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Abstract: The aim of this work is to build a structure 
of a mathematical model for resource accumulation and 
their operational control in biotechnological, biomedical 
and Web information systems for the in-depth studies of 
their common properties. For the first time ever a 
concept of the models for the mentioned processes is 
proposed as a system of differential equations. The 
equations describe the dynamics of state variables, of a 
substrate and of a product of the processes being 
analysed. Each partial implementation of the conceptual 
model includes a nonlinear part represented by Monod 
function. This raises the problem of developing a 
generalized method for identifying the nonlinear models 
of the mentioned type, which will be resolved in future 
publications. 

Key words: system of nonlinear differential 
equations, state variable, substrate, system’s product, 
Monod function. 

1. Introduction  
Mathematical modelling is one of the main tools used 

both for gnoseological purposes and for the problems 
concerning the management of important processes in the 
systems under investigation [1]. Today, the processes in 
physicotechnical objects have been studied more 
completely than in their biotechnological, medical and 
Web counterparts. The processes in three latter objects 
resemble the processes characteristic for the functioning 
of living organisms. One of the most important processes 
is that of operational control of the system’s resources at 
extreme or close to extreme loads. Another important class 
of the processes is rather slow accumulation of resources, 
which are to ensure operation of the system, increase its 
capacity, or lead to the formation of useful by-products. 
Models of such processes make it possible to evaluate and 
improve the operational effectiveness of the systems 
mentioned above. 

There are two basic approaches to modelling: 
deductive and inductive. The deductive approach is used 
in modelling the systems whose elements are subject to 
simple and clear laws. When there is not enough 
information on the system under study, the inductive 

approach is applied to select a model of optimal 
complexity based on experimental data [2]. To simulate 
dynamic and rather complex processes, the approach 
called “black box” is used. It is focused on the input and 
output characteristics of the processes without specifying 
mechanisms of their implementation. 

Adequacy of developed models of a system is 
mainly determined by the level of solving the problem of 
structural and parametric identification. For dynamic 
systems, the main structural identification method 
consists in selection of a class of model structures and 
solving the problems of parametric identification for 
each model of the class based on the minimization of a 
certain criterion of quality [2]. In such a way the 
inductive approach to structural identification of the 
systems is implemented. However, the question of 
selecting the basic functions and components for 
hypothetical structures able to adequately represent the 
modelled object remains open. 

Works devoted to the problem under investigation 
propose only few basic functions for hypothetical 
structures. It is worth to mention Gabor polynomials, 
trigonometric polynomials, Volterra and Wiener func-
tional series, Hammerstein and Wiener-Hammerstein 
models that are utilized for development of general 
nonlinear models of signal processing [3]. 

Our research results [4, 7, 10, 12] provide the possi-
bility to generalize the features that are immanent for a 
wide class of biotechnological, biomedical, and Web 
information systems and come with basic modeling 
functions that do not belong to the listed ones. The 
purpose of our work is justification of general 
mathematical model structure for the mentioned systems 
with the view of profound investigation of their common 
features. 

2. A model of glucose concentration in the blood 
of diabetics 

Diabetes is an incurable disease occupying the third 
place on the list of dangerous and widespred diseases. At 
best, a diabetic can stabilize the sugar level in his/her 
blood, avoiding its excessive concentration. To maintain 
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this state, the person who suffers from diabetes must 
balance his/her food consumption according to the 
insulin dose injected.  

For diabetes, the most important characteristics are 
the concentration of glucose ( )G t  and insulin ( )i t   
(a hormone which mediates glucose uptake) in patient’s 
blood. It is known that insulin is produced when 
glucose exceedes the baseline bG , and decomposes 

when its own baseline bi  is exceeded. This dependence 
is quite accurately described by a linear differential 
equation. The consumption of food containing 
carbohydrates ( )mG t  leades to an increase in the 
concentration of glucose. 

