Microstructure and microhardness of nickel-base heat-resistant alloys obtained by directional and equilibrium crystallization

https://doi.org/10.23939/ujmems2019.03-04.033
Надіслано: Серпень 22, 2019
Переглянуто: Вересень 28, 2019
Прийнято: Грудень 28, 2019

A. Trostianchyn, S. Shvachko, V. Kulyk, E. Pleshakov, Y. Molkov, T. Lenkovskiy, "Microstructure and microhardness of nickel-base heat-resistant alloys obtained by directional and equilibrium crystallization", Ukrainian Journal of Mechanical Engineering and Materials Science, vol. 5, no. 3-4, pp. 33-38, 2019.

1
Lviv Polytechnic National University
2
Lviv Polytechnic National University
3
Національний університет «Львівська політехніка»
4
Lviv Polytechnic National University
5
Karpenko Physico-mechanical Institute of the NAS of Ukraine
6
Karpenko Physico-mechanical Institute of the NAS of Ukraine

In order to determine the safe operational life of the components of gas turbine engines (GTE), introductory tests of nickel-base heat-resistant alloys (NHRA) have been performed. X-ray fluorescence and X-ray diffraction analyzes, optical microscopy and Vickers hardness measurements provided data on the phase-structural state and mechanical properties of the pristine ZhS6K-VI and ZhS32-VI alloys obtained by equilibrium and high-speed directional crystallization, respectively. Almost complete compliance of the investigated materials with the certified alloys in chemical and phase composition has been found. A significant difference in the parameters of the fragments of the microstructure of the investigated alloys, which is naturally consistent with the conditions of equilibrium and high-speed directional crystallizations, was revealed. A slightly lower anisotropy of microhardness (2.8 %), measured in transverse and longitudinal sections, was found in the ZhS6K-VI alloy as compared to the anisotropy (5.1 %) in the ZhS32-VI alloy. The obtained results will be used to test a non-destructive method for determining the safe operational life of gas turbine engine components.

[1] Yu. Molkov, et al., “Experimental determination of critical strain energy density of ductile materials”, Ukrainian Journal of Mechanical Engineering and Materials Science, vol. 5, no. 1, pp. 39–44, 2019. https://doi.org/10.23939/ujmems2019.01.039

[2] Z. A. Duriagina, et al., Splavy z osoblyvymy vlastyvostiamy [Alloys with special properties]. Lviv, Ukraine: Lviv Polytechnic National University Publ., 2007. [in Ukrainian].

[3] S. V. Hajduk, and C. B. Bielikov, Naukovi osnovy proektuvannia lyvarnykh zharomitsnykh nikelevykh splaviv z neobkhidnym kompleksom sluzhbovykh vlastyvostei [Scientific bases of designing of foundry heat-resistant nickel alloys with a necessary complex of service properties]. Zaporizhzhia, Ukraine: Zaporizhzhia Polytechnic National University Publ., 2017. [in Ukrainian].

[4] S. T. Kishkin, Liteinyie zharoprochnyie splavy na nikielievoi osnovie [Nickel-based heat-resistant foundry alloys]. Moscow, Russia: Mashinostroenie Publ., 1987. [in Russian].

[5] R.M. Nazarkin, et al., “Strukturno-fazovyie kharaktieristiki splava ZhS32-VI, poluchienoho mietodami napravlennoi kristallizatsyi, hranulnoi mietallurhii i sieliektivnoho laziernoho splavlenіia” [“Structural and phase characteristics of the ZhS32-VI alloy obtained by methods of directed crystallization, granular metallurgy and selective laser fusion”], Trudy VIAM [Proceedings of VIAM], vol. 50, no. 2, pp. 11–17, 2017. [in Russian]. https://doi.org/10.18577/2307-6046-2017-0-2-2-2

[6] A.V. Zavodov, et al., “Mikrostruktura i fazovyi sostav zharoprochnoho splava ZhS32 poslie sieliektivnoho laziernoho splavlieniia, vakuumnoi tiermicheskoi obrabotki i horiacheho izostaticheskoho pressovaniia” [“Microstructure and phase composition of ZhS32 superalloy after selective laser melting, vacuum heat treatment and hot isostatic pressing”]. Pisma o matierialakh [Letters on Materials], vol. 7 (2), pp. 111–116, 2017. [in Russian]. https://doi.org/10.22226/2410-3535-2017-2-111-116

