NECTAR-PRODUCING PLANTS AND CROP ROTATION: IMPACTS ON POLLINATORS AND YIELD IN HADYACH UTC, UKRAINE

1
Municipal Institution of Higher Education “Vinnytsia Academy of Continuing Education”
2
State Scientific Institution "Institute of Ecological Restoration and Development of Ukraine"
3
Vinnytsia National Agrarian University
4
4Yuriy Fedkovych Chernivtsi National University
5
Faculty of Science and Technology, Centre for Functional Ecology, Department of Life Sciences, University of Coimbra; Institute of Agroecology and Environmental Management

This study examined the composition, phenology, and ecological significance of nectar-producing flora in the agricultural landscapes of the Hadyach Urban Territorial Community (UTC), Poltava region, Ukraine. A total of 78 species, including native trees, ruderal herbs, meadow forbs, and cultivated crops, provided continuous nectar and pollen availability for honey bees (Apis mellifera) and wild pollinators from early spring to late autumn. Key species such as Tilia cordata, Robinia pseudoacacia, Helianthus annuus, and Phacelia tanacetifolia were identified as major contributors across different seasons. Field experiments demonstrated that the choice of preceding crop strongly influenced flowering phenology, floral density, nectar sugar content, pollinator visitation, and seed yield of Fagopyrum esculentum and H. annuus. Leguminous and nectariferous predecessors, including Melilotus alba, Phacelia tanacetifolia, and Glycine max, enhanced flowering duration, increased flower density by 5–49%, raised nectar sugar concentration by 41–136%, and improved seed yield by 17–46%. Current crop rotations, dominated by non-nectar-producing species, occupy only 18–20% of arable land, limiting temporal continuity of nectar supply. Expanding the share of nectariferous crops to 40–60% of cultivated area is recommended to stabilize nectar flows, support pollinator health, and enhance agroecological sustainability. Strategic integration of high-value nectar plants and perennial legumes into crop rotations can fill seasonal flowering gaps, improve soil fertility, and strengthen the resilience of agroecosystems.

1. Ammann, L., Bosem-Baillod, A., Herzog, F., Frey, D., Entling, M. H., & Albrecht, M. (2024). Spatio-temporal complementarity of floral resources sustains wild bee pollinators in agricultural landscapes. Agriculture, Ecosystems & Environment, 359, 108754. doi: https://doi.org/10.1016/j.agee.2023.108754

2. Bencharki, Y., Michez, D., Smaili, M. C., Ihsane, O., Aw-Hassan, A., Ssymank, A., Rasmont, P., & Christmann, S. (2025). Beyond biodiversity: Does “Farming with Alternative Pollinators” also boost farmers’ income in wheat fields? A case study in Morocco. Frontiers in Ecology and Evolution, 13, 1551190. doi: https://doi.org/10.3389/fevo.2025.1551190

3. Costanza, R., d’Arge, R., de Groot, R., Farber, S., Grasso, M., Hannon, B., Limburg, K., Naeem, S., O’Neill, R. V., Paruelo, J., Raskin, R. G., Sutton, P., & Van den Belt, M. (1997). The value of the world’s ecosystem services and natural capital. Nature, 387, 253–260. doi: https://doi.org/10.1038/387253a0

4. Dainese, M., Martin, E. A., Aizen, M. A., Albrecht, M., Bartomeus, I., Bommarco, R., … & Steffan-Dewenter, I. (2019). A global synthesis reveals biodiversity-mediated benefits for crop production. Science Advances, 5(10), eaax0121. doi: https://doi.org/10.1126/sciadv.aax0121

5. de Groot, R. S., Alkemade, R., Braat, L., Hein, L., & Willemen, L. (2010). Challenges in integrating the concept of ecosystem services and values in landscape planning. Ecological Complexity, 7(3), 260–272. doi: https://doi.org/10.1016/j.ecocom.2009.10.006

6. Díaz, S., Pascual, U., Stenseke, M., Martín-López, B., Watson, R. T., … & Shirayama, Y. (2018). Assessing nature's contributions to people. Science, 359(6373), 270–272. doi: https://doi.org/10.1126/science.aap8826

7. Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES). (2016). The assessment report on pollinators, pollination and food production. IPBES Secretariat. doi: https://doi.org/10.5281/zenodo.3402856

8. European Commission. (2022). Pollinators, cover crops and sustainable farming. Retrieved from https://ec.europa.eu/environment/nature/pollinators

9. Fischer, L. K., Eichfeld, J., Kowarik, I., & Buchholz, S. (2020). Disentangling urban habitat and matrix effects on wild bee species. PeerJ, 8, e9272. doi: https://doi.org/10.7717/peerj.9272

10. Gaivão, I., Santos, R. A., Morozova, T. V., & Tkach, V. V. (2025). Biological and behavioural effects of Bisphenol A (BPA) exposure: An in vivo study in Drosophila melanogaster. Applied Sciences, 15(10), 5588. doi: https://doi.org/10.3390/app15105588

11. Garibaldi, L. A., Steffan-Dewenter, I., Winfree, R., Aizen, M. A., Bommarco, R., Cunningham, S. A., & Klein, A. M. (2013). Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science, 339(6127), 1608–1611. doi: https://doi.org/10.1126/science.1230200

12. Gordeyeva, Y., Shelia, V., Shestakova, N., Amantayev, B., Kipshakbayeva, G., Shvidchenko, V., & Hoogenboom, G. (2023). Sunflower yield under various agricultural practices. Agronomy, 14(1), 36. doi: https://doi.org/10.3390/agronomy14010036

13. Grass, I., Albrecht, M., Jauker, F., Diekötter, T., Warzecha, D., et al. (2023). Landscape complexity and pollination services: Global synthesis. Nature Communications, 14, 1059. doi: https://doi.org/10.1038/s41467-023-01737-3

14. Hil-Mykhailivska, I. V., & Kozyr, M. P. (2020). Cover crops as a tool for sustainable agriculture. Visnyk of Agrarian Science, (3), 42–48.

15. Husiev, V.  M., & Humeniuk, Y. P. (2023). Agronomic practices of melliferous crops. Visnyk of Agrarian Science, 101(3), 74–81.

16. lina, V., & Ilina, A. (2024). The agricultural sector of Ukraine under martial law. Journal of Environmental Problems, 9(3), 117–122. doi: https://doi.org/10.23939/ep2024.03.117

17. Katumo, D. M., Liang, H., Ochola, A. Chr., Lv, M., Wang, Q.-F., & Yang, Ch.-F. (2022). Pollinator diversity benefits ecosystems and human welfare. Plant Diversity, 44(5), 429–435. doi: https://doi.org/10.1016/j.pld.2022.01.005

18. Klein, A. M., Vaissière, B. E., Cane, J. H., Steffan-Dewenter, I., Cunningham, S. A., Kremen, C., & Tscharntke, T. (2007). Importance of pollinators for world crops. Proceedings of the Royal Society B, 274(1608), 303–313. doi: https://doi.org/10.1098/rspb.2006.3721

19. Kremen, C., & Miles, A. (2012). Ecosystem services in diversified vs. conventional farming systems. Ecology and Society, 17(4), 40. doi: https://doi.org/10.5751/ES-05035-170440

20. Lamy, T., Fontana, S., Gaüzère, P., et al. (2022). Landscape simplification constrains insect food webs. Nature Communications, 13, 3332. doi: https://doi.org/10.1038/s41467-022-30900-7

21. Le Féon, V., Schermann-Legionnet, A., Delettre, Y., Aviron, S., Billeter, R., Bugter, R., Hendrickx, F., & Burel, F. (2013). Agriculture intensification and wild bee communities. Agriculture, Ecosystems & Environment, 137(1–2), 143–150. doi: https://doi.org/10.1016/j.agee.2010.01.015

22. Millennium Ecosystem Assessment. (2005). Ecosystems and human well-being: Synthesis. Island Press

23. Molla, A., Charvalas, G., Dereka, M., & Skoufogianni, E. (2022). Effect of tillage practices in sunflower cultivation. Plants, 11, 3500. doi: https://doi.org/10.20944/PREPRINTS202211.0339.V1