The concentration of glucose starts to decrease when 
it exceedes its baseline, but the most significant decrease 
in the concentration occurs under the action of insulin. In 
most models, the intensity of glucose reduction depends 
on the concentration of insulin only [5]. However, in [6], 
the author proposed a more realistic model, which takes 
into account the dependence of intensity on both critical 
concentrations.  Such an interaction is described by the 
Michaelis-Menten dependence that is formally 
equivalent to Monod function. It is important to note that 
in case of a diabetic patient some insulin is introduced 
into the body with an injection ( )N t  [7]. 

Monod function depends on a function and a 

parameter and looks like 1
( )( ( ), )

( )
=

+
B tM B t m

m B t
, where 

( )B t  is a certain function and m is a certain parameter.  
Monitoring the dynamics of glycemia in individual 

patients revealed that most of its fluctuations caused by 
food consumption cannot be explained by the total 
amount of the carbohydrates consumed. The reason for 
this discrepancy was the carbohydrates classification: 
instant, fast and slow. 

Therefore, we accordingly differentiate the variables 
representing the amount of glucose intake from foods: 

,1( )mG t  is the amount of glucose in instant 

carbohydrates, ,2 ( )mG t  is the amount of glucose in fast 

carbohydrates; ,3( )mG t is the amount of glucose in slow 
carbohydrates. Besides, it is necessary to take into 
account the temporal distribution of the action of the 
carbohydrates consumed and the insulin injected.  

The problem of time distribution of the consumed 
glucose and the injected insulin arises from the fact that 
these factors do not act immediately. The distribution of 
these factors can be synthesized based on the 
distributions of glucose and insulin levels after a single 
glucose injection. The analysis of the results of 
experiments showed a similarity of the distribution 
profiles to the fractional-rational functions representing 
the distribution of Fisher’s statistical criterion, so the 

time-dependence of the amount of glucose consumed 
with i-th type (i=1, 2, 3) of carbohydrate is represented 
as follows: 
 , , ,( , ) ( , )=F

m i m i m iG t G g tττ τ , (1) 

 ( ), ( , ) ( ) ( )−= Θ − − −i ik
m i ig t A t t tατ τ τ τ , (2)

 
where ,m iGτ  is the amount of consumed carbohydrates of 
i-th type at the timepoint τ , ( )Θ ⋅  represents the 
Heaviside function, iA , ia , ik  are the parameters 
estimated on the basis of the analysis of experimental 
observations using the method of least squares. 

In living conditions, to organize a series of 
experiments on measuring the concentration of insulin in 
the blood is rather difficult. Therefore, special 
experiments were organized to determine the distribution 
of insulin from injections. They were based on the 
monitoring of dynamics of glucose in the blood when 
feeding of slow or instant carbohydrates had been 
completed before the action of insulin. Insulin is 
proportional to surplus glucose; that is why its dynamics 
is proportional to the dynamics of glucose in the blood 
when it is not distorted by food. Thus, for time 
distribution of injected insulin we apply the following 
relationship 
 ( , ) ( , )= ⋅FN t N n tττ τ , (3) 

 ( )( , ) ( ) ( )−= Θ − − −N iNk
Nn t A t t tατ τ τ τ , (4)

 
where Nτ  is the amount of insulin injected at the 

timepoint τ , ( )Θ ⋅  represents the Heaviside function, 
parameters NA , Na , Nk  have been obtained on the 
basis of analysis of experimental observations using the 
method of least squares. 

Fig. 1 shows the time distribution of insulin received 
from injections.  
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Fig. 1. Insulin distribution over time. 
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Given those observations, we obtain such model of 
the glucose distribution in the blood [12]: 
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8 9
( ) ( ( ) ) ( ( ) )+= − − −b b

di t p G t G p i t i
dt

,           (6) 

0 0 0 0( ) , ( )= =G t G i t i ,                   (7) 

where 
( ) , ( ( ) ) 0

( ( ) )
0, ( ( ) ) 0

− − >+− =  − ≤

G t G if G t Gb bG t Gb if G t Gb
 (8) 

mK  is number of events of carbohydrates consumption; 

NK  is number of insulin injections; jp , ( 1,9=j ) are 

the model parameters; 1( , )⋅ ⋅M  is Monod function; 0t  is 

the startpoint of observation; 0G  is the glucose amount 

in the blood at the startpoint; 0i  is the insulin amount in 
the blood at the startpoint. 

