Modeling small-scale spatially distributed influences on the development of infectious diseases

In this paper, the small-scale spatially distributed influences on the infectious disease development are proposed to be modeled by means of diffuse disturbance of the corresponding degenerate model problems.  We represent the asymptotic expansions of the solutions of the corresponding singularly-disturbed problems with a time-delay that are reduced to a sequence of problems without a time-delay.  The results of numerical experiments that characterize the spatially distributed diffuse influences on the infectious disease development are presented.  The decrease in the maximum concentration level of pathogenic antigens due to their diffuse "redistribution" from the locus of infection into less infected areas of the target organ is illustrated.

  1. Marchuk G. I.  Mathematical models in immunology. Computational methods and experiments.  Moscow, Nauka (1991), (in Russian).
  2. Nowak M. A., May R. M.  Virus dynamics. Mathematical principles of immunology and virology.  New York, Oxford University Press (2000).
  3. Murray J. D.  Mathematical Biology: I. An Introduction.  New York, Springer (2002).
  4. Murray J. D.  Mathematical Biology: II. Spatial Models and Biomedical Applications.  New York, Springer (2003).
  5. Wodarz D.  Killer Cell Dynamics Mathematical and Computational Approaches toImmunology.  New York, Springer (2007).
  6. Romanyukha A. A.  Mathematical models in immunology and epidemiology of infectious diseases.  Moscow, BINOM. Laboratoryia znanyi (2012), (in Russian).
  7. Bomba A. Ya.  Asymptotic method for approximately solving a mass transport problem for flow in a porous medium.  Ukrainian Mathematical Journal. 34 (4), 400–403 (1982).
  8. Bomba A. Ya., Baranovsky S. V., Prisyajnyuk I. M.  Nonlinear singularly perturbed problems of ''convection-diffusion'' type.  Rivne, NUVGP (2008), (in Ukrainian).
  9. Bomba A. Ya., Baranovsky S. V.  Singular spatially distributed diffusion perturbations of one class of dynamic processes.  Visnyk of NUVGP: zbirn. nauk. pr. 3 (87), 54–65 (2019), (in Ukrainian).
  10. El'sgol'ts L. E., Norkin S. B.  Introduction to the Theory and Application of Differential Equations with Deviating Arguments.  Moscow, Nauka (1971), (in Russian).
  11. Bomba A. Ya., Prisyajnyuk I. M., Prisyajnyuk O. V.  An asymptotic method of solution of a class of model singularly perturbed problems of mass transfer processes in heteroporous environments.  Reports of the National Academy of Sciences of Ukraine.  3, 28–34 (2013), (in Ukrainian).
  12. Kostrobij P. P., Grygorchak I. I., Ivaschyshyn F. O., Markovych B. M., Viznovych O., Tokarchuk M. V.  Mathematical modeling of subdiffusion impedance in multilayer nanostructures.  Mathematical Modeling and Computing. 2 (2), 154–159 (2015).
  13. Vlasyuk A., Zhukovskyy V.  Mathematical and computer modeling of intraparticle radionuclides mass transfer in catalytic porous media under isothermal condition.  Mathematical Modeling and Computing. 4 (2), 117–125 (2017).
  14. Petryk M. R., Khimich A., Petryk M. M., Fraissard J.  Experimental and computer simulation studies of dehydration on microporous adsorbent of natural gas used as motor fuel.  Fuel. 239, 1324–1330 (2019).