Geometry Optimization of Linear Electro-optic Effect in LiNbO3:MgO Crystals

2016;
: pp. 285 - 291
1
Lviv Polytechnic National University
2
Lviv Polytechnic National University
3
Lviv Polytechnic National University
4
Lviv Polytechnic National University

The global maxima of linear electro-optic effect are determined for LiNbO3:MgO crystal by extreme surfaces method. As it is shown, the maximal achievable values of the reduced optical pathlength changes for the ordinary and extraordinary waves are equal to 119 and 277 pm/V correspondingly for the wavelength of 632.8 nm and room temperature whereas the global maximum of the path difference between the orthogonally polarized waves is equal to 269 pm/V. These maxima are 1.5, 1.7 and 2.3 times higher than the corresponding values for the direct cuts of these crystals.

1. Yariv A., Yeh P. Optical waves in crystals. Wiley, 2002. 604 p. 2. Davis C.C. Lasers and Electro- optics. Cambridge: Cambridge University Press, 2014. 868 p. 3. Demyanyshyn N. M., Mytsyk B. G., Andrushchak A. S. and Yurkevych O. V. Anisotropy of the Electro-Optics Effect in Magnesium-Doped LiNbO3 Crystals // Cryst. Reports. 2009. Vol. 54. P. 306–312. 4. Гисин Б. В. Оптимальная ориентация кристаллов при использовании линейного электрооптического эффекта для модуляции света // Кристаллография. 1971. Т. 1. С. 151–157. 5. Блистанов А. А., Переломова Н. В., Чирков Л. Е., Шкитин В. А. Анизотропия линейного электрооптического эффекта в кристаллах тригональной сингонии // Кристаллография. 1979. Т. 24. С. 501–507. 6. Andrushchak A. S., Mytsyk B. G., Demyanyshyn N. M., Kaidan M. V., Yurkevych O. V., Dumych S. S., Kityk A. V., Schranz W. Spatial anisotropy of linear electro-optic effect in crystal materials: II. Indicative surfaces as efficient tool for electro-optic coupling optimization in LiNbO3 // Opt. Las. Eng. 2009. Vol. 47. P. 24–30. 7. Hevia V., Virgos J. M. The rank and anisotropy of antracites: the indicating surface of reflectivity in unaxial and biaxial substances // J.Microscopy. 1977. Vol. 109. P. 23–28. 8. Slivka A. G., Kedyulich V. M., Guyvan H. M. External field effect on the anisotropy of dielectric permeability of KH2PO4 and NaKC4H4O6·4H2O crystals under high pressure // Condens. Matter Phys. 2008. Vol. 11. P. 571–581. 9. Wang J., Han Q., Ning J., Zhang W., He Y. Analysis of integrated acousto-optic modulators fabricated on 128-deg-rotated Y-cut X- propagation LiNbO3 // Opt. Eng. 2012. Vol. 51. 074602 (4 pages). 10. Han P., Yan W., Tian J., Huang X., Pan H.Cut directions for the optimization of piezoelectric coefficients of lead magnesium niobate—lead titanate ferroelectric crystals // Appl. Phys. Lett. 2005. V. 86. 052902. 11. Buryy О. А., Andrushchak А. S., Kushnir O. S., Ubizskii S. B., Vynnyk D. М., Yurkevych O. V., Larchenko A. V., Chaban K. O., Gotra O. Z., Kityk A. V. Method of extreme surfaces for optimizing geometry of acousto-optic interactions in crystalline materials: Example of LiNbO3 crystals // J. Appl. Phys. 2013. Vol. 113. 083103. 12. Buryy О., Demyanyshyn N., Mytsyk B., Andrushchak A. Optimizing the piezo-optic interaction geometry in SrB4O7 crystals // Optica Applicata. 2016, accepted for publication. 13. Pfeiffer J. B., Wagner K. H. Acousto-optic figure of merit search // Physics Procedia. 2015. Vol. 70, P. 762–765.14. Ahmad A. K., Majeed M. F. Calculation of acouxto-optic figure of merit for some of oxide crystals // International Journal of Optics and Applications. 2016. Vol. 6. P. 1–6. 15. Arizmendi L. Photonic applications of lithium niobate crystals // Phys. Stat. Sol. (a). 2004. Vol. 201. P. 253–283. 16. Сиротин Ю. И., Шаскольская М. П. Основы кристаллофизики. М.: Наука, 1975. 680 с. 17. Andrushchak A. S., Mytsyk B. G., Demyanyshyn N. M., Kaidan M. V., Yurkevych O. V., Dumych S. S., Kityk A. V., Schranz W. Spatial anisotropy of linear electro-optic effect in crystal materials: I. Experimental determination of electro-optic tensor in LiNbO3 by means of interferometric technique // Opt. Las. Eng. 2009. Vol. 47. P. 31–38. 18. Andrushchak A. S., Tybinka B. V., Ostrovskij I. P., Schranz W., Kityk A. V. Automated interferometric technique for express analysis of the refractive indices in isotropic and anisotropic optical materials // Opt Las.Eng. 2008. Vol. 46: P. 162–16. 19. Andrushchak A. S., Mytsyk B. G., Laba H. P., Yurkevych O. V., Solskii I. M., Kityk A. V., Sahraoui B. Complete sets of elastic and photoelastic constants of pure and MgO doped lithium niobate crystals at room temperature // J. Appl. Phys. 2009. Vol. 106. 073510. 20. Press W. H., Flannery B. P., Teukolsky S. A., Vetterling W. T. Numerical Recipes in Pascal. TheArt of Scientific Computing. — Cambridge: Cambridge University Press, 1989. 781 p. 21. Sugak D. Yu., Matkovskii A. O., Solskii I. M., Kopko B. M., Oliinyk V. Ya., Stefanskii I. V., Gaba V. M., Grabovskii V. V., Zaritskii I. M., Rakitina L. G. Growth and optical properties of LiNbO3:MgO single crystals // Cryst. Res. Technol. 1997. V. 32. P. 805–811.