Thus, a system of two nonlinear equations has been 
obtained, and a certain Monod function, which simplifies 
the presentation of Monod law, has been introduced. 
This law represents the nonlinear intensity of 
interactions between the model factors. With the 
parameter 6p  growing, such intensity is converted into a 
linear one, similarly to the interaction intensity in the 
Lotka-Volterra model (Fig. 2). 
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Fig. 2. Intensity of interactions between the parameters  

of Monod and Lotka-Volterra models. 

This model represents the concentration of glucose 
in the blood within one day with good accuracy (4% 
maximum relative error of identification (Fig. 2) and 8% 
relative error of forecasting). 

 

 
Fig. 3. Identification of the model of time distribution  

of glucose in the blood. 

3. A model of rehabilitation processes in cardiology  
Cardiovascular diseases are the main factor leading 

to the losses and disability of population in most 
countries. The main features of the cardiovascular 
system are the heart rate and systolic blood pressure. At 
final stages of rehabilitation, it is very important to 
observe a body response to submaximal physical 
activity. 

The values of state variables change proportionally 
to significant changes in the system load. Therefore, it is 
natural to assume that changes in the patient’s condition 
are determined by a derivative of the function of 
patient’s effort power. 

It has been accepted a hypothesis that the transition 
to state variables stabilization is proportional to some 
degrees of their deviation. To simulate a smooth 
transition from a linear disturbance due to physical 
activity to the stable state, we have used an expression of 
difference between unit value and Monod function 
depending on the delta-expansion of the function of 
patient’s effort power.   

The expansion is introduced to model a residual 
effect of the submaximal efforts of a patient. The power 
of patient’s effort )(tW  can be measured using velo-
ergometry. The duration of heart rate and pressure 
stabilization period after the patient’s physical exercise 
indicates an acceptable level of such activity. Thus, we 
obtain the following model of characteristics of a cardio-
vascular system being subjected to submaximal physical 
activity. 
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where ( )h t  is the heart rate, ( )p t  represents the blood 
pressure, ( ) /dW t dt  denotes the first derivative of  the 
function of patient’s effort power, ( )W tδ  is δ -
expansion of the power  function, rt  stands for the 
timepoint of the activity termination; 1( , )⋅ ⋅M  is Monod 

function; jp , ( 1,6=j ) are the model parameters; 0t  is 

the startpoint of observation; 0h  is heart rate at the 
startpoint; 0p  is blood pressure at the startpoint. 

The identification of the model has proved its 
adequacy. Fig.4. presents an example of the power of 
submaximal exercises. Fig. 5 and 6 present the results of 
the identification of the heart rate and blood pressure 
model for a patient subjected to submaximal exercises. 

The model of the features of the cardiovascular 
system at the initial stage of rehabilitation is a bit more 
complex. At this stage, due to the exhaustion of the 
cardiac muscle, submaximal activities are out of the 
question. 
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Fig. 4. Еxample of the power of submaximal exercises. 

It is very important to monitor the body's response to 
increasing the durations of nonintensive physical 
activities up to the full adaptation. In forming the 

models, the cardiac muscle exhaustion leads to the fact 
that all terms on the right side of the differential 
equations become nonlinear and are represented by 
Monod functions as given in the equations (12)–(15). 
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Fig. 5. Identified model of a heart rate under submaximal 

exercises (maximum relative error is of 5.4 %). 