24. Napflin, K., Holzschuh, A., & Tscharntke, T. (2021). Legume-rich flower strips enhance pollination. Agriculture, Ecosystems & Environment, 319, 107560. doi: https://doi.org/10.1016/j.agee.2021.107560

25. Potts, S. G., Biesmeijer, J. C., Kremen, C., Neumann, P., Schweiger, O., & Kunin, W. E. (2010). Global pollinator declines. Trends in Ecology & Evolution, 25(6), 345–353. doi: https://doi.org/10.1016/j.tree.2010.01.007

26. Rader, R., Cunningham, S. A., Howlett, B. G., & Inouye, D. W. (2020). Non-bee insects as pollinators. Annual Review of Entomology, 65, 391–407. doi: https://doi.org/10.1146/annurev-ento-011019-025055

27. Rahimi, E., Barghjelveh, S., & Dong, P. (2021a). Estimating landscape structure effects on pollination. Ecological Processes, 10, 59. doi: https://doi.org/10.1186/s13717-021-00331-3

28. Rahimi, E., Barghjelveh, S., & Dong, P. (2021b). Using the Lonsdorf model for estimating habitat fragmentation. Ecological Processes, 10, 22. doi: https://doi.org/10.1186/s13717-021-00291-8

29. Riedinger, V., Mitesser, O., Hovestadt, T., Steffan-Dewenter, I., & Holzschuh, A. (2018). Annual dynamics of wild bee densities. Ecology and Evolution, 8(14), 7051–7061. doi: https://doi.org/10.1002/ece3.4221

30. Rudenko, S. S., Morozova, T. V., & Kostyshyn, S. S. (2002). Micronuclear index of somatic cells in the population of Chernivtsi region and its ecological conditionality. Tsitologiia i Genetika, 36(4), 23–29.

31. Shulha, V. M. (2021). Bioagrotechnical aspects of introducing entomophilous crops. Scientific Works of the P. I. Prokopovych Institute of Beekeeping, 24(1), 58–66.

32. Snapp, S. S., & Swinton, S. M. (2020). Cover crops improve biodiversity and ecosystem services. Agricultural Systems, 180, 102763. doi: https://doi.org/10.1016/j.agsy.2020.102763

33. Sukhdev, P., Wittmer, H., Schröter-Schlaack, C., Nesshöver, C., Bishop, J., ten Brink, P., … & Simmons, B. (2010). The economics of ecosystems and biodiversity. UNEP.

34. TEEB. (2010). The Economics of Ecosystems and Biodiversity: Ecological and Economic Foundations. Earthscan

35. Tkach, V., Morozova, T., Ferrão da Paiva Martins, J. I., O´Neill de Mascarenhas Gaivão, I., Ivanushko, Y., Turkmenoglu, M., & Yagodynets, P. (2025). Electroanalytical determination of ACCase-inhibiting herbicides. Orbital, 17(3), 271–275. doi: https://doi.org/10.17807/orbital.v17i3.22023

36. Wang, H., Wang, C., Fan, G., Fu, C., Huang, Y., Liu, X., Wang, S., & Wang, K. (2024). Effects of sowing dates on biomass allocation in buckwheat. Frontiers in Plant Science, 15, 1399155. doi: https://doi.org/10.3389/fpls.2024.1399155

37. White, C. M., Ducey, T. F., & Moore, J. T. (2021). Cover crops in agroecosystems. Agronomy Journal, 113(1), 389–403. doi: https://doi.org/10.1002/agj2.20495

38 Wizenberg, K. R., Nickley, K. B., Girard, J., Bruns, M. E., et al. (2023). Pollen foraging mediates exposure to stressor syndromes in honey bees. Nature Communications, 14, 3871. doi: https://doi.org/10.1038/s41467-023-39618-5

39. Zhang, H., Wang, L., & Wang, X. (2019). Effects of legume rotation on soil nutrients and yield. Agronomy, 9(7), 408. doi: https://doi.org/10.3390/agronomy9070408