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1. Introduction

The energy loss problem is not a new problem for piezoelectrics. It appears in pioneer’s works of the XX-
th century beginning from W.G.Cady [1]; K. S.Van Dyke [2]; S. L.Quimby [3]; D. E.Dye [4], etc. En-
ergy losses were accounted as viscosity, decaying decrements or acoustic radiation. Later W.P.Mason
introduced an additive loss resistor into equivalent electric network [5]. In 60s and 70s, an idea of com-
plex coefficients was suggested and back-grounded by S. E. Land et al. [6], G.Martin [7], R.Holland [8]
etc. In present time, new piezoceramic materials with low losses and high electromechanical efficiency
are created, and the loss problem for great power density conditions is unusual [9–11]. Now in analyze
of energy losses they include three components: elastic, dielectric and piezoelectric ones [12–17]. The
loss problem rises especially in high frequency (20–100MHz) applications where the samples thickness
reaches 200mkm or less [18].

Elastic (mechanical) losses are explained as internal imperfections, such as internal friction, domain
wall motion and lattice defects. Dielectric losses are caused by such imperfections which are connected
with conductivity as well as lattice defects. At least, piezoelectric losses are coupled with imperfections
of energy conversion process [12–17]. Analytic solutions for electroelastic vibrations of simple geometric
form bodies such as bars, rods, disks, circular or cylindrical rings etc are known [13].

Imaginary parts usually are determined at maxima/minima admittance. This idea was first pro-
posed by G. E. Martin for simple longitudinal vibrations of 1-dimentional thin piezoceramic rods and
bars [7]. Many years ago, it was proposed to use thin piezoceramic disk’s radial vibrations for such
purpose, and corresponding formulae were derived [19,20]. Very important role in energy losses belongs
to the mechanic quality factor Q, which differs for resonance and anti-resonance [21–23]. Usually in
most cases, energy losses components are relatively small in comparison with real parts and may be
represented in analytic solutions as imaginary parts of complex parameters [10–14].

Piezoceramic constructive elements’ vibrations are characterized by great electromechanical cou-
pling, elastic displacements, and stresses. In such bodies, the nature of the internal physical processes
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leads to the fact that displacements, strains, stresses, admittance and impedance have both real and
imaginary parts. It is possible to calculate any amplitude with taking into account the energy losses
alone [14–17].

This paper is devoted to analysis of the modern achievements in energy loss problem for piezo-
ceramic resonators. New experimental technique together with computing permits us to plot many
resonators’ parameters: admittance, impedance, phase angles, and power components etc. The au-
thor’s opinion why mechanical quality is different at resonance and anti-resonance is given. The reason
lies in clamped capacity and the value of electromechanical coupling factor. The better electrome-
chanical coupling is, the stronger capacity clamping is, then the higher its influence on anti-resonant
frequency and quality is. It is also established that considerable nonlinearity of admittance in constant
voltage regime is caused by instantaneous power level.

2. Components of energy losses in piezoceramics and its influence on sample’s full
conductivity

Constructive elements made of piezoceremics have transversal isotropic symmetry of 6-mm class [13,14].
Their properties differ in polarization direction and in perpendicular directions a number of times. In
analyses they are described by various elastic, dielectric and piezoelectric coefficients or moduli, which
are represented mostly in complex form [12–17]

a = a1 − ja2 = a
′ − ja

′′

= a10(1− ja1m);
a2
a1

=
a
′′

a
′
= a1m = tan ξ. (1)

Here in common view as a it is noted such electro-elastic coefficients as stiffness cij , compliances skl,
piezomodulus dnm, coupling factors ktr, dielectric constants εpq etc. Expressions for elastic displace-
ments U , strains ε and stresses σ, electric powers P , admittances Y or impedances Z, dimensionless
frequencies x are complex too [16]. For imaginary parts of complex module were derived following
restricting inequalities [12–14]
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All notations here and further were taken from [14–17]. These inequalities show that energy losses
components in piezoelectric materials are not random but are coupled to each other. It means that
having perfect elastic or dielectric properties, piezoelement has perfect electroelastic properties too.
Values of loss tangent in modern piezoceramics lie in range 0.001 − 0.05.

