From Brownian motion to molecular simulations

A brief historical overview towards the contribution of two famous Lviv scholars -- Marian Smoluchowski and Stanisław Ulam -- to the development of modern physical science fields such as molecular modeling and computer simulations is presented and discussed in connection with recent studies carried out in Lviv universities and research institutions.

  1. Ingen-Housz J. Bemerkungen über den Gebrauch des Vergrösserungsglases. In: Vermischte Schriften physisch-medicinischen Inhalts. Uibersetzt und herausgegeben von Nicolaus Carl Molitor. Zweyter Band. Wien: Christian Friderich Wappler (1784), S. 121–126 (in German).
  2. Brown R. A brief account of microscopical observations made on the particles contained in the pollen of plants. London and Edinburgh Phil. Mag. J. Sci. 4 (21), 161–173 (1828).
  3. Mazo R. M. Brownian Motion. Fluctuations, Dynamics, and Applications. Oxford, Clarendon Press (2002).
  4. Pohl W. G. The theory of Brownian motion เ one hundred years old. In: The Global and the Local: The History of Science and the Cultural Integration of Europe, Proceedings of the 2nd International Conference of the European Society for the History of Science (Cracow, 2006), edited by M. Kokowski. The Press of the Polish Academy of Arts and Sciences, Cracow (2007), p. 419–424.
  6. Perrin J. La loi de Stokes et le mouvement brownien. C. R. Acad. Sci. Paris. 147, 475-476 (1908); idem, L’origine de mouvement brownien. C. R. Acad. Sci. Paris. 147, 530–533 (1908), (in French).
  7. Einstein A. Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann. Phys. 322 (8), 549–560 (1905), (in German).
  8. von Smoluchowski M. Zur kinetischen Theorie der Brownschen Molekularbewegung und der Suspensionen. Ann. Phys. 326 (14), 756–780 (1906), (in German).
  9. Badino M. Probability and Statistic in Boltzmann’s Early Papers on Kinetic Theory. Dublin Core, Chicago (2006).
  10. Metropolis N., Rosenbluth A. V., Rosenbluth M. N., Teller A. H., Teller E. Equation of State Calculations by Fast Computing Machines. J. Chem. Phys. 21 (6), 1087–1092 (1953).
  11. von Smoluchowski M. Akustische Untersuchungen über die Elasticität weicher Körper. Sitzungsber. kaiserl. Akad. Wiss. Wien. Math.-naturwiss. Kl. 103 (II.a), 739–772 (1894), (in German).
  12. Montroll E. W. On the Vienna School of statistical thought. AIP Conference Proceedings. 109 (1), 1–10 (1984).
  13. Rovenchak A. Lviv period for Smoluchowski: Science, teaching, and beyond. Condens. Matter Phys. 15 (4), 40002 (2012).
  14. Mehra J., Rechenberg H. The Historical Development of Quantum Theory. Vol. 5. Springer (2001).
  15. Coen D. R. Vienna in the Age of Uncertainty: Science, Liberalism, and Private Life. University of Chicago Press (2007).
  16. Teske A. Marian Smoluchowski: życie i twórczość. PWN, Kraków, 1955 (in Polish); German translation: Teske A., Marian Smoluchowski: Leben und Werk, Wrocław–Warszawa–Kraków–Gdańsk, 1977.
  17. Góra P. E. Fluktuacje wokół nas. Dziedzictwo Mariana Smoluchowskiego. PAUza Akademicka. Tygodnik Polskiej Akademii Umiejętności. 9 (380–381), 4–5 (2017), (in Polish).
  18. Ulam S. Marian Smoluchowski and the theory of probabilities in physics. Am. J. Phys. 25 (7), 475–481 (1957).
  19. Szymanski W. W., Posch H. A. Marian Wilhelm Theofil von Smoluchowski.
  21. Hoborski A. Prof. dr Jan Stock wspomnienie pośmiertne. Przegląd Górniczo-Hutniczy. 27, 454–457 (1925), (in Polish).
  22. Rovenchak A. Department for Experimental Physics, University of Lviv, in 1872–1939: Contributions to biobibliography. J. Phys. Stud. 22 (4), 4002 (2018).
  23. Smoluchowski M. Zarys teoryi kinetycznej ruchów Browna i roztworów mętnych. Rozpr. Wydz. matem.-przyrodn. Ak. Umiejęt. Ser. III 6A, 257–281 (1906), (in Polish).
  24. Smoluchowski M. Essai d'une théorie cinétique du mouvement Brownien et des milieux troubles. Bull. Int. Acad. Sci. Cracovie. Cl. sci. math. nat. 577–602 (1906), (in French).
