nanotube

The Cylindrical Superlattices SnS/SnS2: Model of Structure and Diffraction

The cylindrical superlattices are realized on a basis of mixed-layer nanotubes SnS/SnS2. The superperiod is formed due to the longitudinal goffering of nanotubes structure as a result of lattices disproportion of cylindrical layers SnS and SnS2. The simple model of structure is proposed, specific diffraction effects are analyzed.

The structure and Diffraction by Chiral Nanotubes of Arbitrary Composition

The quantitative theory of diffraction by separate chiral nanotubes of arbitrary chemical composition is offered. The pseudoorthogonality effect and dependence of diffraction on the azimuthal ordering are considered. The calculated diffraction patterns for the case of electron microdiffraction by separate chrysotile nanotubes are adduced.

The Distribution of Short-Wave Radiation in an Internal Hole of Nanotube

Spectral dependences and distributions of diffraction intensity of short-wave radiation (X-ray, particles of corresponding energies) by non-chiral, chiral, spiral and radial lattices in the internal hole of nanotube are calculated. The significant increase of intensity, diffracted by some kinds of nanotubes at characteristic lengths of waves, is shown. Differences and abnormal character of radiation propagation through the hole are determined.

Crystallography of Coaxial and Scroll Nanotubes of Arbitrary Composition

Cylindrical coordinates of atoms of multilayer nonchiral, chiral and scroll nanotubes of arbitrary composition are developed by projecting the structure of plane analogue on corresponding surface. The coaxial and spiral cylindrical lattices, Bravais cells and chiral indexes, expressed in terms of these cells, are used for description of nanotubes structure. The model of multilayer chiral nanotube with not close packed layers is proposed.