Analytic calculations and experimental data show that losses influences vibrations are different at
resonance / anti-resonance phenomena. Resonance amplitudes depend on elastic loss only – vibration’s
values inverse proportional to mechanical loss tangent s11m (or direct proportional to mechanical quality
Qm). Anti-resonance amplitude depends on dielectric ε33m, elastic s11m and ptezoelectric d31m loss
tangent together.

All modern methods of loss tangents determination base on maxima / minima admittance measure
at first rod or bar mode of vibration. In principle this way may be used with any sample. As was
shown in Ref [16] the piezoelectric resonator’s admittance is inter-electrode capacity C0 conductivity
produced on anti-resonance ∆a(x) to resonance ∆(x) determinants ratio

Y = jωC0

∆a(x)

∆(x)
, (3)

x is the dimensionless frequency, which depends on geometric sample’s form.
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The following formulae were derived for thin rod with thickness polarization, shot cylindrical ring
and high cylindrical shell with radial polarization accordingly [13,17]

Yb = jωC0

[

1− k231 +
k2
31

sinx

x cos x

]

= jωC0

∆a(x)

∆(x)
,

∆(x) = cos(x), ∆a(x) = (1− k231)∆(x) + k231 sinx/x,

(4)
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Here: j is the imaginary unit, ω is the angular frequency, ωr is the resonant angular frequency, k31 is
the transverse coupling coefficient, kp is the planar coupling coefficient, ν is the Poisson ratio.

After substituting (1) in (4) and according to metamorphosis, G. E.Martin obtained approximate
formulae for maxima Ym and minima Yn rod’s admittances [7]

Ym =
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2

31
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[
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2
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These expressions are used for loss components determination at present time too, and longitudinal
thin rod’s vibration is known now as a k31 mode [23]. Coupling coefficient is [7]
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In a “short” cylindrical ring case, the dimensionless frequency is x = ω/ωr and

k2310 =
ω2
a − ω2

r

ω2
a

, (10)

which is known as Meson’s formula [13]. Maxima admittance and mechanic quality are

Ym = ωmC0k
2

310Qm =
ωmC0k

2
310

s11m
, Qm =

Ym

ωmC0k2310
. (11)

In the “high” cylindrical ring case, the dimensionless frequency is x = ω/ωr, and the coefficient kp
is determined from relation

2(1− k2p)

(1 + ν)k2p
=

f2
m

f2
n − f2

m

. (12)
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Thin piezoceramic disk’s radial vibrations have following admittance [14,15]

Ydsk = jωC0

[

1− k2p +
(1 + ν)k2pJ1(x)

∆(x)

]

= jωC0

∆a(x)

∆(x)
,

∆(x) = xJ0(x)− (1− ν)J1(x),∆a(x) = (1− k2p)∆(x) + (1 + ν)k2pJ1(x).

(13)

Dimensionless frequency for disk is x = ωR
√

ρsE
11
(1− ν2), where R is plate’s radius, ρ is density.

After manipulating with complex functions in [14,15,19], and [20], it was obtained

s11m ≈
4.9fm1C0k

2
po

Ym1

, d31m ≈ s11m + ε33m
2

− Yn

4πfn1C0

+
s11mxnδn

4∆n

δn = (1 + k2p0)βn + k2p0(1 + ν)γn; γn = [xnJ0(xn)− J1(xn)]/xn;

βn = (1 + ν)J0(xn)− κ0J1(xn)−∆(xn)/xn, ∆n = ∆a(xn).

(14)

To use these formulae it is necessary to measure admittance maxima/minima and corresponding
frequencies, and to calculate factors β, δ, γ at anti-resonance.

It is sufficient difference between constant current and constant voltage loading conditions for high
power regime devices, such as radiators, ultrasonic motors or transformers.

                                       a                                                                  b                             
 

 

 

Fig. 1. Admittance dependences for constant voltage and constant currant regimes [10].

