.

Table 2. Output SNR’s (dependent components generated from FGM copula).

Noise ‘ -25 -15
Sources S1 S2 S3 S1 S2 S3

Our method 36.012 36.391 36.143 28.295 28.720 28.281
Copula-TV 34.429  34.290 34.133  26.248 26.410 26.234
MI-BTV 15.934 15.862 15.934 12.455 12.223  12.484
MI-TV 15.013  15.772  15.300 11.484 11.044 11.918
FastICA-BTV 34.254  10.723 8.126 24.099  9.546 8.135

FastICA-TV 34.343  10.291 7.281 24.911 9.240 7.691
JADE-BTV 14.198  14.926  14.419 13.307 13.442 12.497
JADE-TV 13.024 13.115 13.392 13.102 13.237 12.891
RADICAL-BTV 14.624 14.319 14.713 12.491 14.211  12.703
RADICAL-TV 13.833  13.713  14.290 13.661 14.218 12.329
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Table 3. Output SNR’s (dependent components generated from Clayton copula).

Noise | -25 -15
Sources S1 S2 S3 S1 S2 S3
Our method 34.138 34.616 34.924 27.753 27.300 27.290
Copula-TV 32.574 32,949 32538  25.846  25.237  25.822
MI-BTV 9.710 9.669 9.761 7.823 8.896 8.210
MI-TV 9.379 9.801 9.476 7.484 8.226 7.847
FastICA-BTV 24.633  6.619 3.785 22.649  5.439 3.732
FastICA-TV 23.956 5.646 3.657 22.125 5.671 3.238
JADE-BTV 9.096 9.098 9.936 8.439 8.350 8.344
JADE-TV 8.600 8.585 8.898 8.040 8.166 8.506
RADICAL-BTV 8.903 8.460 9.726 8.582 8.092 8.945
RADICAL-TV 8.623 7.697 9.145 7.605 8.475 8.299
Table 4. Output SNR’s (dependent components generated from Gumbel copula).
Noise | -25 -15
Sources S1 S2 S3 S1 S2 S3
Our method 36.518 36.118 36.130 28.405 28.185 28.185
Copula-TV 34.364  34.124 34.705  26.215  26.215  26.503
MI-BTV 15.674 15.371  15.576 12.161  12.424 12.120
MI-TV 15.709  15.608 15.214 11.757  11.867 11.621
FastICA-BTV 34.629  10.509 8.107 24.565 9.848 8.135
FastICA-TV 34.583  10.145 7.940 24.394  9.774 7.074
JADE-BTV 14.247  14.540 14.928 13.393  13.486  12.580
JADE-TV 13.844  13.311  13.989 13.257  13.260  12.806
RADICAL-BTV 14.170  14.389  14.432 12.346  14.283  12.920
RADICAL-TV 13.224  13.305 14.666 13.089  14.588  12.664

6. Conclusion

In this paper a new BSS approach is presented for noisy environments.

This technique eliminates

noise from instantaneous linear mixtures of independent and dependent source components and then
separates the mixture. Our approach was tested and compared to existing methods and exhibited its
superiority. In addition, the proposed framework can be enlarged to function in future interchanges

with convolutive independent/dependent mixtures.
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Hagainunin nigxig oo cninoro po3saifieHHst cymilleii WwyMmiB He3anexXHuX
I 3aN1eXHUX A)Keper

Oypmoy A1, Taznmami A1, Jlarpi6 A.2, Merpan A.!

LLIPIM, ENSA Xypi6ea, Ynisepcumem Cyamana Mynas Caimana, Xypibea, Mapokko
2LMA, FST Bewi-Meanan, Ynisepcumem Cyamana Myaati Caimana, Beni-Meanana, Mapoxko

VY wiit pobori npejicraBieHo HOBHIT MeTO I cJiinoro podaiaents jpxepest (CPIL), sxuit 06po6-
Jig€e cyMinn IryMiB He3aJIeXKHUX /3ajiexKuux jJKepest. e jgocsraerbes Minimizanieio Kpu-
Tepiio, IO IOEIHYE PO3AlIody JacTuny (Ha ocHoBi posbixuocri Kynnbaka—J/leiibiaepa
IS 3aJIE2KHUX 200 HE3aJIesKHUX JPKEpeJl) 3 YACTHHOI DETyJIsipU3allil, sIka BUKOPUCTOBYE
JBOCTOPOHHIO TOBHY Bapiario (II1B) 3 MeTow 3HUMKEHHs IIyMY B CIIOCTEPEXKEHHSIX. 3a-
[IPOIIOHOBAHU{ aJITOPUTM BUKOPHUCTOBYE ajroputM primal-dual jjis BusjasienHs mry My, T
sIK METOJI, TPAJIIEHTHOIO CIIyCKY PEeAJi3yeThCsl s TONIYKY JiKepes curHasy. llpemcras-
JIEHUI aJICOPUTM JIOBiB CBOIO €(DeKTHBHICTH Ta PE3yJIbTATUBHICTH, i HABITH OijbIme TOrO,
mepeBepinuB icHyo4i crangaprai ajgroputvu CP/I.

Knto4voBi cnoBa: caine poddinerms 0dHcepes, cymiwi wymie, 3aiexchi 0xcepesa, 060-
CMOPOHHA 302aAbHA BapLayLa, Po3didchicms Kyavbaxa—/letibaepa.
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