nanocomposite

The Role of Polyvinylpyrrolidone in the Formation of Nanocomposites Based on a Compatible Polycaproamide and Polypropylene

The interrelation of physico-mechanical and technological characteristics of newly created nanocomposites on the basis of polypropylene (PP)/polyamide (PA-6) mixture with PVP-modified montmorillonite has been investigated. The significant impact of modified polyamide on technological, physical and mechanical properties and heat resistance of polypropylene has been determined. It has been established that the melt flow index of the resulting composites increases by more than 2 times, compared with pure PP.

Investigation of structure of nanocomposites on the basis of mixture of polypropylene and modified polyamide with using scanning electronic microscopy.

Mixtures based on polypropylene (PP) and polyamide (PA) are of great importance as structural materials, the mixing of which reduces the negative characteristics of the original polymers. Non-polar PP significantly reduces water absorption of the material during mixing with polar high hydrophilic PA. As a result, the effect of moisture on the mechanical and thermal properties of the composites decreases. On the other hand, mixing PP with PA can extend the temperature range of material exploitation at negative temperatures.

DEVELOPMENT OF THE OBTAINING METHOD OF MONTMORILLONITE-POLYVINYLPYRROLIDONE MODIFIER FOR THE THERMOPLASTICS

Creation of polymeric nanocomposites based on the polymers of structural designation is a relevant task at present. Of great interest in obtaining the polymeric nanocomposites is montmorillonite, as a nanoscale heterophase.

Modelling of the plasmonic properties of nanocomposite materials based on diamond-like carbon film and silver nanoparticles

Optical characteristics of nanocomposite materials have been modeled depends on materials of the nanoparticles and the matrix, the size and shape of nanoparticles. The optical constants of diamond-like carbon films doped with nanoparticles of silver are considered within the framework of the effective theory of Maxwell-Garnett.

Polymers as natural nanocomposites. 1. the reinforcement structural model

The structural treatment of amorphous glassy polycarbonate as natural nanocomposite was proposed. It has been shown that the polycarbonate stiffness is defined completely by the state of its structure, which is described within the frameworks of a local order model. The large reserves of stiffness raising for amorphous glassy polymers are demonstrated.

Synthesis, properties, functionalisation and applications of carbon nanotube: a state of the art review

The investigation of fullerenes and especially of carbon nanotubes (CNTs) has opened a totally new window for the development of polymer matrix composites with novel properties and applications. CNTs, which have a number of unexpected properties, both mechanical and electrical, seem to have huge potential as a filler, i.e. as a reinforcement in nanocomposites. With the discovery of carbon nanotubes, the research efforts have been initially concentrated on the better understanding of their processing conditions, modification, and properties.

Brazilian Mineral Clay as Support for Metallocene Catalyst in the Synthesis of Polyethylene

Silica was compared with clays as supports for metallocene. Ethylene homopolymerization with both homogeneous and heterogeneous catalysts was performed. Activation energy was higher for
(n-BuCp)2ZrCl2/SiO2/MAO, although high activities were obtained for catalysts with clay. They showed Ea close to that of homogeneous precursor. Catalyst/clay control polymer morphology until 363 K

 

Polymers as Natural Nanocomposites. 2. The Comparative Analysis of Reinforcement Mechanisms

The complete similarity of reinforcement degree behaviour has been shown for nanocomposite epoxy polymer/Na+-montmorillonite and polyarylate, which is considered as the natural nanocomposite. The polyarylate structure description is given within the framework of cluster model of polymers amorphous state structure. The interfacial adhesion level influences strongly the reinforcement degree of indicated materials.

The Structural Model of Impact Toughness of Particulate-Filled Polymer Nanocomposites

A quantitative structural model of particulate-filled polymer composites impact toughness, based on the fractal analysis ideas, was offered. The model demonstrated good correspondence with the experimental data. It has been shown that the action of nanofiller as nucleator, resulting in crystallinity degree and amorphous phase structure change, exert the main influence on impact toughness value.

Polymers as Natural Nanocomposites. 3. The Geometry of Intercomponent Interactions

The treatment of amorphous glassy polymers as natural nanocomposites is proposed. It has been shown that the geometry of intercomponent interactions nanoclusters – loosely-packed matrix defines adhesion level between the indicated components of natural nanocomposites. Since nanoclusters – loosely-packed matrix contact is realized over cylindrical surface of the first ones then the larger the indicated surface area the higher the intercomponent adhesion level.