0 5 10 15 20 25 30 35 40
140

150

160

170

180

190

200
Modeling pressure, max error = 5.1644%

Time (min)

P
re

ss
ur

e 

 

 
Observation
Identification

 
Fig. 6. Identified model of a heart rate under submaximal 

exercises (maximum relative error is of 5.2 %). 
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, (12) 
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, (13) 
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r

r

S t t t
r t

t t
,                    (14) 

0 0 0 0( ) , ( )= =h t h p t p ,                 (15) 
where ( )r t  is the exhaustion; m  is the model parameter; 

( )S t  is the covered distance causing the exhaustion; 

1( , )⋅ ⋅M  is Monod function; jp , ( 1,6=j ) are the model 
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parameters; 0t  is the startpoint of observation; 0h  is 
heart rate at the startpoint; 0p  is blood pressure at the 
startpoint. 

The proposed model has been identified with 
satisfactory accuracy; its maximum relative error is of 
3.9 % (Fig. 7, 8). 

0 5 10 15 20 25
55

60

65

70

75

80

85

90
Modeling heart rate, max error = 3.9141%

Time (min)

A
rte

ria
l p

ul
se

 

 

 
Observation
Identification

 
Fig. 7. Identified model of a heart rate under prolonged 

nonintensive exercises (maximum relative error is of 3.9  %). 
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Fig. 8. Identified model of a blood pressure under prolonged 
nonintensive exercises (maximum relative error is of 1.6  %). 

4. A model of fermentation processes in 
biotechnological systems 

Technological processes for restoration of power and 
natural resources as well as engineering procedures in 
food and pharmaceutical industries play an essential part 
in the development of productive forces of society. They 
are periodicaly or continuously involved in the chemical-
technological systems (CTS). 

A substrate, microorganisms and, sometimes, addi-
tional initiating substances are injected into a chemical-
technological system. As a result of reactions, both basic 
(target) products and by-products are obtained [8]. 

The main process parameters are temperature, 
pressure and alkalinity of the medium, the temperature 
tending to be a control parameter. The processes taking 
place in a continuous mode are economically more 
efficient than in a periodic one, but a number of 
important processes can take place only in the latter. 
These, in particular, are the production of alcohol and 
dairy foods, pharmaceuticals such as vitamins, 
antibiotics, and hormones. Therefore, the study of 
chemical-technological systems in a periodic regime is 
of particular interest. The objective of their mathematical 
modeling is studying the dynamics of concentration of 
the substances mentioned. 

In the simplest case, СTS is supposed to have only 
one state variable - monotonically decreasing substrate 
concentration ( )S t . In this case, the dynamics of the 
process is described by a single differential equation 
proposed by Leonor Michaelis and Maud Leonora 
Menten for modelling the processes of chemical 
synthesis [8]: 

 1 1 2
( ) ( ( ), )= − ⋅

dS t A M S t A
dt

, (16) 

with the initial condition 
 0 0( ) =S t S , (17) 
where 1A  is the maximum reaction rate, 2A  denotes the 
Michaelis constant, ( )S t  represents the state variable of 
substrate concentration, 1( , )⋅ ⋅M  is Monod function; 0t  is 
the startpoint of observation; 0S  stands for the initial 
concentration of the substrate in the periodic mode 
system.  

In Monod periodic model, the rates of micro-
organisms growth ( ) /dX t dt  and substrate consumption 

( ) /dS t dt  are proportional to their current levels, i.e. to 
th levels of ( )X t  and concentration of the nutrient 
substrate ( )S t . This results in a system of equations [9]: 

 
( )1 1 4 2

3 1 4

( ) ( ( ), ) ( ),

( ) ( ( ), ) ( ),

 = ⋅ −

 = − ⋅


dX t A M S t A A X t
dt

dS t A M S t A X t
dt

 (18) 

with the initial conditions 
 0 0( ) =X t X , 0 0( ) =S t S . (19) 
where ( )X t  is the microorganisms concentration; ( )S t  
stands for the nutrient substrate concentration; 1( , )⋅ ⋅M  is 

Monod function; jA , ( 1,4=j ) are the model 

parameters; 0t  is the startpoint of observation; 0S  
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represents the initial substrate concentration, 0X  
denotes the initial microorganisms concentration in the 
periodic mode system. 

