A specific method of coupling FEM and meshless/meshfree methods is presented. This method is based on placing meshfree nodes inside the finite element and as a result improving the overall approximation on that element. Advantages and disadvantages of such approach are explained. It is shown that such approach is a version of a more general one. Numerical experiments are presented and analyzed.
- Huerta A., Belytschko T., Fernández-Méndez S., Rabczuk T., Meshfree methods, Encyclopedia of Computational Mechanics, John Wiley & Sons, Ltd. 1 (10), 279 (2004).
- Huerta A., Fernández-Méndez S., Enrichment and coupling of the finite element and meshless methods. Int. J. Numer. Methods Eng. 48 (11), 1615 (2000).
- Fernández-Méndez S., Diez P., Huerta A. Convergence of finite elements enriched with mesh-less methods. Numer. Math. 96 (1), 4 (2003).
- Fernández-Méndez S., Huerta A. Imposing essential boundary conditions in mesh-free methods Comput. Methods Appl. Mech. Eng. 193 (12–14), 1257 (2004).
- Fernández-Méndez S. Mesh-free methods and finite elements: friend or foe? Universitat Politécnica de Catalunya, 162 p. (2002).
- Fries T. P. A stabilized and coupled meshfree/meshbased method for fluid-structure-interaction problems. Dissertation, In Braunschweiger Schriften zur Mechanik (H. Antes, Ed.), Nr. 59-2005, Braunschweig, 165 p. (2005).
- Fries T. P., Matthies H. G. A stabilized and coupled meshfree/meshbased method for the incompressible Navier-Stokes equations – part II: Coupling Comp. Methods in Appl. Mech. Engrg. 195, 6191 (2006).
- Liu G. R. Meshfree Methods: Moving Beyond the Finite Element Method, Second Edition CRC Press, 792 p. (2009).
- Li S., Liu W. K., Meshfree and particle methods and their applications Applied Mechanics Review 55, 1 (2002).
- Dolbow J., Belytschko T. An Introduction to Programming the Meshless Element Free Galerkin Method. Archives of Computational Methods in Engineering, 5 (3), 207 (1998).
- Belytschko T., Organ D., Krongauz Y. A Coupled Finite Element–Element-free Galerkin Method Comput. Mech. 17, 186 (1995).
- Li S., Liu W. K., Belytschko T. Moving least-squares reproducing kernel method Part I: Methodology and convergence. Comp. Methods Appl. Mech. Engrg. 143 (1–2), 113 (1997).
- Lancaster P., Salkauskas K. Surfaces Generated by Moving Least Squares Methods Math. Comput. 37, 141 (1981).
- Savula Ya. Numerical analysis of problems of mathematical physics by variational methods. Lviv, 221 p. (2004).
- Bekhta M., Savula Ya. Problem of optimal parameter selection for combination of meshfree and finite elements methods. Volyn Mathematical Visnyk. 8 (17), 15 (2011).