Simulating Urban Futures: A Digital Twin Framework for Proactive Mobility Management Based on Hybrid Spatio-Temporal Graph Neural Network

2025;
: pp. 1199–1210
Received: August 29, 2025
Revised: November 12, 2025
Accepted: November 17, 2025

Matseliukh Y., Lytvyn V., Bublyk M.  Simulating Urban Futures: A Digital Twin Framework for Proactive Mobility Management Based on Hybrid Spatio-Temporal Graph Neural Network.  Mathematical Modeling and Computing. Vol. 12, No. 4, pp. 1199–1210 (2025) 

1
Lviv Polytechnic National University
2
Lviv Polytechnic National University
3
Lviv Polytechnic National University

The integration of transportation and urban planning is a key challenge for contemporary megacities.  A significant problem is the absence of tools capable of quantitatively assessing the future impact of urban development on mobility patterns.  For proactive urban mobility management, a framework of a comprehensive Digital Twin (DT) structure is proposed, based on the methodology of a multilayered, dynamic digital representation of the city's public transport system, relying exclusively on open data sources such as GTFS, OpenStreetMap, and OpenWeather.  To this end, a novel Hybrid Spatio-Temporal Graph Neural Network (HST-GNN) has been developed, trained to forecast passenger demand at the granular level of route segments.  The developed HST-GNN integrates Graph Attention Network (GATv2) to capture complex spatial dependencies and Long Short-Term Memory (LSTM) networks to model temporal dynamics.  A key innovation of the developed DT is its ability to forecast passenger demand at a granular, edge-centric level (journeys between stops), rather than at the traditional node level.  The high accuracy of the model was empirically validated on a test dataset ($\mathrm{MAE}=0.0018$ and $\mathrm{RMSE}=0.0061$), confirming its applicability as a simulation platform.  The proposed data-driven DT serves not merely as a monitoring tool but as a powerful modeling platform, transforming it into an active instrument of strategic planning for proactive urban mobility management.