It has been found that the monotonous accumulation 
of the target product ( )P t  slows down the consumption 
of substrate and the growth of microorganisms. This 
pattern is called product inhibition and is taken into 
account in the family of models with feedback. The 
feedback models are based on the classical Monod 
system (18), (19), introducing additionally the function 
of growth inhibition into the equation of state variable 

( )X t  and supplementing the system with the equation of 
target product intensity ( )P t  [10]. In such case we use 
generalized Monod function that looks like 

1
2 1 2

2

( )
( ( ), ( ), )

( )
=

+
B t

M B t B t m
m B t

, where 1( )B t , 2 ( )B t  

are certain functions and m is a certain parameter.  
The proposed model has been identified with 

satisfactory accuracy – its maximum relative error is of 
2 % (Fig. 9). 

 
Fig. 9. Identified model of the substrate and microorga-

nisms concentration (max. relative error does not exceed 2 %). 

5. Model of Web site traffic 
An important tool for achieving high performance 

of a Web site is its sufficient traffic. At the same time, 
low and very low traffic is typical for most Web sites, 
though funds are spent on their development and 
support. There is a whole range of services and 
recommendations aiming at improving the visibility of 
certain materials in the mentioned systems, commonly 
called by a term “search engine optimization” or SEO. 
These recommendations are of empirical and often 
even of semi-legal nature. 

On ethical grounds, and because of intensification of 
struggle against overoptimization of Web sites by 
leading search engines, there is an increase in the need 

for a scientific approach to the study of the problem of 
traffic increasing. 

Mathematical modelling provides effective and well-
grounded recommendations. A significant increase in 
Web site traffic requires systematic support for updating 
the content or its advertising in the network. This 
requires a great deal of time spent by qualified staff. The 
impact of such actions manifests itself with a significant 
time delay. Prediction of traffic dynamics after applying 
some SEO-strategy would make the use of support team 
efforts more rational. 

Web site traffic is a random process, which is 
difficult to model. It is characterized by the phenomena 
of seasonality with weekly and annual periods. In order 
to eliminate the weekly seasonality and reduce the 
random fluctuations, a daily traffic is replaced by its 
weekly averaged analogues. When observing a yearly 
period of seasonality, it is refined using multiplicative 
seasonal factors. In addition, to eliminate additional 
random fluctuations, we use multiple smoothing by 
applying the method of moving average up to obtaining 
uncorrelated residuals. 

The analysis of Web sites traffic and their selected 
pages traffic processed in the above-mentioned way 
shows the correspondence between the growth in total 
traffic and the rise in traffic of certain topical page.  

This phenomenon can be explained by the fact that 
the growth of popularity of some topics either under 
development or under advertisement contributes to the 
improvement of visibility of the topic pages in search 
engines at different retrieval requests. The improvement 
of visibility contributes to the rise of the traffic of all 
Web site pages, thereby increasing the total traffic. 
Construction of this dependence allows the problem of 
the total traffic simulation to be reduced to the 
simulation of major topical page traffic and establishing 
a function describing the correspondence between the 
local and total traffics. Detecting a major topical page is 
done in two steps. Firstly, we come with the instant 
when the total smoothed traffic started its substantial 
growth; this is the instant when the traffic derivative 
starts to exceed its certain minimum magnitude  

 min( ) / >dY t dt D  (20) 

The value minD  is selected for each Web site 
individually, ( )Y t  stands for the total smoothed traffic. 
Secondly, after fixing the start point of the traffic 
increase interval, we look after the pages, whose content 
change essentially supports the total traffic. Among the 
pages, we choose the one that is characterized by a 
maximum gain, and define it as a major topical page. 

To predict the major local traffic, we have used a 
typical representation of a growth cycle in the Web site 
traffic given in [11]. Its similarity to Monod population 
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models suggests an idea of applying just that very model 
to local traffic prediction. As a substrate, we use a formal 
variable, which characterizes the amount of potential 
audience interested in possible alternations in major 
(top) topics of a given Web site [12]. Finally, we have 
obtained a system (17)-(19) of differential equations, 
which simulates the total Web site traffic ( )Y t : 

 

( )1 1 4 2

3 1 4 0

( ) ( ( ), ) ( ),

( ) ( ( ), )( ( ) ) ,

( ) / 0 ( ) 0.

