
COMPUTATIONAL PROBLEMS OF ELECTRICAL ENGINEERING 
Vol. 5, No. 1, 2015 

ANALYSIS OF POSITIVITY AND STABILITY OF DISCRETE-TIME  
AND CONTINUOUS-TIME NONLINEAR SYSTEMS 

Tadeusz Kaczorek 
Białystok University of Technology, Białystok, Poland 

kaczorek@isep.pw.edu.pl 

© Kaczorek T., 2015 

Abstract: The positivity and asymptotic stability of 
discrete-time and continuous-time nonlinear systems are 
addressed. Sufficient conditions for the positivity and 
asymptotic stability of the nonlinear systems are 
established. The proposed stability tests are based on an 
extension of the Lyapunov method to the positive 
nonlinear systems. The effectiveness of the tests are 
demonstrated on examples. 
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1. Introduction 
A dynamical system is called positive if its 

trajectory starting from any nonnegative-initial-condition 
state remains forever in the positive orthant for all 
nonnegative inputs. An overview of state of the art in the 
positive system theory was given in monographs [8, 9] 
and in papers [15–18]. Systems having positive behavior 
can be found in engineering, economics, social sciences, 
biology and medicine, etc. 

The Laypunov, Bohl and Perron exponents and 
stability of time-varying discrete-time linear systems 
were comprehensively investigated [1–7]. Furthermore, 
positive standard and descriptor systems and their 
stability were also analyzed [9, 15–19]. Positive linear 
systems of different fractional orders [16, 20] and de-
scriptor discrete-time linear systems [17] were addressed 
by the author in previous publications. Descriptor 
positive discrete-time and continuous-time nonlinear 
systems [10, 13] were likewise analyzed as well as the 
positivity and linearization of nonlinear discrete-time 
systems by state-feedbacks were investigated [15]. The 
problem of minimum energy control of positive linear 
systems was adequately addressed [11, 12, 14]. The 
stability and robust stabilization of discrete-time 
switched systems were analyzed [21, 22]. 

In this paper, the positivity and asymptotic stability 
of discrete-time and continuous-time nonlinear systems 
will be investigated.  

The paper is organized as follows. In the section 2, 
the definitions and theorems concerning the positivity 
and stability of positive discrete-time and continuous-
time linear systems are recalled. Necessary and sufficient 

conditions for the positivity of discrete-time nonlinear 
systems are established in the section 3. The asymptotic 
stability of positive nonlinear systems is addressed in the 
section 4, with conditions for their stability being pro-
posed. The conditions for the positivity of continuous-
time nonlinear systems are given in the section 5, and 
those for the stability of continuous-time positive 
nonlinear systems are presented in the section 6. Con-
cluding remarks are given in the section 7.  

The following notations will be used: ℜ  denotes the 

set of real numbers, n m×ℜ  represents the set of n m×  

real matrices, n m×
+ℜ  stands for the set of n m×  matrices 

with nonnegative entries and 1n n×
+ +ℜ = ℜ , Z+  is the set 

of nonnegative integers, nM  represents the set of n n×  
Metzler matrices (with nonnegative off-diagonal entries), 
identity matrix, nI  stands for the n n×  identity matrix.  

2. Positive discrete-time and continuous-time 
linear systems and their stability 

Consider a discrete-time linear system 

 1i i ix Ax Bu+ = + , {0,1,...}i Z+∈ =  (2.1a) 

 i i iy Cx Du= +  (2.1b) 

where n
ix ∈ℜ , m

iu ∈ℜ , p
iy ∈ℜ  are the state, input 

and output vectors, respectively, and n nA ×∈ℜ , 
n mB ×∈ℜ , p nC ×∈ℜ , p mD ×∈ℜ . 

Definition 2.1. [8, 9] A discrete-time linear system 
(2.1) is called (internally) positive if n

ix +∈ℜ , p
iy +∈ℜ , 

i Z+∈  for any initial conditions 0
nx +∈ℜ  and all inputs 

m
iu +∈ℜ , i Z+∈ . 