  1. El Saddik A., Laamarti F., Alja'Afreh M.  The Potential of Digital Twins.  IEEE Instrumentation & Measurement Magazine.  24 (3), 36–41 (2021).
  2. Nassereddine H., Khoshkenar A.  Smart cities: digital transformation for sustainable urban development.  Digital Transformation in the Construction Industry.  389–415 (2025).
  3. Alvi M., Dutta H., Minerva R., et al.  Global perspectives on digital twin smart cities: Innovations, challenges, and pathways to a sustainable urban future.  Sustainable Cities and Society.  126, 106356 (2025).
  4. Shahat E., Hyun C. T., Yeom C.  City Digital Twin Potentials: A Review and Research Agenda.  Sustainability.  13 (6), 3386 (2021).
  5. Jafari M., Kavousi-Fard A., Chen T., et al.  A Review on Digital Twin Technology in Smart Grid, Transportation System and Smart City: Challenges and Future. IEEE Access.  11, 17471–17484 (2023).
  6. Mihai S., Yaqoob M., Hung D. V., et al.  Digital Twins: A Survey on Enabling Technologies, Challenges, Trends and Future Prospects.  IEEE Communications Surveys & Tutorials.  24 (4), 2255–2291 (2022).
  7. Deng T., Zhang K., Shen Z.-J.  A systematic review of a digital twin city: A new pattern of urban governance toward smart cities.  Journal of Management Science and Engineering.  6 (2), 125–134 (2021).
  8. Aghaabbasi M., Sabri S.  Potentials of digital twin system for analyzing travel behavior decisions.  Travel Behaviour and Society.  38, 100902 (2024).
  9. Adade D., de Vries W. T.  A systematic review of digital twins' potential for citizen participation and influence in land use agenda–setting.  Discover Sustainability.  6 (1), 354 (2025).
  10. Huzzat A., Anpalagan A., Khwaja A. S., et al.  A comprehensive review of Digital Twin technologies in smart cities.  Digital Engineering.  4, 100040 (2025).
  11. Chen H., Shao H., Deng X., et al.  Comprehensive Survey of the Landscape of Digital Twin Technologies and Their Diverse Applications.  Computer Modeling in Engineering & Sciences.  138 (1), 125–165 (2023).
  12. Mohanraj R., Vaishnavi B. K.  Data enabling technology in digital twin and its frameworks in different industrial applications.  Journal of Industrial Information Integration.  44, 100793 (2025).
  13. Mazzetto S.  A Review of Urban Digital Twins Integration, Challenges, and Future Directions in Smart City Development.  Sustainability.  16 (19), 8337 (2024).
  14. Lohman W., Cornelissen H., Borst J., et al.  Building digital twins of cities using the Inter Model Broker framework.  Future Generation Computer Systems.  148, 501–513 (2023).
  15. Lv Z., Chen D., Feng H., et al.  Computational Intelligence in Security of Digital Twins Big Graphic Data in Cyber-physical Systems of Smart Cities.  ACM Transactions on Management Information Systems.  13 (4), 39 (2022).
  16. Bhatia M., Kumar R.  Digital Twin and sustainability: A data-driven scientometric exploration.  Internet of Things.  32, 101652 (2025).
  17. Amin U., Kim D., Ahmed F., et al.  Digital twins for smart asset management in the energy industry: State-of-the-art.  Expert Systems with Applications.  289, 128358 (2025).
  18. Tiwari D., Bhatele K. R., Jha A., et al.  Electrical digital twins–enabled smart grid.  Digital Twins for Smart Cities and Villages.  489–512 (2024).
  19. Lu Q., Jiang H., Chen S., et al.  Applications of Digital Twin System in a Smart City System with Multi-Energy.  2021 IEEE 1st International Conference on Digital Twins and Parallel Intelligence (DTPI).  58–61 (2021).
  20. Hosseini M. A., Roozbahani M. H., Sayyah A.  AI-driven digital twin architecture for urban bus fleet life-cycle cost analysis in a metaverse environment.  Sustainable Cities and Society.  130, 106611 (2025).
  21. Santos R., Ochoa J. M., Ochoa S. F., et al.  Smart cities with digital twin systems for disaster management.  Digital Twin and Blockchain for Sensor Networks in Smart Cities.  481–496 (2024).
  22. Malini A., Rajasekaran U., Sriram G., et al.  Industry 4.0: Survey of digital twin in smart manufacturing and smart cities.  Digital Twin for Smart Manufacturing.  89–110 (2022).
  23. Tyagi A. K., Richa, Tiwari S., Kumari S.  Digital twin technology for smart wireless sensor networks.  Human-Centric Integration of 6G-Enabled Technologies for Modern Society.  385–406 (2025).
  24. Tsvetkova A., Wahlstrцm I., Edelman K., et al.  Smart port city: Digital interfaces for enhancing RoPax port and city co-existence.  Cities.  161, 105936 (2025).
  25. Rajora R., Rajora A., Sharma B., et al.  Unveiling the Synergy: IoT and Digital Twins in Transforming Industries.  2023 3rd International Conference on Smart Generation Computing, Communication and Networking (SMART GENCON). 1–5 (2023).
  26. Niaz A., Khan S., Niaz F., et al.  Smart City IoT Application for Road Infrastructure Safety and Monitoring by Using Digital Twin.  2022 International Conference on IT and Industrial Technologies (ICIT).  1–6 (2022).
  27. Zhao X., He D., Fang Z., et al.  Digital twin-enhanced self-powered sensing anomaly detection system for intelligent rail transportation.  Nano Energy.  144, 111338 (2025).
  28. Samak T., Samak C., Kandhasamy S, et al.  AutoDRIVE: A Comprehensive, Flexible and Integrated Digital Twin Ecosystem for Autonomous Driving Research & Education.  Robotics.  12 (3), 77 (2023).