+

 = ⋅ −

 = − ⋅ −


 = ⇒ =

dX t a M A t a a X t
dt

dA t a M A t a X t kX
dt

if dA t dt dX t dt

 (21) 

 ( ) 2 3
0 1 0( ) ( ) ( ) −= + − q q tY t Y t q X t X e , (22) 

 0 0( ) ,=X t X  0 0 max( ) = =A t A X , (23) 

where ( )X t  is the local traffic of the major topical page, 

( )A t  is the amount of remaining potential audience (not 

observed), ( )Y t  is the total Web site traffic, 1( , )⋅ ⋅M  is 

Monod function; ja , ( 1,4=j ) are the model 

parameters; jq , ( 1,3=j ) are the model parameters; 0t  

is the startpoint of observation; 0X  is the local traffic at 

the startpoint; 0A  is the potential audience at the 

startpoint; maxX  represents the approximate estimate of 

the maximum value X , k  stands for the approximate 
level of the total traffic growth.  

The peculiarity of this model is the neccessity to 
take into account a human factor. The proposed model 
has been identified with satisfactory accuracy – its 
maximum relative error is of 6.2 % (Fig. 10). 
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Fig. 10. Identified model of a Web site’s local traffic  

(maximum relative error does not exceed 6.2 %). 

6. Concept of models of accumulation and 
operational control of resources in biotechnological, 
biomedical and Web systems 

Having considered the instances of modelling, we 
move on to forming a model of operational resource 
control and resource accumulation in biotechnological, 
biomedical and Web systems. 

Since the processes mentioned are accompanied by 
changes in the system states, the model should include a 
state variable x . 

System resources are formed by transformation of 
some substance – substrate s , so the model of such a 
process includes this variable. Based on the substrate, 
another component that is designated as a product p  of 
the process is formed. 

In a system, external actions can influence both the 
state variable and the substrate concentration. The state 
variable in the operational resource control systems is 
directly impacted at loads close to maximum. The 
increment (gain) in the state variable in this case is 
proportional to the load change; when the action of the 
load W  is stopped, the systemstarts its restoration. As a 
matter of fact, since the intensity of the load is close to 
extreme, the system starts its restoration when the action 
of δ -extended load Wδ  stops. In many systems, a 
substrate is introduced at the beginning of the process 
activation and works until its full exhaustion. However, 
in some systems, the substrate comes in through various 
channels with different intensities jU  throughout the 

process. The developed concept also admits that the state 
variable can be replenished from external sources (V  
stands for the replenishment amount of the state 
variable) and, therefore, its impact on the substrate 
dynamics can increase. 

Thus, the concept includes three differential 
equations, which describe the dynamics of the state 
variable x , the substrate s  and the target product p . 
The state variable dynamics is subject to two opposite 
trends. The first one promotes the growth of state 
variable value caused by the load increment or by the 
substrate availability. The response of the state variable 
can manifest itself in different ways: from a linear 
response to substrate increase (in the event of modest 
exceeding of the basiс substrate level) up to an 
interaction between the substrate and the state variable, 
that can be accompanied by the product inhibition 
described by Monod law. 

The second trend promotes the reduction of state 
variable value governed by simple exceeding of some 
basic level, or, in the case of an operational control 
system, by a function proportional to the state variable 
raised to a certain power. In the latter case, it is 
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necessary to start a decelerating mechanism by means of 
δ -expanded load Wδ . The start should be very smooth 
to eliminate incidental fluctations of the state variable. 
For the smooth transition from minimum values to the 
values commeasurable with one, we use the difference 
between the unit value and Monod function of δ -
expanded load Wδ ). Consequently, we obtain the 
following differential equation (24) of the dynamics of 
the state variable.  