Fig. 1, which is taken from C.O.Ural et al. article [10], shows that constant voltage regime is sur-
rounded with great nonlinearity while constant current regime does not exhibit it. Data were obtained
from longitudinal first mode rectangular PZT-8 plate vibration. Plate’s size in paper [10] is absent.
Authors consider that there is serious difficulty in determining the electromechanical coupling param-
eters under a high electric field drive from the admittance curves under a constant voltage condition.
With a constant voltage method the resonance spectrum distorts significantly, sometimes exhibiting
large hysteresis or a jump of the peak curve upon rising and falling frequency driving. This is caused
mainly by the nonlinear elastic properties of the piezoceramics. Since, around the electromechanical
resonance frequency, the vibration amplitude of a piezoelectric material is not proportional to the
voltage, but to the current flowing through the sample. In order to determine the electromechanical
coupling parameters precisely an admittance curve should be taken under a constant current condition.
This method can determine the coupling parameters precisely from a perfectly symmetrical resonance
spectrum, which is demonstrated in Fig. 1, b. However, using a constant current method, authors found
that it can not be adapted to the anti-resonance mode characterization. This dilemma indicated the
necessity of a new measurement system which can be used in a whole frequency range covering the
resonance / anti-resonance.

Mathematical Modeling and Computing, Vol. 1, No. 2, pp. 163–177 (2014)



Modeling of the energy-loss piezoceramic resonators 167

Careful analyze of these graphs shows that maxima admittance for constant voltage conditions
reach 50mS only while at constant current it reach 80mS. The maxima admittance frequencies lie in
first case in range 55.9 − 56.1 kHz and in range 56.2 − 56.4 kHz for second case. It means that power
and temperature conditions at constant voltage and constant current regime are not identical.

Simple calculations on Fig’s 1 data (Table 1, Table 2) show that constant voltage condition differs
from constant current condition with maxima power level a number of times.

Table 1. Power’s maxima at constant voltage conditions for Fig’s 1 data.

U , mV 100 300 500 800 1000 1500

I, mA 4.9 14.7 29.5 33.6 37 40.5

P , mW 0.49 4.41 11.75 26.8 37 60.7

Table 2. Power’s maxima at constant current conditions for Fig’s 1 data.

I, mA 5 10 20 30 40

U , mV 71.5 131 266 400 558

P , mW 0.36 1.31 5.33 12 23.5

To examine the energy loss tangent’s influence on vibration characteristics the calculations were
provided near maxima admittance/impedance for TsTBS-3 disk 66.4 × 3.1mm. Formulae (13) were
used in complex form (without Bessel function expansions) for dimensionless frequency ranges 2.05 −
− 2.1; 2.39 − 2.415 and k2p = 0.32, s11m = 0.007, ε33m = 0.0085. Piezoelectric loss tangent had three
values: d31m = 0.0035 (unbroken line on Fig. 2, b), 0.005 (dot curve) and 0.007 (broken line).
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Fig. 2. Calculated and measured admittance-impedance dependences 
Fig. 2. Calculated and measured admittance-impedance dependences.

All three admittance curves (Fig. 2, a) coincide – dielectric and piezoelectric losses do not influence
resonant vibrations near first resonance. On this graph there are obtained such values Ym0 = 132mS,
Y1,2 = 93.3 (on bandwidth ends – 3 dB level [10,21,23]), x0 = 2.079, Qr = 138− 148. Impedance lines
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(Fig. 2, b) differ in amplitude and have such bandwidth method determined qualities Qa = 228.4; 184.5,
and 171.4.

In experiment (Fig. 2, c, d) voltages are measured according to the modernized schema [16,24,25]
and the following formula was used

Ype =
Ipe
Upe

=
UR

RUpe
. (15)

In parallel to output resistor R2 [26] there was included piezoelement Pe and loading resistors R.
Voltmeter measured voltage Upe dropped on piezoelement or voltage UR dropped on loading resistors.
Voltage UR is proportional to electrical current Ipe in resistor and sample. The ratio of current to
voltage is definite as admittance.

Loading resistor near resonance was 11.2Ohm and near anti-resonance 20 kOhm. It was obtained
Ym = 127.1mS, Y−3db = 89.87 ∼= 90mS; f2 − f1 = 22/28 ∗ 300 = 235.7Hz; Qr = 31551/235.7 = 138.8;
Zn = 16.86 kOhm, Z−3db = 11.92 kOhm; f2−f1 = 31/33∗200 = 187.9Hz; Qa = 36.499/187.9 = 194.2.

