: 28-34
Received: October 07, 2019
Accepted: November 20, 2019
Lviv Polytechnic National University
Lviv Polytechnic National University
Lviv Politechnik National University

A system for impro­ving control of at­ten­ti­on of transport me­ans dri­vers has be­en de­ve­lo­ped. An analysis of li­te­rary so­ur­ces on the exis­ting met­hods and systems instal­led on mo­dern cars for es­ti­ma­ting dri­ver's ti­red­ness has be­en con­duc­ted. No­wa­days the­re are se­ve­ral ways to ob­ta­in da­ta abo­ut dri­ver's ti­red­ness. The da­ta are ba­sed on the dri­ver's physi­olo­gi­cal sta­te at the whe­el analyzing his physi­olo­gi­cal re­ac­ti­on. On the ba­sis of the con­duc­ted analysis the ad­van­ta­ges and di­sad­van­ta­ges of the exis­ting system ha­ve be­en re­ve­aled. An al­go­rithm of the system's functi­oning and a struc­tu­re for fo­cu­sing at­ten­ti­on of dri­vers of transport me­ans ha­ve be­en de­ve­lo­ped and a lo­gic mo­del has be­en bu­ilt. The system's struc­tu­re is ba­sed on mo­du­lar prin­cip­le which ma­kes it pos­sib­le to impro­ve and mo­der­ni­ze the de­sig­ned de­vi­ce. A struc­tu­ral mo­del of the system, de­ve­lo­ped on the ba­sis of Pet­ri net the­ory, ma­kes it pos­sib­le to re­se­arch dyna­mics of the system functi­oning on the system le­vel of de­sign. The ob­ta­ined tes­ting re­sults of the de­ve­lo­ped appli­ca­ti­on con­firm the cor­rect so­lu­ti­ons of the prob­lem of the de­ve­lop­ment of the system for impro­ving control of at­ten­ti­on of transport me­ans dri­vers. An in­for­ma­ti­on mo­del has be­en bu­ilt. The mo­del inclu­des an in­for­ma­ti­on da­ta flow struc­tu­re bet­we­en com­po­nents of the system, da­ta list struc­tu­res and the de­ve­lo­ped da­ta ba­se. The system ac­cepts the fol­lo­wing in­put da­ta: in­for­ma­ti­on abo­ut day ti­me, we­at­her con­di­ti­ons, dri­ver's sta­te of he­alth, traf­fic and sle­eping sta­te. Each da­ta struc­tu­re is descri­bed with the help of pri­mi­ti­ves. This ma­kes it pos­sib­le to sto­re the pro­ces­sed da­ta ef­fi­ci­ently. The in­put da­ta are sto­red in a da­ta ba­se and on de­mand are sent to the cal­cu­la­ti­on mo­du­le for analysis and pro­ces­sing. This way the re­le­vant system com­po­nents de­ter­mi­ne the val­ue of ti­me in­ter­val when it is ne­ces­sary to let the dri­ver know to fo­cus his at­ten­ti­on. In ad­di­ti­on to it, the de­ve­lo­ped softwa­re is ba­sed on the ob­ject-ori­en­ted Ja­va prog­ram­ming lan­gua­ge with the use of Andro­id SDK, Re­alm DB and Ret­ro­fit lib­rary, ma­king the softwa­re plat­form in­de­pen­dent. The bu­ilt system helps fo­cus dri­ver's at­ten­ti­on by no­ti­fi­ca­ti­on on the mo­bi­le de­vi­ce and can be instal­led on new transport me­ans and tho­se that are al­re­ady in use. On top of it, the de­ve­lo­ped Andro­id appli­ca­ti­on is che­ap, if com­pa­red with the exis­ting systems. The system is por­tab­le and ma­kes it pos­sib­le to use the appli­ca­ti­on on mo­bi­le de­vi­ces. It do­es not req­ui­re any ad­di­ti­onal techni­cal eq­uip­ment and has a simple and cle­ar user in­ter­fa­ce.

[1]     At­ten­ti­on As­sist. (2019). Sis­te­ma kontrol­ya us­ta­los­ti vo­di­tel­ya At­ten­ti­on As­sist. Ret­ri­eved from: (Last ac­ces­sed: 12.02.2019). [In Rus­si­an].

[2]     Bo­re­iko, O. Y., & Teslyuk, V. M. (2016). De­ve­lo­ping a control­ler for re­gis­te­ring pas­sen­ger flow of pub­lic transport for the "smart" city system. Eas­tern-Eu­ro­pe­an Jo­ur­nal of En­terpri­se Techno­lo­gi­es 6, 3(84), 40–46.

[3]     Borghi­ni, G., As­tol­fi, L., Vecchi­ato, G., Mat­tia, D., & Ba­bi­lo­ni, F. (2014). Me­asu­ring neu­rophysi­olo­gi­cal sig­nals in aircraft pi­lots and car dri­vers for the as­sessment of men­tal worklo­ad, fa­tig­ue and drow­si­ness. Neu­ros­ci­en­ce and Bi­obe­ha­vi­oral Re­vi­ews, 44, 58–75.

[4]     Dragan, Ya. P., & Hrytsiuk, Yu. I., & Palyanitsya, Yu. B. (2016). System analysis of statistical estimation of states of stochastic vibration system and shunt principle. Scientific Bulletin of UNFU, 26(1), 395–402.

[5]     Dri­ver Alert Control. (2019). Sis­te­ma kontrol­ya us­ta­los­ti vo­di­tel­ya Dri­ver Alert Control (DAC). Ret­ri­eved from: (Last ac­ces­sed: 12.02.2019). [In Rus­si­an].