1 2 3 1 1
( ) ( ) ( ( ) ) ( ( ), )+= + − + +b

dx t dW ta a s t s a M s t m
dt dt

 

4 2 2 1( ( ), ( ), ) ( ) ( ( ) )+ − − −ba M s t p t m x t b x t x          (24) 
5

2 1 3(1 ( ( ), ) ( ))− − ab M W t m x tδ  

where ja , ( 1,5=j ) are the model parameters; jb , 

( 1,2=j ) are the model parameters; jm , ( 1,3=j ) are 

the model parameters; 1( , )⋅ ⋅M  is Monod function; 

2 ( , , )⋅ ⋅ ⋅M  is generalized Monod function. 
The trends of growth and decay are also present in 

the dynamics of the substrate. The trend of substrate 
reduction is a principal one since operation of the system 
supposes that the substrate is worked over. 

The substrate is assumed to be able to decompose 
just in the course of its accumulation when its 
concentration exceeds a basic level. However, a typical 
substrate conversion is related to its interaction with the 
state variable that is going on with varying intensity, i.e. 
according to Monod dependence. Additionally, an 
increase in the concentration of the state variable by 
replenishment from external sources is allowed; the 
increase is described by the function ( )V t . Moreover, an 
increase in the substrate concentration during the process 
of its transformation also is admissible. Such an increase 
can take place through various channels with their 
corresponding dynamics variations ( )jU t . As a result, 

we have the following differential equation of substrate 
dynamics  

 1 2 1 4
( ) ( ( ) ) ( ( ), ))= − − − −b

ds t c s t s c M s t m
dt

 3
1

( ) ( )
=

− + + ∑
J

b j j
j

kx c V t e U t  (25) 

where jc , ( 1,3=j ) are the model parameters; je , 

( 1,=j J ) are the model parameters; 4m  is a model 
parameter; 1( , )⋅ ⋅M  is Monod function. 

The dymanics of the process target product is 
closely coordinated with the dynamics of substrate 
consumption through the following linear relationship 

 ( ) ( )
= −

dp t ds tf
dt dt

.  (26) 

As we can see, the concept comprises three 
differential equations that describe the dynamics of the 
state variable 0(0) ,=X X , the substrate x  and the target 
product p . To develop a specific model based on the 
general concept, it is convenient to specify the class 

KM  and the structure SM  of Monod model. The class 
of the model defines a list of its variables, and the 
structure defines non-zero coefficients of the general 
concept ja , ( 1,5=j ); jb , ( 1,2=j ); jm , ( 1,4=j ); 

jc , ( 1,3=j ); je , ( 1,=j J ), k , f . 

The model of rehabilitation process in cardiology is 
described by a differential vector equation, each 
component of which belongs to the class ( ,0,0)KM x  

with the structure 3 5 2 1( , , , )SM a a b m , where 3a  
corresponds to the 1p  in (12), 5a  corresponds to the 3p  
in (12), 2b  corresponds to the 2p  in (12), 1m  
corresponds to the m  in (12). 

The glucose dynamics model belongs to 
( , ,0)KM x s  class with the structure 2 1 1 2( , , , ,SM a b c c  

3 4 1 2 3, , , , )c m e e e , where 2a  corresponds to the 8p  in 
(6), 1b  corresponds to the 9p  in (6), 1c  corresponds to 
the 4p  in (5), 2c  corresponds to the 7p  in (5), 3c  

corresponds to the 5p  in (5), 4m  corresponds to the 6p  
in (5), 1e  corresponds to the 1p  in (5), 2e  corresponds 
to the 2p  in (5), 3e  corresponds to the 3p  in (5); insulin 
concentration being the state variable, and the glucose 
concentration being the substrate. 

The model of fermentation process belongs to the 
class ( , , )KM x s p  with the structure 3 4 1( , , ,SM a a m  

1 2, , )b c f , where 3a  corresponds to the 1A  in (18), 1b  
corresponds to the 2A  in (18), 2c  corresponds to the 3A  
in (18), 1m  corresponds to the 4A  in (18). The para-

meters 4a  and f  can be found in the elaborated fer-
mentation process model given in [10]. 