Theorem 2.1. [8, 9] A discrete-time linear system 
(2.1) is positive if and only if  

 n nA ×
+∈ℜ , n mB ×

+∈ℜ , p nC ×
+∈ℜ , p mD ×

+∈ℜ .(2.2) 
Definition 2.2. [8, 9] A positive discrete-time linear 

system (2.1) is called asymptotically stable if  

 lim 0i
i

x
→∞

=  for any 0
nx +∈ℜ . (2.3) 
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Theorem 2.2. A positive discrete-time linear system 
(2.1) is asymptotically stable if and only if one of the 
following equivalent conditions is satisfied: 

1) All coefficients of the polynomial 

 1
1 1 0

( ) det[ ( 1) ]

...
n n

n n
n

p z I z A

z a z a z a−
−

= + − =

= + + + +
 (2.4) 

are positive, i.e. 0ia >  for 0,1,..., 1i n= − . 
2) All principal minors of the matrix 

[ ]n ijA I A a= − =  are positive, i.e. 

 
1 11

11 12
2

21 22

0,

0, ..., det 0n

M a

a a
M M A

a a

= >

= > = >
 (2.5) 

The proof was given in [9]. 
Let us consider a continuous-time linear system 

 x Ax Bu= +& , (2.6a) 
 y Cx Du= +  (2.6b) 

where ( ) nx x t= ∈ℜ , ( ) mu u t= ∈ℜ , ( )y y t= ∈ p∈ℜ  

are the state, input and output vectors and n nA ×∈ℜ , 
n mB ×∈ℜ , p nC ×∈ℜ , p mD ×∈ℜ . 

Definition 2.3. [8, 9] A continuous-time linear 

system (2.6) is called (internally) positive if nx +∈ℜ , 
py +∈ℜ , 0t ≥  for any initial conditions 0

nx +∈ℜ  and all 

inputs mu +∈ℜ , 0t ≥ . 
Theorem 2.3. [8, 9] A continuous-time linear 

system (2.6) is positive if and only if  

 nA M∈ , n mB ×
+∈ℜ , p nC ×

+∈ℜ , p mD ×
+∈ℜ . (2.7) 

Definition 2.4. [8, 9] A positive continuous-time 
linear system (2.6) is called asymptotically stable if  

 lim 0
t

x
→∞

=  for any 0
nx +∈ℜ . (2.8) 

Theorem 2.4. A positive continuous-time linear 
system (2.6) is asymptotically stable if and only if one of 
the following equivalent conditions is satisfied: 

1) All coefficients of the polynomial 

 1
1 1 0

( ) det[ ]

ˆ ˆ ˆ...
n n

n n
n

p s I s A

s a s a s a−
−

= − =

= + + + +
 (2.9) 

are positive, i.e. ˆ 0ka >  for 0,1,..., 1k n= − . 

2) All principal minors of the matrix ˆ ˆ[ ]ijA A a= − =  

are positive, i.e. 

 
1 11

11 12
2

21 22

ˆ ˆ 0,
ˆ ˆ ˆˆ ˆ0, ..., det 0
ˆ ˆ n

M a

a a
M M A

a a

= >

= > = >
 (2.10) 

The proof was given in [9]. 

3. Positivity of discrete-time nonlinear systems 
Following previously set reasoning [18], let us 

consider a discrete-time nonlinear system 

 1 ( , )i i i ix Ax f x u+ = + , {0,1,...}i Z+∈ = , (3.1a) 

 ( , )i i iy g x u= , (3.1b) 

where n
ix ∈ℜ , m

iu ∈ℜ , p
iy ∈ℜ , i Z+∈  are the state, 

input and output vectors, respectively; ( , ) n
i if x u ∈ℜ , 

( , ) p
i ig x u ∈ℜ  are continuous vector functions of xi and 

ui satisfying the conditions (0,0) 0f = , (0,0) 0g =  and 
n nA ×∈ℜ .  

Definition 3.1. A discrete-time nonlinear system (3.1) is 

called (internally) positive if n
ix +∈ℜ , p

iy +∈ℜ , i Z+∈  for 

any initial conditions 0
nx +∈ℜ  and all inputs m

iu +∈ℜ . 