  25. Bodaszewsky L. J. Rauch und Dampf unter dem Mikroskop. Dinglers Polytechn. J. 239, 324–325 (1881), (in German).
  26. Kozhushko B. V., Shenderovskyj V. A. Zabute v nauci im’ja (Lukash Bodashevskyj --- fizyk i hidromekhanik). Visnyk Nacionalnoho Tekhnichnoho Universytetu “KhPI”. 64, 71–76 (2011), (in Ukrainian).
  27. Wróblewski A. K. Polish physicists and the progress in physics (1870–1920). Techn. Trans. Fund. Sci. 111 (1), 255–273 (2014).
  28. Mehra J. Golden Age Of Theoretical Physics. Vol. 1. World Scientific (2001).
  29. Smoluchowski M. Versuch einer mathematischen Theorie der Koagulationskinetic kolloider Lösungen. Z. Phys. Chem. 92U (1), 129–168 (1917), (in German).
  30. Smoluchowski M. Grundriß der Koagulationskinetik kolloider Lösungen. Kolloid-Zeitschrift. 21, 98–104 (1917), (in German).
  31. Mycielski J. Stanisław Marcin Ulam (1909–1984). Rocz. Pol. Tow. Matem. Ser. II: Wiad. Matem. 29, 21–37 (1990), (in Polish).
  32. Program Politechniki Lwowskiej na rok akademicki 1933/34. Lwów, 1933 (in Polish).
  33. Ponedilok G. V., Rovenchak A. A. To the history of theoretical physics studies at the Lviv Polytechnic. J. Phys. Stud. 21, 1003 (2017).
  34. Bazylevych L., Guran I., Zarichnyi M. Lwów period of S. Ulam’s mathematical creativity. Techn. Trans. Fund. Sci. 2-NP, 33–39 (2015).
  35. Ulam S. Adventures of a Mathematician. University of California Press (1976).
  36. Eckhardt R. Stan Ulam, John von Neumann, and the Monte Carlo Method. In: From Cardinals to Chaos: Reflections on the life and legacy of Stanislaw Ulam. Cambridge, Cambridge University Press (1989). First published in Los Alamos Science Special Issue, 131–141 (1987);
  37. Giesler G. C. MCNP software quality: Then and now. Los Alamos National Laboratory Report LA-UR-00-2532 (2000);
  38. Gass S. I., Assad A. A. Model World: Tales from the Time Line – The Definition of OR and the Origins of Monte Carlo Simulation. Interfaces. 35 (5), 429–435 (2005).
  39. Allen M. P., Tildesley D. J. Computer Simulation of Liquids. New York, Oxford University Press (2002).
  40. Frenkel D., Smit B. Understanding Molecular Simulation: From Algorithms to Applications. 2nd ed. London, Academic Press (2002).
  41. Engel M., Anderson J. A., Glotzer S. C., Isobe M., Bernard E. P., Krauth W. Hard-disk equation of state: First-order liquid-hexatic transition in two dimensions with three simulation methods. Phys. Rev. E. 87, 042134 (2013).
  42. Omelyan I. P., Mryglod I. M., Folk R. Construction of high-order force-gradient algorithms for integration of motion in classical and quantum systems. Phys. Rev. E. 66, 026701 (2002).
  43. Omelyan I. P., Mryglod I. M., Folk R. Symplectic analytically integrable decomposition algorithms: classification, derivation, and application to molecular dynamics, quantum and celestial mechanics simulations. Computer Phys. Commun. 151 (3), 272–314 (2003).
  44. Trokhymchuk A., Alejandre J. Computer simulations of liquid/vapor interface in Lennard–Jones fluids: Some questions and answers. J. Chem. Phys. 111 (18), 8510–8523 (1999).
  45. Simeoni G. G., Bryk T., Gorelli F. A., Krisch M., Ruocco G., Santoro M., Scopigno T. The Widom line as the crossover between liquid-like and gas-like behaviour in supercritical fluids. Nature Phys. 6, 503–507 (2010).
  46. Bryk T., Haymet A. D. J. Ice 1h/water interface of the SPC/E model: Molecular dynamics simulations of the equilibrium basal and prism interfaces. J. Chem. Phys. 117 (22), 10258–10268 (2002).
  47. Wilson M. R., Ilnytskyi J. M., Stimson L. M. Computer simulations of a liquid crystalline dendrimer in liquid crystalline solvents. J. Chem. Phys. 119 (6), 3509–3515 (2003).
  48. Baumketner A., Bernstein S. L., Wyttenbach T., Bitan G., Teplow D. B., Bowers M. T., Shea J. E. Amyloid β-protein monomer structure: A computational and experimental study. Protein Sci. 15 (3), 420–428 (2006).
  49. Smalyukh I., Trokhymchuk A. Planer-Smoluchowski Soft Matter Workshop on Liquid Crystals and Colloidal Dispersions Condens. Matter Phys. 13 (3), 37101 (2010).
Math. Model. Comput. Vol. 5, No. 2, pp. 99-107 (2018)