The results are in a good matching with calculated data and show that resonant and anti-resonant
quality factors differ in almost 40% while in calculations there were taken the constant value for
mechanical quality equal Qm = 143. It means that conception of constant values of dielectric, elastic
and piezoelectric loss tangent do not conflict with analytic and experimental results. Independence
resonant phenomena upon dielectric and piezoelectric losses was postulated by G.W.Katz [27] for
Rozen-type [28] transformer calculations and was used in my papers on this problem [29,30].

3. Experimental investigations

Many years ago and in modern time experimental research of energy losses in piezoelectric materials
are based on measuring of the frequencies and admittances near resonance and anti-resonance. These
frequencies are determined in analysis as that frequencies, where phase shifts between sample’s voltage
and its current are zero [13–17]. It is not lightly to reach such effect in practice, and resonant frequency
fr is identified with maxima admittance frequency fm, while anti-resonant frequency fa is identified
with minima admittance frequency fn. The fact is that the difference between fr − fm, as soon as
fa − fn, is small and may be neglected for most cases.

The variants of simple experimental networks are well known and described in many Refs [13–
15,26,27] etc. Such schemas are known as Meson’s four-pole. Input voltage divider R1, R2 matches
generator’s output with measuring circuit and decreases ultrasonic generator’s signal in (R1 +
+R2)/R2 times. In parallel to output resistor R2 is included piezoelement Pe and loading resistors R.
Voltmeter in these schemas measures voltage UR dropped on loading resistor, which is proportional
to electrical current Ipe in resistor and sample. Voltage Upe in this schema determined as difference
between input voltage Uin and voltage UR. Instead of exact formula (15) an approximate expression
is used

Ype1 =
UR

R(Uin − UR)
. (16)

When loading resistor and sample change one another, the following approximate formula may be
derived

Ype2 =
(Uin − Upe)

RUpe
. (17)

As was shown in Refs [16,17,24,25] all three formulae give identical results on resonance and anti-
resonance but it’s differ strongly a far of these frequencies.

In contrast, the network, that presented in Refs [16,17,24,25], permits to measure with a great accu-
racy all voltages Upe, Uin and UR in a wide range around resonance and anti-resonance. This schema
realizes three various loading conditions: 1) constant current, 2) constant sample’s voltage, 3) con-

Mathematical Modeling and Computing, Vol. 1, No. 2, pp. 163–177 (2014)



Modeling of the energy-loss piezoceramic resonators 169

stant input voltage. Experimental data enter to PC and AFCh (amplitude-frequency characteristics)
a number of physical parameters are plotted.

Formula (15) gives accurate data for all frequency range near resonances when R = 3 − 15Ohm,
and for anti-resonances it must be increased to 2− 200 kOhm. An influence of the loading resistor on
obtained experimental data demonstrated Table 3. It shows that frequencies of admittance maxima
have very small dependencies upon loading resistor value but strong for conductivity.

Table 3. Dependence of an admittance maxima and resonant frequency upon loading resistor’s value

R, Ohm 1.6 5.3 11.2 230 993

fr, kHz 31.572 31.560 31.562 31.563 31.576

Ym, mS 131.4 124 119.6 101.4 26.36

Three measured voltages Upe, UR and Uin create peculiar characteristic triangle and angles between
its sides may be calculated with using a cosine low as

cosα =
U2
pe + U2

R − U2

in

2UpeUR
, cos β =

U2

in + U2

R − U2
pe

2UinUR
, cos γ =

U2

in + U2
pe − U2

R

2UinUpe
. (18)

AFCh of an admittance near resonances and of an impedance near anti-resonance were plotted and
used for determinations of Qa and Qb quality on – 3 dB bandwidths method [9,10,16,17,23].