Theorem 3.1. A discrete-time nonlinear system 
(3.1) is positive if and only if  

n nA ×
+∈ℜ  and ( , ) n

i if x u +∈ℜ , ( , ) p
i ig x u +∈ℜ  for all 

n
ix +∈ℜ  and m

iu +∈ℜ , i Z+∈ . (3.2) 

Proof. Sufficiency. From (3.1) for i = 0 we have 

 1 0 0 0

0 0 0

( , ) ,

( , )

n

p

x Ax f x u

y g x u
+

+

= + ∈ℜ

= ∈ℜ
, (3.3) 

since (3.2) holds and 0
nx +∈ℜ , 0

mu +∈ℜ . 

Similarly, for i = 1 we obtain 

 2 1 1 1

1 1 1

( , ) ,

( , )

n

p

x Ax f x u

y g x u
+

+

= + ∈ℜ

= ∈ℜ
, (3.4) 

since (3.2) and (3.3 ) holds. 
Repeating the procedure for i = 2,3,… we obtain 

n
ix +∈ℜ  and p

iy +∈ℜ  for i Z+∈ ; therefore, by 
Definition 3.1 the system is positive. 

Necessity. Assuming that the system (3.1) is 
positive, we shall show that (3.2) holds. From (3.3) for 

0 0( , ) 0f x u =  we have 1 0x Ax=  and this implies that 
n nA ×
+∈ℜ  since by assumption 1

nx +∈ℜ  and, 

additionally, 0
nx +∈ℜ  can be arbitrary. In other case, if 

0 0Ax = , then from (3.3) we have 1 0 0( , )x f x u=  and 

this implies that 0 0( , ) nf x u +∈ℜ  since by assumption 

1
nx +∈ℜ . From (3.3) we also have that 0 0 0( , )y g x u=  

and 0
nx +∈ℜ , 0

mu +∈ℜ  since by assumption 0
py +∈ℜ . 

Continuing the procedure, we can show that (3.2) holds 
if the system is positive.  
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From Theorem 3.1 we have the following: 
Corollary 3.1. A discrete-time nonlinear system 

(3.1) is positive only if the linear system 

 1i ix Ax+ = , {0,1,...}i Z+∈ =  (3.5) 

is positive. 
Example 3.1. Let us consider the following discrete-

time nonlinear system (3.1) with 

 

1,

2,

1, 2,
2
2,

2
1,

2,

0.2 0.1
, ,

0.3 0.4

( , ) ,
1 cos

0.1
( , ) .

2 cos

i
i

i

i
i i

i i i
i

i
i

i i
i

x
x A

x

x x e
f x u

x e i

x e
g x u

x i

−

−

−

   
= =   

  
 +
 =
 + − 
 +

=  
+ +  

 (3.6) 

As follows from (3.6), the matrix A has nonnegative 
entries and the vector functions ( , ), ( , )i i i if x u g x u  are 

also nonnegative for all n
ix +∈ℜ  and m

iu +∈ℜ , i Z+∈ . 
Therefore, by Theorem 3.1, the system is positive. The 
linear part of the system is also asymptotically stable 
since the coefficients of the polynomial 

 2

2

0.8 0.1
det[ ( 1) ]

0.3 0.6

1.4 0.45

z
I z A

z

z z

+ −
+ − = =

− +

= + +

 (3.7) 

are positive, i.e. 0 0.45a = , 1 1.4a = . 

The same result follows from the condition 2 of 
Theorem 2.2 since 

2
0.8 0.1
0.3 0.6

A I A
− 

= − =  − 
 and 1 0.8M = , 

2 det 0.45M A= = .  (3.8) 

4. Stability of positive discrete-time nonlinear 
systems 

Consider a positive discrete-time nonlinear system 

 1 ( )i i ix Ax f x+ = + , 0
nx +∈ℜ , (4.1) 

where n
ix +∈ℜ , n nA ×

+∈ℜ , ( ) n
if x +∈ℜ  is a continuous 

and bounded vector function.  
Definition 4.1. A positive discrete-time nonlinear 

system (4.1) is called asymptotically stable in the region 
nD +∈ℜ  if n

ix +∈ℜ , i Z+∈  and 

 lim 0i
i

x
→∞

=  for any finite 0
nx D +∈ ∈ℜ . (4.2) 

To test the asymptotic stability of the positive 
system (4.1), the Lyapunov method is used. As a 
candidate of Lyapunov function we choose 

 ( ) 0T
i iV x c x= >  for n

ix +∈ℜ  (4.3) 

where nc +∈ℜ  is a vector with strictly positive 

components 0kc >  for 1,...,k n= . 

