High accurate method to calculate a singular integral related to Hankel transform

2022;
: pp. 241–261
https://doi.org/10.23939/mmc2022.02.241
Received: September 17, 2021
Accepted: February 07, 2022

Mathematical Modeling and Computing, Vol. 9, No. 2, pp. 241–261 (2022)

1
LGEMS Laboratory, National School of Applied Sciences, Ibn Zohr University; Department of physics, Moulay Ismail University
2
Research Team MANTA, Department of Mathematics and Computer Sciences, Moulay Ismail University
3
Research Team MANTA, Department of Mathematics and Computer Sciences, Moulay Ismail University
4
Department of Physics, Moulay Ismail University
5
LIMSI–CNRS, Orsay, France
6
Department of Physics, Moulay Ismail University

In this paper we are interested in the approximation of the integral \[I_0(f,\omega)=\int_0^\infty f(t)\,e^{-t}\,J_0(\omega t)\,dt\] for fairly large $\omega$ values.  This singular integral comes from the Hankel transformation of order $0$, $f(x)$ is a function with which the integral is convergent. 

For fairly large values of $\omega$, the classical quadrature methods are not appropriate, on the other side, these methods are applicable for relatively small values of $\omega$.  Moreover, all quadrature methods are reduced to the evaluation of the function to be integrated into the nodes of the subdivision of the integration interval, hence the obligation to evaluate the exponential function and the Bessel function at rather large nodes of the interval $]0,+\infty[$.

The idea is to have the value of $I_0(f,\omega)$ with great precision for large $\omega$ without having to improve the numerical method of calculation of the integrals, just by studying the behavior of the function $I_0(f,\omega)$ and extrapolating it.

We will use two approaches to extrapolation of $I_0(f,\omega)$.  The first one is the Padé approximant of $I_0(f,\omega)$ and the second one is the rational interpolation.

  1. Blake J. R.  A note on the image system for a Stokeslet in a no-slip boundary.  Mathematical Proceedings of the Cambridge Philosophical Society. 70 (2), 303–310 (1971).
  2. Elasmi L., Feuillebois F.  Green function for a Stokes flow near a porous slab.  ZAMM – Journal of Applied Mathematics and Mechanics. 81 (11), 743–752 (2001).
  3. Khabthani S., Sellier A., Elasmi L., Feuillebois F.  Motion of a solid particle in a shear flow along a porous slab.  Journal of Fluid Mechanics. 713, 271–306 (2012).
  4. Debbech A., Elasmi L., Feuillebois F.  The method of fundamental solution for the creeping flow around a sphere close to a membrane.  ZAMM – Journal of Applied Mathematics and Mechanics. 90 (12), 920–928 (2010).
  5. Elasmi L., Feuillebois F.  Integral equation method for creeping flow around a solid body near a porous slab.  The Quarterly Journal of Mechanics and Applied Mathematics. 56 (2), 163–185 (2003).
  6. Assoudi R., Chaoui M., Feuillebois F., Allouche H.  Motion of a spherical particle along a rough wall in a shear flow.  Zeitschrift für angewandte Mathematik und Physik. 69 (5), Article number: 112 (2018).
  7. Chaoui M., Feuillebois F.  Creeping flow around a sphere in a shear flow close to a wall.  The Quarterly Journal of Mechanics and Applied Mathematics. 56 (3), 381–410 (2003). Corrigendum: ibid. 65 (4), 581 (2012).
  8. Abramovitz M., Stegun I. A.  Handbook of Mathematical Functions with Formulas Graphs and Mathematical Tables. A.M.S. (1964).
  9. Feuillebois F.  Numerical calculation of singular integrals related to Hankel transform.  Computers & Mathematics with Applications. 21 (2–3), 87–94 (1991).
  10. Muller J.-M.  Elementary Functions Algorithms and Implementation.  Birkhäuser Basel (2016).
  11. Baker G. A., Graves–Morris P. R.  Padé approximants.  Cambridge University Press (1996).
  12. Werner H., Wuytack L.  On the continuity of the Padé operator.  SIAM Journal on Numerical Analysis. 20 (6), 1273–1280 (1983).
  13. Allouche H., Tazdayte A.  Numerical solution of singular boundary value problems with logarithmic singularities by Padé approximation and collocation methods.  Journal of Computational and Applied Mathematics. 311, 324–341 (2017).
  14. Claessens G.  On the Newton–Padé approximation problem.  Journal of Approximation Theory. 22 (2), 150–160 (1978).