The effect of additional off-diagonal disorder of interionic interaction on charge-storage in sub-nanometer pores of supramolecular carbon supercapacitors

In this work, we report sub-nanoporous carbon which is synthesized for the first time by means of supramolecular engineering methods for efficient energy storage at the electrode/electrolyte interface. The achieved value of the differential capacitance more than twice exceeds the corresponding value for the known carbon structures. Based on the constructed impedance model and microscopic theory, the physical mechanisms of the investigated processes are suggested.

  1. Gryglewicz G., Machnikowski J., Lorenc-Grabowska E., Lota G., Frackowiak E. Effect of pore size distribution of coal-based activated carbons on double layer capacitance. Electrochimica Acta. 50 (5), 1197–1206 (2005).
  2. Conway B. Electrochemical Supercapacitors. New York, Plenum Publishing (1999).
  3. Abioye A. M., Ani F. N. Recent development in the production of activated carbon electrodes from agricultural waste biomass for supercapacitors: A review. Renewable and Sustainable Energy Reviews. 52, 1282–1293 (2015).
  4. David B. Optimization of power and energy densities in supercapacitors. Journal of Power Sources. 195, 748–3756 (2010).
  5. Gonzalez A., Goikolea E., Barrena J. A., Mysyk R. Review on supercapacitors: Technologies and materials. Renewable and Sustainable Energy Reviews. 58, 1189–2006 (2016).
  6. Zhan C., Lian C., Zhang Yu, Thompson M. W., Xie Yu, Wu J., Kent P. R. C., Cummings P. T., Jiang D., Wesolowski D. J. Computational insights into materials and interfaces for capacitive energy storage. Adv. Sci. 4 (7), 1700059 (2017).
  7. Salanne M., Rotenberg B., Naoi K., Kaneko K., Taberna P.-L., Grey C. P., Dunn B., Simon P. Efficient storage mechanisms for building better supercapacitors. Nature Energy. 1, 1–10 (2016).
  8. Chmiola J., Yushin G., Gogotsi Y., Portet C., Simon P., Taberna P. L. Anomalous Increase in Carbon Capacitance at Pore Sizes Less Than 1 Nanometer. Science. 313, 1760–1763 (2006).
  9. Len J. Supramolecular chemistry. Concepts and perspectives. Novosybirsk, Nauka (1998), (in Russian).
  10. Stid D., Etvud D. Supramolecular chemisty. Moscow, Akademkniga (2007), (in Russian).
  11. Stojnov S. B., Grafov B. M., Savova-Stojnova B., Yelkin V. V. Electrochemical impedance. Moscow, Nauka (1991), (in Russian).
  12. Barsoukov E., Macdonald J. Impedance spectroscopy. Theory, experiment and application. Wiley R. Interscience, Canada (2005).
  13. Kondrat S., Kornyshev A. Superionic state in double-layer capacitors with nanoporous electrodes. Journal of Physics: Condensed Matter. 23, 2–10 (2010).
  14. Skinner B., Chen T., Loth M. S., Shklovskii B.I. Theory of volumetric capacitance of an electric double-layer supercapacitor. Phys. Rev. E. 83, 056102 (2011).
  15. Merlet A., Pґean C., Rotenberg B., Madden P. A., Daffos B., Taberna P.-L., Simon P., Salanne M. Highly confined ions store charge more efficiently in supercapacitors. Nature Communications. 4, 2701 (2013).
  16. Lee A. A., Kondrat S., Kornyshev A. A. Single-File Charge storage in conducting nanopores. Phys. Rev. Lett. 113, 048701 (2014).
  17. Rochester C., Sartor A., Pruessner G., Kornyshev A. A. “One dimensional” double layer. The effect of size asymmetry of cations and anions on charge-storage in ultranarrownanopores -- an Ising model theory. Russian Journal of Electrochemistry. 53 (10), 1165–1170 (2017).
  18. Hu G. Y., O’Connell R. F. Analytical inversion of symmetric tridiagonal matrices. J. Phys: A.: Math. Gen. 29, 1511–1513 (1996).