  29. Adarbah H. Y., Sookhak M., Atiquzzaman M.  A Digital Twin Environment for 5G Vehicle-to-Everything: Architecture and Open Issues.  PE-WASUN '23: Proceedings of the Int'l ACM Symposium on Performance Evaluation of Wireless Ad Hoc, Sensor, & Ubiquitous Networks. 115–122 (2023).
  30. Sutani R., Ramadhan F., Hidayat F., et al.  Study Case of Smart City: The Usage of Digital Twin in Transportation System.  2022 International Conference on Information Technology Systems and Innovation (ICITSI). 113–117 (2022).
  31. Kumar S. A. P., Madhumathi R., Chelliah P. R., et al.  A novel digital twin-centric approach for driver intention prediction and traffic congestion avoidance.  Journal of Reliable Intelligent Environments.  4 (3), 199–209 (2018).
  32. Vashishth T. K., Sharma V., Sharma K. K., et al.  Digital twins solutions for smart logistics and transportation.  Digital Twins for Smart Cities and Villages.  353–376 (2025).
  33. Matseliukh Y., Vysotska V., Bublyk M., et al.  Network modeling of resource consumption intensities in human capital management in digital business enterprises by the critical path method.  CEUR Workshop Proceedings.  2851, 366–380 (2021).
  34. Vysotska V., Bublyk M., Vysotsky A., et al.  Methods and Tools for Web Resources Processing in E-Commercial Content Systems.  2020 IEEE 15th International Conference on Computer Sciences and Information Technologies (CSIT).  114–118 (2020).
  35. Li X., Liu H., Wang W., et al.  Big data analysis of the Internet of Things in the digital twins of smart city based on deep learning.  Future Generation Computer Systems.  128, 167–177 (2022).
  36. Matseliukh Y., Bublyk M., Vysotska V.  Development of intelligent system for visual passenger flows simulation of public transport in smart city based on neural network.  CEUR Workshop Proceedings.  2870, 1087–1138 (2021).
  37. Bublyk M., Matseliukh Y.  Small-batteries utilization analysis based on mathematical statistics methods in challenges of circular economy.  CEUR Workshop Proceedings.  2870, 1594–1603 (2021).
  38. Fornalchyk Y., Koda E., Kernytskyy I., et al.  Choice of the rational regimes of traffic light control for traffic and pedestrian flows.  Scientific Review – Engineering and Environmental Sciences.  30 (1), 38–50 (2021).
  39. Boikiv M., Postranskyy T., Afonin M.  Establishing patterns of change in the efficiency of regulated intersection operation considering the permitted movement directions.  Eastern-European Journal of Enterprise Technologies.  4 (3), 17–26 (2022).
  40. Matseliukh Y., Bublyk M., Bosak A., et al.  The role of public transport network optimization in reducing carbon emissions.  CEUR Workshop Proceedings.  3723, 340–364 (2024).
  41. Boreiko O., Teslyuk V.  Structural model of passenger counting and public transport tracking system of smart city.  2016 XII International Conference on Perspective Technologies and Methods in MEMS Design (MEMSTECH).  124–126 (2016).
  42. Podlesna L., Bublyk M., Grybyk I., et al.  Optimization model of the buses number on the route based on queuing theory in a Smart City.  CEUR Workshop Proceedings.  2631, 502–515 (2020).
  43. Katrenko A., Krislata I., Veres O., et al.  Development of traffic flows and smart parking system for smart city.  CEUR Workshop Proceedings.  2604, 730–745 (2020).
  44. Postranskyy T., Afonin M., Boikiv M., et al.  Identifying patterns of change in traffic flows' parameters depending on the organization of public transport movement.  Eastern-European Journal of Enterprise Technologies.  5 (3), 72–81 (2024).
  45. Fornalchyk Y., Koda E., Kernytskyy I., et al.  The impact of vehicle traffic volume on pedestrian behavior at unsignalized crosswalks.  Roads and Bridges – Drogi i Mosty.  22 (2), 201–219 (2023).
  46. Kiriyakere A., Nayyar A.  Redefining mobility: The convergence of autonomy, technology, and connected vehicles in smart cities.  Digital Twins for Smart Cities and Villages.  189–204 (2024).
  47. Kobayashi T., Hata H., Fukae K., et al.  Digital Twin Configuration Method for Public Services by Citizens.  2023 IEEE International Conference on Consumer Electronics (ICCE).  1–3 (2023).
  48. Kumar S. S., Bale A. S., Matapati P. M., et al.  Conceptual Study of Artificial Intelligence in Smart Cities with Industry 4.0.  2021 International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE).  575–577 (2021).
  49. Chukhray N., Shakhovska N., Mrykhina M., et al.  Consumer aspects in assessing the suitability of technologies for the transfer.  2019 IEEE 14th International Conference on Computer Sciences and Information Technologies (CSIT).  142–147 (2019).
  50. Opendata GTFS realtime vehicle positions (2025).  https://data.gov.ua/dataset/lviv-public-transport-gtfs-real-time.
  51. OpenStreetMap (2025).  https://www.openstreetmap.org/.
  52. OpenWeather (2025).  https://openweathermap.org/.
  53. Bublyk M., Lytvyn V., Vysotska V., et al.  The decision tree usage for the results analysis of the psychophysiological testing.  CEUR Workshop Proceedings.  2753, 458–472 (2020).
  54. Fornalchyk Y., Vikovych I., Royko Y., et al.  Improvement of methods for assessing the effectiveness of dedicated lanes for public transport.  Eastern-European Journal of Enterprise Technologies.  1 (3), 29–37 (2021).