We have performed computer calculations in Maple environment for verification of Gao assumption for finite fields of characteristic 2, 3, 5 and presented correspondent results. If the assumption is true, then it is possible to construct explicitly in these fields in polynomial time elements of high multiplicative order that are used in cryptography (Diffie-Hellman protocol, El-Gamal public key cryptosystem, El-Gamal digital signature).
- Agrawal M., Kayal N., Saxena N. PRIMES is in P // Annals of Mathematics, vol. 160, no. 2, 2004, p. 781–793.
- Ahmadi O., Shparlinski I. E., Voloch J. F.Multiplicative order of Gauss periods // International Journal of Number Theory, vol. 6, no. 4, 2010, p. 877 – 882.
- Conflitti A. On elements of high order in finite fields // in Cryptography and Computational Number Theory, vol. 20 of Progr. Comput. Sci. Appl. Logic, Birkhauser, Basel, 2001, p. 11–14.
- Gao S. Elements of provable high orders in finite fields // Proceeding of American Math. Soc., vol. 127, no. 6, 1999, p. 1615–1623.
- Lidl R., Niederreiter H. Finite Fields. – Cambridge: Cambridge University Press, 1997. – 755 P.
- Mullen G. L., Panario D. Handbook of finite fields. – Boca Raton: CRC Press, 2013. – 1068 P.
- Lambe T. A. Bounds on the Number of Feasible Solutions to a Knapsack Problem // SIAM Journal of Applied Mathematics, vol. 26, no. 2, 1974, p. 302–305.
- Popovych R. Elements of high order in finite fields of the form Fq[x]/Φr(x) // Finite Fields and Their Applications, vol. 18, no. 4, 2012, p. 700–710.
- Popovych R. Elements of high order in finite fields of the form Fq[x]/(xm-a) // Finite Fields and Their Applications, vol. 19, no. 1, 2013, p. 86–92.
- Popovych R. On elements of high order in general finite fields // Algebra and Discrete Mathematics, vol. 18, no. 2, 2014, p.295–300.