simulation

Modelling and simulation of pneumatic system operation of mobile robot

Problem statement. Mobile robots are of significant interest among scientists and designers during the last several decades. One of the prospective drives of such robots is based on pneumatically operated walking (stepping) system with no use of electric, heat, magnetic or other types of energy. This allows the use of pneumatically-driven robots in the cases when the use of other energy sources is prohibited (e.g., in some gaseous or fluid mediums).

Design and operational peculiarities of four-degree-of-freedom double-legged robot with pneumatic drive and turning mechanism

Problem statement. Mobile robots are of significant interest among scientists and designers during the last several decades. One of the prospective drives of such robots is based on pneumatically operated walking (stepping) system with no use of electric, heat, magnetic or other types of energy. This allows the use of pneumatically-driven robots in the cases when the use of other energy sources is prohibited (e.g., in some gaseous or fluid mediums).

Implementation of Fpga-based Pseudo-random Words Generator

A hardware implementation of pseudo-random bit generator based on FPGA chips, which use the principle of reconfigurability that allows the modernization of their algorithms and on-line replacement of the internal structure (reconfiguration) in the process of functioning have been considered in the paper. Available DSP blocks embedded into the structure of FPGA chips allow efficient hardware implementation of the pseudorandom bit generator through the implementation of the basic operations of multiplication with accumulation on the gate level.

Structural and kinematic analysis of pantograph-type manipulator with three degrees of freedom

Problem statement. The processes of development and improvement of autonomous mobile robots are significantly constrained because of the lack of an open-access comprehensive scientific and theoretical framework for calculating and designing of autonomous mobile robotic systems Purpose. The main objective of the paper consists in carrying out kinematic analysis and motion simulation of pantograph-type manipulator with three degrees of freedom. Methodology.

Simulation of micro-cutting in the process of finishing anti-friction non-abrasive treatment

The influence of the shapes and sizes of microroughnesses on the creation of favorable conditions for micro-cutting of antifriction material by modeling the contact interaction of microroughnesses with the treated surface during the finishing antifriction non-abrasive treatment (FANT) is studied in the work. It is shown that the formation of the anti-friction coating FANT depends on the conditions of contact interaction of the tool with the treated surface, and the shape and size of the microroughness determine the quality of the resulting coating.

Simulation of globoid worm gear cutting by continuous forming method with disk milling cutters

Aim. The simulation of forming process for tooth flanks of worm gears for globoid worm gears by continuous forming method using disk milling cutters for development scientific well-founded recommendations about technological ensuring for manufacture of globoid worm-wheels. Method. The researches are based on kinematic analysis methods of classical mechanics, differential and analytic geometry, theory of gear wheels, theory of forming surfaces of parts by cutting.

Substantiation of structure and parameters of pneumatic system of mobile robot with orthogonal walking drive

Problem statement. Mobile robots have awoken a large interest between scientists and designers in the last few years. One of the prospective drives of such robots is based on pneumatically operated system with no use of electric, heat, magnetic or other types of energy. Purpose. The main purpose of this research consists in substantiation of structure and parameters of pneumatic system of mobile robot with orthogonal walking drive.

Mathematical Modeling and Simulation of Direct Reduction of Iron Ore in a Moving Bed Reactor by the Single Particle Model

In this work, a mathematical model is developed for simulating the behavior of a counter-current moving bed reactor, in which the reduction of porous iron ore pellets to sponge iron is simulated. Simultaneous mass and energy balances within both the solid particles and the reactor, will lead to a set of coupled ordinary differential equations. The iron ore reduction kinetics was modeled with a single particle model. The model was able to satisfactorily reproduce the data of Gilmore Steel Corporation (USA).

On the Approaches to Cyber-physical Systems Simulation

A comparative analysis of existing approaches to Cyber-Physical Systems simulation has been conducted. The intrinsic peculiarities of Cyber-Physical Systems have been reasoned and generalized. Thelimitations of available simulation tools have been pointed out. The approach to Cyber-Physical Systems design solutions checking on the basis of timed automata, UPPAAL integrated tool environment and Temporal Logic of Actions usage has been proposed.

The influence of the vehicle’s suspension malfunction on its operational efficiency

The main malfunctions that arise when operating a vehicle in Ukraine are the failure of the suspension elements and vehicle tires due to the poor condition of the most roads [11]. The car suspension elements soften the dynamic loads and smooth out the oscillations from the unevenness on the road while riding and provide a good stability and smoothness of the car ride.