[6]     Elektro­entse­fa­log­raf. (2019b). Ret­ri­eved from:Электроэнцефалограф (Last ac­ces­sed: 11.02.2019). [In Uk­ra­ini­an].

[7]     Elektro­kar­di­oh­ra­fi­ya. (2019a). Ret­ri­eved from:Електрокардіографія (Last ac­ces­sed: 11.02.2019). [In Uk­ra­ini­an].

[8]     Elektro­oku­log­ra­fi­ya. (2019c). Ret­ri­eved from:Электроокулография (Last ac­ces­sed: 11.02.2019). [In Uk­ra­ini­an].

[9]     Jap, B. T., Lal, S., Fischer, P., & Be­ki­aris, E. (2009). Using EEG spectral com­po­nents to as­sess al­go­rithms for de­tec­ting fa­tig­ue. Ex­pert Systems with Appli­ca­ti­ons, 36(2), 2352–2359.

[10]  Koz­lovskiy, A. I., Por­va­tov, I. N., & Po­dol'skiy, M. S. (2013). Ob­zor av­to­mo­bil'nykh sis­tem ope­ra­tiv­no­go kontrol­ya sos­to­ya­ni­ya vo­di­tel­ya. Re­zul'taty sobstvennykh issle­do­va­niy. In­ter­net-zhur­nal "NAU­KO­VE­DE­NI­Ye", 6, no­yabr'-de­kabr' 2013. [In Rus­si­an].

[11]  Kra­jewski, J., Som­mer, D., Trutschel, U., et al. (2009). Ste­ering whe­el be­ha­vi­or ba­sed es­ti­ma­ti­on of fa­tig­ue. In: Pro­ce­edings of the 5th In­ter­na­ti­onal Dri­ving Sympo­si­um on Hu­man Fac­tors in Dri­ver As­sessment, Tra­ining and Ve­hic­le De­sign, 118–124.

[12]  Lal, S. K. L., & Cra­ig, A. (2005). Rep­ro­du­ci­bi­lity of the spectral com­po­nents of the electro­en­cep­ha­log­ram du­ring dri­ver fa­tig­ue. In­ter­na­ti­onal Jo­ur­nal of Psychophysi­ology, 55(2), 137–143.

[13]  Molnár, E., Molnár, R., Kryvinska, N., & Gre­guš, M. (2014). Web In­tel­li­gen­ce in prac­ti­ce. The So­ci­ety of Ser­vi­ce Sci­en­ce. Jo­ur­nal of Ser­vi­ce Sci­en­ce Re­se­arch, Sprin­ger, 6(1), 149–172.

[14]  Myllylä, T., Kor­ho­nen, V., Vih­riälä, E., et al. (2012). Hu­man he­art pul­se wa­ve res­pon­ses me­asu­red si­mul­ta­ne­ously at se­ve­ral sen­sor pla­ce­ments by two MR-com­pa­tib­le fib­re op­tic met­hods. Jo­ur­nal of Sen­sors, Ar­tic­le ID 769613, 8 p.

[15]  No­wic­ka, K. (2014). Smart City lo­gis­tics on clo­ud com­pe­ting mo­del. Pro­ce­dia-So­ci­al and Be­ha­vi­oral Sci­en­ces, 151, 266–281.

[16]  Si­mon, M., Schmidt, E. A., Kincses, W. E., et al. (2011). EEG alpha spindle me­asu­res as in­di­ca­tors of dri­ver fa­tig­ue un­der re­al traf­fic con­di­ti­ons. Cli­ni­cal Neu­rophysi­ology, 122(6), 1168–1178.

[17]  Teslyuk, V. M., Be­re­govskyi, V. V., & Pu­kach, A. I. (2013). De­ve­lop­ment of smart hou­se system mo­del ba­sed on co­lo­red Pet­ri nets. In: Pro­ce­edings of In­ter­na­ti­onal Seminar / Workshop on Di­rect and In­ver­se Prob­lems of Electro­mag­ne­tic and Aco­us­tic Wa­ve The­ory, DI­PED'2013, Lviv, Uk­ra­ine, Sep­tem­ber, (pp. 205–208).

[18]  Teslyuk, V., Denysyuk, P., Ham­za Ali You­sef Al Sha­wab­keh, & Kernytskyy, A. (2010). De­ve­lo­ping In­for­ma­ti­on Mo­del of the Re­ac­ha­bi­lity Graph. In: Pro­ce­edings of the XVth In­ter­na­ti­onal Se­mi­nar / Workshop of Di­rect And In­ver­se Prob­lems of Electro­mag­ne­tic And Aco­us­tic Wa­ve The­ory, Tbi­li­si, Ge­or­gia, (pp. 210–214).

[19]  Wang, L., Wu, X., & Yu, M. (2007). Re­vi­ew of dri­ver fatigue / drow­si­ness de­tec­ti­on met­hods. Jo­ur­nal of Bi­ome­di­cal En­gi­ne­ering, 24(1), 245–248.

[20]  Wang, Q., Yang, J., Ren, M., & Zheng, Y. (2006). Dri­ver fa­tig­ue de­tec­ti­on: a sur­vey. In: Pro­ce­edings of the 6th World Congress on In­tel­li­gent Control and Au­to­ma­ti­on (WCI­CA '06), Vol. 2, (pp. 8587–8591), Da­li­an, Chi­na.

[21]  Zhang, Z., & Zhang, J. (2006). A new re­al-ti­me eye trac­king for dri­ver fa­tig­ue de­tec­ti­on. In: Pro­ce­edings of the IEEE 6th In­ter­na­ti­onal Con­fe­ren­ce on ITS Te­le­com­mu­ni­ca­ti­ons, Vol. 8–11, Ju­ne 2006, (pp. 123–128).