4. Equivalent electrical circuit of a piezoelement for low and high powers

In our time for commercial purpose various type piezoelectric bodies are made and used [9–17,23].
Modes of vibration differ too: longitudinal, flexural or shear for low frequencies; lateral and radial
for middle frequencies and thickness for high frequencies. It is very difficult to make the element
thinner 0.1mm [26]. Single equivalent electrical network can’t to satisfy all these damages and various
variants such circuits were proposed. First schemas were described by W.G.Cady [1], K. S.VanDyke
[2], S. L.Quimby [3] and D.E.Dye [4]. All listed works had very interest results and outstripped the
time. For example, W.G.Cady [1] in 1922 investigated thin narrow quartz rod longitudinal vibrations
and found that electromechanical efficiency reaches maxima for the case, when electrode covers place’s
surface partly, on 75% D.E.Dye [4] studied such rod with divided electrodes and observed smoldering
discharge. It was a first piesotransformer, but researcher doesn’t understand that fact. Rozen-type
piezotransformer [28] was patented through 30 years! Most known is Van Dyke schema with two
capacitors and inductance. W.Mason refined it for Rochelle salt [5]. B.VanderVeen [31] proposed the
equivalent network for thin piezoelectric rod with divided electrodes longitudinal vibration. E.C.Munk
proposed an equivalent electrical circuit for radial modes of a piezoelectric ceramic disk with concentric
(divided) electrodes [32]. A.V.Mezheritsky [18] proposed a number of equivalent circuits for a high-
frequency, high-capacitance piezoceramic resonator with resistive electrodes.

Four variants of classic Van Dyke-type equivalent circuit are demonstrated on Fig. 3.
Vibrating system for any piezoelectric resonator may be presented an equivalent electrical network

(Fig. 3, a, b), in which in parallel to static inter-electrode capacity 0 is connected a series branch,
consisting from inductance L, capacitor C and resistor r (this resistor symbolizes elastic energy losses).
Such system is called with third view circuit [33]. A voltage resonance in series circuit corresponds
to resonant frequency when r = 1/Ym. And the current resonance in parallel circuit corresponds to
anti-resonant frequency. This parallel circuit consists from inductance L and equivalent condenser C ′,
which created by C0 and C in series C ′ = C0C/(C0 + C).

In radio-engineering quality Q of resonant system determined as ratio of stored in circuit energy
Estor to loss energy Edis.av which dissipate during vibration period. It expressed with circuit parameters
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Fig. 3. Variants of Van Dyke-type equivalent circuit.

in such a way [33,34]

Q = 2π
Estor

Edis.av

=
ρ

r
=

2πf0L

r
=

1

2πfC
, ρ =

√

L

C
, f0 =

1

2π
√
LC

, (19)

ρ is wave circuit resistance, r is loss resistor, f0 is resonant frequency, L and C are circuit inductance
and capacity.

The following formulae may be obtained for equivalent capacity and inductance

C =
1

ρω
=

1

2πf0ρ
=

1

2πf0Qrr
, L =

ρ

ω
=

ρ

2πf0
=

Qrr

2πf0
. (20)

In our disk 66.4 ∗ 3.1mm, loading on 11.2Ohm, loss resistor was r = 7.87Ohm, Qr = 138.8
and ρ = Qr ∗ r = 1092Ohm, f0 = 3.155 ∗ 104, C0 = 1.849 ∗ 10−8 F. Substituting these data in
(20) we may obtain = 1/(2 ∗ 3.14 ∗ 1.092 ∗ 3.155 ∗ 107)F = 1/(2.164 ∗ 108)F = 4.62 ∗ 10 − 9F,
L = 1092/(2 ∗ 3.14 ∗ 3.155 ∗ 104) = 5.51 ∗ 10−3 Hn. Parallel circuit capacity is C ′ = C ∗C0/(C +C0) =
= 4.62 ∗ 18.49/(4.62 + 18.49) ∗ 10−9 F = 3.696 ∗ 10−9 F. Parallel resonance frequency, wave resistance
and anti-resonant quality factor are fn = 3.528 ∗ 104 Hz, ρ = 1221Ohm, Qa = 1221/7.87 = 155.1.
Measured values were about 36 499Hz, Qa = 194.2.

Why so great discrepancy between calculated and measured values of qualities and anti-resonant
frequencies exists? The reason lies in clamped capacity and electromechanical coupling factor’s values.
The better electromechanical coupling the stronger capacity clamping and the higher its influence on
anti-resonant frequency and quality. In our disk case k2p = 0.32 and C0c = (1− k2p)C0 = 0.68 ∗ 1.849 ∗
10−8 F = 1.257 ∗ 10−8 F. After such correction we have C ′

1
= 4.62 ∗ 12.57/(4.62 + 12.57) ∗ 10−9 F =

= 3.378 ∗ 10−9 F, fn = 3.69 ∗ 104 Hz, ρ = 1277Ohm, Qa = 1277/7.87 = 162.3. Frequency difference
now is 0.9 %, quality difference – 16.4 %.