Using (4.3) and (4.1), we obtain 

1

1

( ) ( ) ( )

{[ ] ( )} 0
i i i

T T T
i i n i i

V x V x V x

c x c x c A I x f x
+

+

∆ = − =

= − = − + <
 (4.4) 

for 

 [ ] ( ) 0n i iI A x f x− − < , n
ix D +∈ ∈ℜ  (4.5) 

since nc +∈ℜ  is a strictly positive vector. 

Therefore, the following theorem has been proved. 
Theorem 4.1. A positive discrete-time nonlinear 

system (4.1) is asymptotically stable in the region 
nD +∈ℜ  if the condition (4.5) is satisfied. 

Example 4.1. Let us consider the following 
nonlinear system (4.1) with 

 
1, 2,1,

2
2, 2,

0.1 0.2
, , ( ) .

0.2 0.3
i ii

i i
i i

x xx
x A f x

x x

    
= = =     

      
(4.6) 

The nonlinear system is positive since 2 2A ×
+∈ℜ  

and 2( )if x +∈ℜ  for all 1, 0ix ≥  and 2, 0ix ≥ , i Z+∈ . 

In this case, the condition (4.5) is satisfied in the 
region D defined by 

 
1, 2, 2

1, 2, 1, 2, 2
2

2, 1, 2,

: { , } [ ] ( )

0.9 0.2

0.7 0.2

i i i i

i i i i

i i i

D x x I A x f x

x x x x

x x x +

= = − − =

− − 
= ∈ℜ 

− −  

. (4.7) 

The region D is shown in Fig. 4.1.  

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

x1

x2

 
Fig. 4.1. Stability region (inside the curved line). 
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By Theorem 4.1, the positive nonlinear system 
(4.1) with (4.6) is asymptotically stable in the region 
(4.7). 

5. Positivity of continuous-time nonlinear system 
Consider a continuous-time linear system 

 ( , )x Ax f x u= +& , (5.1a) 

 ( , )y g x u=  (5.1b) 

where ( ) nx x t= ∈ℜ , ( ) mu u t= ∈ℜ , ( )y y t= ∈ p∈ℜ  
are the state, input and output vectors, respectively; 

n nA ×∈ℜ ; ( , )f x u  and ( , )g x u  are continuous and 
bounded vector functions of x and u, respectively, 
satisfying (0,0) 0f =  and (0,0) 0g = . 

Definition 5.1. [8, 9] A continuous-time linear 

system (5.1) is called (internally) positive if nx +∈ℜ , 
py +∈ℜ  (for 0t ≥ ) for any initial conditions 0

nx +∈ℜ  

and all inputs mu +∈ℜ , 0t ≥ . 
Theorem 5.1. [8, 9] A continuous-time linear 

system (5.1) is positive if and only if  

nA M∈ , ( , ) nf x u +∈ℜ , ( , ) ng x u +∈ℜ  for all nx +∈ℜ , 
mu +∈ℜ , 0t ≥ .  (5.2) 

Proof. The solution to the equation (5.1a) for a 
given A and ( , )f x u  has the form 

0 0
0

( ) ( ) ( ) [ ( ), ( )]
t

x t t x t f x u d= Φ + Φ −∫ τ τ τ τ  (5.3) 

where 

 ( ) Att eΦ = . (5.4) 
Using the Picard method, we obtain from (5.3a) the 

following: 

1 0 0
0

( ) ( ) ( ) [ ( ), ( )]
t

k kx t t x t f x u d+ = Φ + Φ −∫ τ τ τ τ , 

1,2,...k =                               (5.5) 

As follows from (5.4), if the conditions (5.2) are 

satisfied, then ( ) n
kx t +∈ℜ  (for 0t ≥ , 1,2,...k = ) since 

for nA M∈  the inclusion holds ( ) n nt ×Φ ∈ℜ  (for 
0t ≥ ) [9]. 

From (5.1b) we have py +∈ℜ  (for 0t ≥ ) since by the 

assumption (5.2) ( , ) ng x u +∈ℜ  for nx +∈ℜ , mu +∈ℜ , 
0t ≥ .  

