QUANTUM-CHEMICAL MODELING OF THE CHEMISTRY PROCESS OF THE MERCURY SULFIDE AND MERCURY SELENIDE FILMS SYNTHESIS

2019;
: 48-54
1
Lviv Polytechnic National University
2
Lviv Polytechnic National University
3
Lviv Polytechnic National University
4
Lviv Polytechnic National University
5
Lviv Polytechnic National University

The HgS and HgSe films were obtained by chemical deposition technique from an aqueous solution of mercury(II) salt, complexing and chalcogenizing agents. For the obtaining of Hg(II) complexes during the HgS films synthesis thiourea was used, and during the HgSe films synthesis – potassium iodide, potassium rhodanide and sodium thiosulfate. By the X-ray phase analysis was confirmed the formation of desired compounds, as well as the formation of Hg3I2Se2 ternary compound in the case of potassium iodide use during the synthesis of HgSe films. The main factors that affect on the metal sulfides films formation during their chemical synthesis from aqueous solution were described. On the basis of literature data analysis are proposed the hypothesis about the formation of intermediates, reactive complexes, associates, clusters, structures with colloidal nature which are structural links in the process of mercury chalcogenides film synthesis due to co-operative and fluctuation phenomenas in the working solution. The quantum-chemical modeling of synthesis chemistry of HgS films with the use of thiourea and HgSe films with the use of potassium iodide, potassium rhodanide and sodium thiosulfate was carried out on the basis of the proposed hypothesis. The comparison of HgS and HgSe synthesis processes with proposed complexing agents based on the calculated energy diagrams of the modeled stages of synthesis process by PM6 and PM7 semi-empirical methods in MOPAC2012 program package has been made. It was found that the HgS films synthesis with thiourea should be carried out at elevated temperatures, as a result of the smaller system energy change (ΔE = 119 kJ/mol) compared to ΔЕ for the HgSe films synthesis (ΔЕ = 450-550 kJ/mol). A larger value of a system energy change for Hg3I2Se2 synthesis (ΔE = 550 kJ/mol) as compared to HgSe films deposition (ΔЕ = 438 kJ/mol) with the potassium iodide use as a complexing agent, indicates the possibility of both products forming, which has been confirmed experimentally. A similar nature of the system energy changes and the proximity of ΔЕ values of the modeling stages of HgSe films synthesis with the use of different complexing agents (∆Е = 430-550 kJ/mol) pointing out the similarity of their synthesis chemistry.

 

1. Thiel, W. (2014). Semiempirical quantum-chemical methods. WIREs Computational Molecular Science, 4(2), 145-157. doi:10.1002/wcms.1161
https://doi.org/10.1002/wcms.1161
2. Марков, В., Маскаева, Л., & Иванов, П. (2006). Гидрохимическое осаждение пленок сульфидов металлов: моделирование и експеримент. Ека-теринбург: УрО РАН.
3. Берг, Л., Мещенко, К., & Богомолов, Ю. (1970). Выбор оптимальных условий осаждения пленок суль-фи¬да свинца. Неорганические материалы, 6(7), 1337-1338.
4. Han, J., Fu, G., Krishnakumar, V., Liao, C., Jaegermann, W., & Besland, M. (2013). Preparation and characterization of ZnS/CdS bi-layer for CdTe solar cell application. Journal of Physics and Chemistry of Solids, 74(12), 1879-1883. doi:10.1016/j.jpcs.2013.08.004
https://doi.org/10.1016/j.jpcs.2013.08.004
5. Марков, В, & Маскаева, Л. (2005). Расчет условий образования твердой фазы халькогенидов металлов при гидрохимическом осаждении. Екате-ринбург: ГОУ ВПО УГТУ−УПИ.
6. Jalilehvand, F., Amini, Z., & Parmar, K. (2012). Cadmium(II) Complex Formation with Selenourea and Thiourea in Solution: An XAS and 113Cd NMR Study. Inorganic Chemistry, 51(20), 10619-10630. doi:10.1021/ic300852t
https://doi.org/10.1021/ic300852t
7. Созанський, М., Чайківська, Р., Стаднік, В., Шаповал, П., & Ятчишин, Й. (2017). Вплив pH се-редовища на властивості гідрохімічно синтезованих плівок гідрарґерум сульфіду (HgS). Вісник Національ-ного університету "Львівська політехніка". Серія: Хі-мія, технологія речовин та їх застосування, 868, 24-30.
8. Sozanskyi, M., Stadnik, V., Shaykivska, R., Shapoval, P., Yatchyshyn, Y., & Vasylechko, L. (2018). The effect of different complexing agents on the properties of mercury selenide films deposited from aqueous solutions. Voprosy Khimii I Khimicheskoi Tekhnologii, 119(4), 69-76.
9. Kraus, W., & Nolze, G. (1996). POWDER CELL - a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. Journal of Applied Crystallography, 29(3), 301-303. doi:10.1107/s0021889895014920
https://doi.org/10.1107/S0021889895014920
10. Bochkarev, V., Soroka, L., Klimova, T., & Velikorechina, L. (2015). Modeling of Condensation Reaction of Aniline to Diphenylamine by PM7 Method. Procedia Chemistry, 15, 320-325. doi:10.1016/j.proche.2015.10.051
https://doi.org/10.1016/j.proche.2015.10.051
11. Somekawa, K. (2014). Molecular Simulation of Potential Energies, Steric Changes and Substituent Effects in Photochromic Cyclization/Cycloreversion of Three Kinds of Dithienylethenes by MOPAC-PM6 Method. Journal of Computer Chemistry, Japan, 13(4), 233-241. doi:10.2477/jccj.2014-0013
https://doi.org/10.2477/jccj.2014-0013
12. Stewart, J. (2012). MOPAC2012 Home Page. Retrieved from http://openmopac.net/MOPAC2012.html
13. Senda, N. (2018). Winmostar - Structure modeler and visualizer for free Chemistry simulations. Retrieved from https://winmostar.com/