Impact of Serialization Format on Inter-Service Latency

2024;
: pp. 89 - 94
1
Lviv Polytechnic National University, Ukraine
2
Edinburgh Napier University, Merchiston Campus

This study provides an evaluation of the impact of various serialization formats on inter-service communication performance, with a focus on serialization speed, space efficiency, and latency in environments integrating middleware, which are characteristics of microservice architectures. Through an empirical analysis of a wide range of serialization formats and comparison to the traditional standards, it highlights that the compactness of serialized payloads is more critical in reducing end-to-end latency than the sheer speed of serialization itself. Despite their high serialization speeds, FlatBuffers and Cap’n Proto underperform in distributed settings, in contrast to the more balanced performance seen with Avro, Thrift, and Protobuf. This study underscores the importance of message size optimization in boosting network efficiency and
throughput.

  1. Marii, B., Zholubak, I., (2022). Features of Development and Analysis of REST Systems. Advances in Cyber-Physical Systems, vol. 7, no. 2, 121–129. DOI: 10.23939/ acps2022.02.121.
  2. Weerasinghe, S., Perera, I., (2024). Optimized Strategy in Cloud-Native Environment for Inter-Service Communica- tion in Microservices. International Journal of Online and Biomedical Engineering, vol. 20, no. 01, 40–57.DOI: 10.3991/ijoe.v20i01.44021.
  3. Proos, D. P., Carlsson, N., (2020). Performance Comparison of Messaging Protocols and Serialization Formats for Digital Twins in IoV. In 2020 IFIP Networking Conference (Net- working), Paris, France, 10–18. [Electronic resource]. – Available at: https://ieeexplore.ieee.org/document/9142787 (Accessed: 03/22/2024).
  4. Buono, V., Petrovic, P., (2021). Enhance Inter-service Communication in Supersonic K-Native REST-based Java Microservice Architectures. URN: https://urn.kb.se/ resolve?urn=urn:nbn:se:hkr:diva-22135
  5. Morschel, L., (2020). dCache – Efficient Message Encoding For Inter-Service Communication in dCache: Evaluation of Existing Serialization Protocols as a Replacement for Java Object Serialization. EPJ Web Conf., vol. 245,  05017. DOI: 10.1051/epjconf/202024505017.
  6. Friesel, D., Spinczyk, O., (2021). Data Serialization Formats for the Internet of Things. In Electronic Communications of the EASST, vol. 20, 1–4. DOI: https://doi.org/10.14279/ tuj.eceasst.80.1134.
  7. Luis, Á., Casares, P., Cuadrado-Gallego, J. J., Patricio, M. A., (2021). PSON: A Serialization Format for IoT Sensor Networks. In Sensors, vol. 21, no. 13, 4559. DOI: 10.3390/ s21134559.
  8. Viotti, J. C., Kinderkhedia, M., (2022). A Survey of JSON- compatible Binary Serialization Specifications. DOI: 10.48550/arXiv.2201.02089.
  9. Kumar, P. K., Agarwal, R., Shivaprasad, R., Sitaram, D., Kalambur, S., (2021). Performance Characterization of Communication Protocols in Microservice Applications. In International Conference on Smart Applications, Communi- cations and Networking (SmartNets), 1–5. DOI: 10.1109/ SmartNets50376.2021.9555425.
  10. Viotti, J. C., Kinderkhedia, M., (2022). Benchmarking JSON BinPack. DOI: 10.48550/ARXIV.2211.12799.
  11. Huang B., Tang Y., (2021). Research on optimization of real-time efficient storage algorithm in data information seri- alization.  PLoS  ONE,  vol.  16,  no.  12,   e0260697. DOI: 10.1371/journal.pone.0260697.
  12. Ahmad, T., Ars, Z. A., Hofstee, H. P., (2022). Benchmarking Apache Arrow Flight - A wire-speed protocol for data trans- fer, querying and microservices. DOI: 10.48550/ arXiv.2204.03032.
  13. Dauda, A. B., Adam, M. S., Mustapha, M. A., Mabu, A. M., and Mustafa S., (2020). “Soap serialization effect on communication nodes and protocols,”DOI: 10.48550/ARXIV.2012.12578.
  14. Evans D., (2020). Energy-Efficient Transaction Serialization for IoT Devices. Journal of Computer Science Research, vol. 2, no. 2, 1–16. DOI: 10.30564/jcsr.v2i2.1620.
  15. Viotti, J. C., Kinderkhedia, M., (2022). “A Benchmark of JSON-compatible Binary Serialization Specifications,” DOI: 10.48550/ARXIV.2201.03051.
  16. Protocol Buffers Version 3 Language Specification. [Electronic resource]. – Available at: https://protobuf. dev/reference/protobuf/proto3-spec/                                                                           (Accessed: 03/22/2024).
  17. Currier, C., (2022). Protocol Buffers. In Mobile Foren- Їsics – The File Format Handbook: Common File For- mats and File Systems Used in Mobile Devices, Springer International Publishing, 223–260.DOI: 10.1007/978-3-030-98467-0_9.
  18. Wang, X., Xie, Z., (2020). The Case For Alternative Web Archival Formats To Expedite The Data-To-Insight Cy- cle. In Proceedings of the ACM/IEEE Joint Conference on Digital Libraries in 2020. In JCDL ’20. New York, NY, USA: Association for Computing Machinery, 177– 186. DOI: 10.1145/3383583.3398542.
  19. Li, T., Shi, H., Lu, X., (2021). HatRPC: hint-accelerated thrift RPC over RDMA. In Proceedings of the Interna- tional Conference for High Performance Computing, Networking, Storage and Analysis, in SC ’21. New York, NY, USA: Association for Computing Machinery, pp. 1– 14. DOI: 10.1145/3458817.3476191.
  20. Sorokin, K., (2023). “Benchmark comparing various data serialization libraries," [Electronic resource]. – Available at: https://github.com/thekvs/cpp-serializers. (Accessed: 03/22/2024).
  21. Hamerski, J. C., Domingues, R. P., Moraes F. G., Amory A., (2018). “Evaluating Serialization for a Publish- Subscribe Based Middleware for MPSoCs," in 25th IEEE International Conference on Electronics, Circuits, and Systems  (ICECS),  Bordeaux,   France,   pp. 773–776, DOI: 10.1109/ICECS.2018.8618003.
  22. Peltenburg, J., Hadnagy, Á., Brobbel, M., Morrow, R., Al-Ars Z., (2021). Tens of gigabytes per second JSON- to-Arrow conversion with FPGA accelerators. In 2021 ICFPT, 1–9. DOI: 10.1109/ICFPT52863.2021.9609833.
  23. Maltsev, E., Muliarevych, O., (2024). Beyond JSON: Evaluating Serialization Formats for Space-Efficient Communication. Advances in Cyber-Physical Systems, vol. 9, no. 1, 9-15. DOI: 10.23939/acps2024.01.009.
  24. Kniazhyk, T., Muliarevych O., (2023). Cloud Computing With Resource Allocation Based on Ant Colony Optimi- zation. Advances in Cyber-Physical Systems, vol. 8, no. 2, 104–110. DOI: 10.23939/acps2023.02.104.