6. Stability of continuous-time nonlinear systems 

Consider a positive continuous-time nonlinear system 

 ( )x Ax f x= +& , (6.1) 

where ( ) nx x t= ∈ℜ , nA M∈ , ( ) nf x +∈ℜ  is a 

continuous and bounded vector function and (0) 0f = .  
Definition 6.1. A positive continuous-time nonlinear 

system (6.1) is called asymptotically stable in the region 
nD +∈ℜ  if ( ) nx t +∈ℜ , 0t ≥  and 

 lim ( ) 0
t

x t
→∞

=  for any finite 0
nx D +∈ ∈ℜ . (6.2) 

To test the asymptotic stability of the positive 
system (6.1), the Lyapunov method is used. As a 
candidate of Lyapunov function we choose 

 ( ) 0TV x c x= >  for ( ) nx x t += ∈ℜ , 0t ≥  (6.3) 

where nc +∈ℜ  is a vector with strictly positive compo-

nents 0kc >  for 1,...,k n= . 

Using (6.3) and (6.1), we obtain 

 ( ) [ ( )] 0T TV x c x c Ax f x= = + <& &  (6.4) 
for 

 ( ) 0Ax f x+ <  for nx D +∈ ∈ℜ , 0t ≥  (6.5) 

since nc +∈ℜ  is the strictly positive vector. 

Therefore, the following theorem has been proved. 
Theorem 6.1. A positive continuous-time nonlinear 

system (6.1) is asymptotically stable in the region 
nD +∈ℜ  if the condition (6.5) is satisfied. 

Example 6.1. Let us consider the following 
nonlinear system (6.1) with 

1 21
2

2 2

2 1
, , ( ) .

1 3

x xx
x A f x

x x

 −   
= = =     −      

 (6.6) 

The nonlinear system (6.1) with (6.6) is positive 

since 2A M∈  and 2( )f x +∈ℜ  for all 2x +∈ℜ , 0t ≥ . 

In this case, the condition (6.4) is satisfied in the 
region D defined by 

 1 2 1 2
1 2 2

1 2 2

2 0
: { , }

03

x x x x
D x x

x x x

− + +   
= = <   − +    

. (6.7) 

From (6.7) we have 

1 2 2(2 ) 0x x x− > >  and 1 2 20 (3 )x x x≤ < − . (6.8) 
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The region D is shown in Fig. 6.1.  

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

x1

x2

 
Fig. 6.1. Stability region (inside the curved line). 

By Theorem 6.1, the positive nonlinear system (6.1) 
with (6.6) is asymptotically stable in the region (6.7). 

7. Concluding remarks 
The positivity and asymptotic stability of the discrete-

time and continuous-time nonlinear systems have been 
addressed. The necessary and sufficient conditions for the 
positivity of the discrete-time nonlinear systems have been 
established (Theorem 3.1). Using the Lyapunov direct 
method, the sufficient conditions for asymptotic stability of 
the discrete-time nonlinear systems have been proposed 
(Theorem 4.1). The effectiveness of the conditions has been 
demonstrated on Example 4.1. The sufficient conditions for 
the positivity of continuous-time nonlinear systems have 
been established in section 5 (Theorem 5.1) and for the 
asymptotic stability in section 6 (Theorem 6.1). The 
stability conditions for continuous-time nonlinear systems 
are illustrated on Example 6.1. The considerations can be 
extended to fractional discrete-time nonlinear systems. An 
open problem is an extension of the conditions to the 
descriptor fractional discrete-time and continuous-time 
nonlinear systems. 
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АНАЛІЗ ПОЗИТИВНОСТІ  
ТА СТІЙКОСТІ ДИСКРЕТНИХ  

ТА НЕПЕРЕРВНИХ  
В ЧАСІ НЕЛІНІЙНИХ СИСТЕМ 

Тадеуш Качорек 

Досліджено позитивність та асимптотична стійкість 
нелінійних систем, часові залежності яких є дискрет-
ними або неперервними. Встановлено достатні умови 
позитивності та асимптотичної стійкості нелінійних 
систем. Запропоновані тести на стійкість базуються на 
розширенні методу О. Ляпунова для позитивних не-
лінійних систем. Ефективність цих тестів демон-
струється на прикладах. 
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