Fig. 4 presents a result of modeling equivalent network with passive elements. For equivalent electric
schema, consisting from L, C, R elements such as 0.4mHn, 1.814nF and 9.579nF, were made volt-
age measurements with loading resistor 11.2Ohm. Constant current and constant voltage conditions
were used. Graphs are plotted for voltages, input admittance, cosines, angles and real / imaginary
admittance components. Graphs are obtained for constant current Ieq = UR/R = 15mV/11.2Ohm =
= 1.34mA (left), constant voltage Ueq = 60mV (centre) and constant input voltage Uin = 100mV
(right) conditions near series circuit resonance. For model’s case voltage Ueq is identical to voltage Upe

for sample, and current Ieq is identical to current Ipe for sample.
On higher graphs (first row) Ueq are shown as broken curves, Uin – as dot curves and UR as

unbroken lines. Full admittances (second row) are calculated with formulae (15) (unbroken lines), (16)
(dot lines) and (17) (broken curves). Third and forth rows present cosines of triangle’s angles and
corresponding angles. Angle α (dot lines) is created by UR and Ueq sides. It characterizes a phase shift
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Measured values were about 36 499 Hz, Qа = 194.2.  
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Fig 4 Result of modeling equivalent network with passive elements. 
Fig. 4. Result of modeling equivalent network with passive elements.
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between circuit’s current and voltage. Angle β (broken curves) is created by sides Uin and UR. It is
according to phase shift between output generator voltage and consuming current. At least, angle γ
(unbroken lines) is created by sides Uin and Ueq, i.e. between output generator voltage and equivalent
circuit’s voltage. Lower, fifth row presents full Y (unbroken curves), real G (dot lines) and imaginary
B (broken curves) parts of circuit admittance, calculated with formulae

G1 = Ype cos β, B1 = Ype sin β; (21)

or
G2 = Ype/

√

(1 + k2), B2 = G2k, k = tan β. (22)

Both expressions gave same results and serve here for compare.
In general, graphs of Fig. 4 are similar to that of real sample [16] and show that for small signal

appropriate circumstances constant current and constant voltage regimes exhibit same result.

Table 4. Shunting capacity influence on equivalent network parameters.

C0, nF 6.716 10.5 36.1 70.44 36.1 +R1 36.1 +R2

fr, kHz 59.23 59.09 58.92 58.61 58.95 58.69

fa1, kHz 66.63 64.3 60.53 59.83 60.88 60.59

fa2, kHz 66.73 64.3 60.39 59.32 60.39 60.39

L, mHn 3.99 4.0 4.03 4.08 4.03 4.06

r, Ohm 10.5 18.3 19.8 17.7 18.1 39.6

ρr, Ohm 1484 1500 1491 1500 1491 1497

C ′, pF 1427 1530 1725 1766 1725 1725

ρa, Ohm 1672 1620 1528 1520 1528 1534

Qr 141.3 82 75.3 84.7 85.2 37.9

Qa 159.2 88.3 77.2 85.9 87.4 38.7

The influence of shunting condenser capacity C0 on equivalent network parameters shows Table 4.
Formulae (19) and (20) were used to calculations of equivalent inductance L, anti-resonant frequency
fa2, resonant ρr and anti-resonant ρa wave resistances and according qualities Qr, Qa. Resonant fr
and anti-resonant fa1 frequencies were measured with loading resistors 3.3 or 335Ohm and resonant
loss resistor r value was determined with approximate formula (16) as follows

r =
1

Ym
=

(Uin − UR)R

UR
. (23)

Last two columns of table’s data were obtained for C0 = 36.1nF connecting in series with resistor
21.9Ohm (36.1+R1) or with that resistor in series with all equivalent network (36.1+R2). A capacity
of series condenser C with mica dielectric, measured at 1000Hz by alternative current bridge, was
1812pF and it had dielectric loss tangent tan δ = ε33m = 0.0008. For shunting capacity were used
condensers with mica or ceramics dielectric. Inductance L was winded in two insulated wires of 0.5mm
in diameter and its own resistance on direct current measurement was 6.7Ohm. Different values loss
resistor r in table corresponds to various network loading conditions.