The model of major Website page traffic belongs to 
the class ( , )KM x s  with the structure 3 1 2( , , , )SM a b c k , 

where 3a  corresponds to the 1a  in (21), 1b  corresponds 
to the 2a  in (21), 2c  corresponds to the 3a  in (21), k  
corresponds to the k  in (21). 

So, the whole set of differential equations (26) - 
(28) makes up the concept of models of resources 
accumulation and their operational control in 
biotechnological, biomedical and Web systems. It 
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includes the differential equations of state variable, 
substrate and target product dynamics. 

The concept is based on the following principles: a 
substrate (and in some cases a target product) plays the 
role of limitation factor of a resource accumulation 
process, and it interacts with a system state variable 
according to Monod law. In the processes of operational 
control of resources, the adequate modelling of the 
system transition from its response to the load to its 
stabilization is implemented using Monod function with 
respect to the load applied; the substrate concentration is 
a limitation factor of the interaction between the 
substrate and the state variable, and its dynamics is 
implemented using Monod function. As we can see, 
Monod function is the key element for modelling the 
processes of accumulation and operational control of 
resources in biotechnological, biomedical, and Web 
information systems. 

The equilibrium state of an open system is distorted by 
onetime or long-term intervention in the system structure 
through the introduction of disturbing or stabilizing 
components. Those components interact until one of them 
is eliminated and significantly affect the state of the system. 
Therefore, their interaction is described by a nonlinear 
dependence of varying intensity, i.e. by Monod 
dependence. Another type of nonlinear reaction of the 
system of similar kind arises when the linear system with 
strong stabilization aptitude is loaded to its highest capacity 
and afterwards the load is removed. In this case, Monod 
function provides a convenient one-parameter formula for 
an adequate simulation of the system response with 
minimal side effects. 

7. Conclusions 
A concept of the models of resource accumulation 

and their operational control in biotechnological, 
biomedical, and Web systems has been proposed for the 
first time. The concept is formed as a system of 
differential equations describing the dynamics of a state 
variable, substrate and target product of the analyzed 
interacting processes. 

The structure of the system mentioned is based on 
the fact that the substrate (with possibile participation of 
the target product of the resource accumulation process) 
serves as a limitation factor to the process, and it 
interacts with the state variable of the system according 
to Monod law. Similarly, in the processes of operational 
resource control, an adequate simulation of the system 
transition from the load reaction to the state stabilization 
is implemented by means of Monod function. 

Each partial implementation of the conceptual model 
includes a nonlinear part represented by Monod function. 

This fact complicates the development of an effective 
method for model identification. In certain cases, it is 
possible to utilize the identification method based on a 
formal derivation of first approximation values and their 
subsequent correction using the Levenberg-Marquardt 
method. We intend to extend such approach to a general 
case which will be the subject of further research. 
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МОДЕЛЮВАННЯ ПРОЦЕСІВ 
НАГРОМАДЖЕННЯ РЕСУРСІВ  

ТА ОПЕРАТИВНОГО УПРАВЛІННЯ 
НИМИ В БІОТЕХНОЛОГІЧНИХ, 

БІОМЕДИЧНИХ  
ТА ВЕБ-ІНФОРМАЦІЙНИХ СИСТЕМАХ  

Роман Пасічник 

Метою цієї праці є побудова структури математичної 
моделі процесів нагромадження ресурсів та оперативного 
управління ними в біотехнологічних, біомедичних та  
веб-інформаційних системах для поглибленого вивчення їх 
спільних властивостей. Вперше запропоновано концепцію  

моделей згаданих процесів у вигляді системи дифе- 
ренціальних рівнянь, які описують динаміку змінних 
стану,субстрату та продукту аналізованих процесів, що 
взаємодіють. Кожна часткова реалізація концептуальної 
моделі містить нелінійну частину, представленою функ-
цією Моно. Це породжує проблему побудову узагаль-
неного методу ідентифікації нелінійних моделей згаданого 
виду, яку планується розв’язати в подальших публікаціях. 
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