[7] N. Ye. Kalinina, et al. “Mekhanichieskiie i korrozionnyie svoistva mnohokomponientnykh splavov, modifitsyrovannykh dispersnymi kompozitsyiami” [“Mechanical and corrosion properties of multicomponent alloys, modified by disperse compositions”], Stroitielstvo, matierialoviedieniie, mashynostroieniie [Construction, materials science, mechanical engineering], vol. 104., pp. 146–150, 2018. [in Russian].

[8] N. A. Lysenko, V. V. Klochykhin, and V. V. Naumyk, “Struktura i svoistva pustotelykh otlivok lopatok turbiny iz nikielievykh splavov poslie horiachieho izostatichieskoho prossovaniia [“Structure and properties of hollow castings of turbine blades from nickel alloys after hot isostatic pressing”], Aviatsyonno-kosmycheskaia tekhnika i tekhnolohiia [Aerospace engineering and technology], no. 10 (127), pp. 19–27, 2015. [in Russian].

[9] A. H. Andriienko, S. V. Gayduk, and V. V. Kononov, “Mekhanichieskiie svoistva i tiekhnolohichieskiie osobiennosti poluchieniia detalei HTU s napravliennoi (mono) strukturoi iz zharoprochnoho korrozionnostoikoho nikielievoho splava” [“Mechanical properties and technological procedure features in manufacture of gas turbine parts with directed (mono) crystallization made of corrosion-resistant nickel-base superalloy”], Novi materialy i tekhnolohii v metalurhii ta mashynobuduvanni [New materials and technologies in metallurgy and mechanical engineering], no. 2, pp. 81–86, 2012. [in Russian].

[10] Elvatech. Advanced XRF equipment and solutions, 2019. [Online]. Available: https://elvatech.com/. Accessed on: December 30, 2019.

[11] L. G. Akselrud, Yu. N. Grin, and P. Yu. Zavalij, “CSD-universal program package for single crystal or powder structure data treatment”, in Collected Abstracts of 12th European Crystallographic Meeting, Moscow, Russia, August 20–29, 1989, p. 155.

[12] Available Software for Powder Diffraction Indexing including a Literature Search List, 2019. [Online]. Available: http://www.ccp14.ac.uk/solution/indexing/. Accessed on: December 30, 2019.

[13] J. Rodriguez-Carvajal, “Recent developments of the program FULLPROF, in Ccommission on Powder Diffraction (IUCr)”, Newsletter, vol. 26, pp. 12–19, 2001.

[14] Materialy metalevi. Vyznachennia tverdosti za Vikersom [Metallic materials. Determination of Vickers hardness], DSTU ISO 6507-1:2007, 2010. [in Ukrainian].

[15] V. V. Аzhazha, et al., “Rol teplofizicheskikh uslovii v protsessie formirovaniia struktury pri napravliennoi krystallizatsyi zharoprochnykh splavov na nikielievoi osnovie” [“Role of thermal and physical conditions during shaping structure at a directional crystallization of heat resisting alloys on nickel base”], Voprosy atomnoi nauki i tekhniki [Issues of nuclear science and technology], no. 6, pp. 128–135, 2004. [in Russian].

[16] E. N. Kablov, E. E. Hierasimov, and A. V. Dubrovskii, “Tekhnolohichieskiie aspekty upravleniia strukturoi zharoprochnykh splavov pri napravliennoi kristallizatsyi” [“Technological aspects of control of structure of heat-resistant alloys at the directed crystallization”], Lytieinoie proizvodstvo [Foundry production], no. 4, pp. 11–25, 1994. [in Russian].

[17] V. V. Аzhazha, et al., “Pierspiektivnyie napravlieniia v sovershenstvovanii struktury monokristallichieskykh lopatok hazoturbinnykh dvihatieliei” [“Promising directions in improving the structure of single-crystal blades of gas turbine engines”], Matierialoviedieniie [Materials science], no. 11, pp. 8–19, 2006. [in Russian].