It is easy to see, that shunting capacity influence on resonant frequency is very small, but great
on anti-resonant frequency. The higher shunting capacity values the lower resonance / anti-resonance
range. Calculated quality values for resonance always are less than for anti-resonance. Addition loss
resistor in series with shunting capacity decreases both quality factors less than in series with all
schemas.

K.Uchino et al [11] in experiments with rectangular piezoceramic plate resonant excitation vi-
brations shown that quality factor very depends on vibrating velocity level and proposed to include
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in electrical equivalent network for high power conditions an addition loss resistor in series with full
schema, as I modeled in last row of Table 4. They concluded that there are, of course, different ways
to introduce such resistor in equivalent circuit.

The heat generation makes an important role in high power operating piezoelectric devices [9–11].
It is observed in off-resonance frequency under a large electric field applied (1 kV/mm or more) as
well as under a relatively small electric field applied (100V/mm or less) at a resonant frequency. Off-
resonance frequency heat provides in a sample volume and dissipated by its surface. The higher ratio
of volume / surface the higher sample’s temperature [11]. For resonance case the heat generation is
origin in nodal point vicinity where large stress / strains are induced and expansions on full volume.
Authors of [10] consider that such phenomenon is caused by mechanic and dielectric loss tangents rises.

5. Results and discussion

As it was shown in previous paragraphs the energy loss in piezoelectric ceramics problems are very
complicated and include high power and high frequency dependence [10,11,16] as well as shape depen-
dence.

 

     

              
 

Fig  5 Dependence quality from dielectric loss tangent or vibration velocity level 
Fig. 5. Quality dependence from dielectric loss tangent or vibration velocity level.

Fig. 5 illustrates the dependence quality from dielectric loss tangent [22] or vibration velocity level
[10,11]. Author [22] describes the experimental data presented in left graphs. It shows the dependence
of the resonance Qr and anti-resonance Qa planar quality factors at the fundamental mode of the
disk. The samples were made of a single block 60 × 60 × 8mm of piezoceramic TsTS-35Y sintered
at a non-optimal regime with a large gradient of properties. The samples were polarized in air under
pressure at temperature transition through Curie point. At enough equal degree of polarization of the
samples the lowering of density, steep increase of the static conductivity and increased porosity took
place. Under the effect of the indicated factors, the resonance quality factor of planar vibration is
reduced a little, but the planar anti-resonance quality factor decreases steeply. Author concludes, that
the change of the anti-resonance quality factor Qa value is a sensitive indicator of the internal active
conductivity connected with the internal micro-defectiveness of material structure, such as porosity,
not reacted metal components or inclusions, etc. In most cases, the additional firing to (700− 900)oC
of samples with increased static conductivity is enough for essential increasing of the anti-resonance
quality factor. These experimental results are in good agreement with restrictive inequalities (2) and
show the better dielectric properties the better mechanics and vice versa.

Central graphs of Fig. 5 are created by me on the base of experimental data [11] which were
obtained with rectangular piezoelectric plate’s longitudinal vibrations. It demonstrates a vibration
velocity dependence of the resistances Rd and Rm in the equivalent electric circuit. Authors make
attention on a dramatic change in Rd above a certain threshold vibration velocity. Right graphs show
quality dependence upon vibration velocity [10,11]. Both quality factors the resonance Qr and anti-
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resonance Qa (on Fig its are noted as Qa, Qb respectively) sharply decrease after some velocity level
is reached.

Equivalent circuit under high power drive for the piezoelectric transducer is represented by a com-
bination of L, C and R. The resonance state has very low impedance. Cd and Rd correspond to the
electrostatic capacitance (for a longitudinally clamped sample, not a free sample) and the damped (or
“extensive”) dielectric loss tan δ, respectively, and the components LA and CA in a series resonance
circuit are related to the piezoelectric motion.

Total resistance RA = Rd + Rm should correspond to the loss tangent, which is composed of the
extensive mechanical losses and dielectric / piezoelectric coupled losses, i.e. to the extensive dielectric
and mechanical losses, respectively. Authors [11] introduced an additional resistance Rd to explain a
large contribution of the dielectric loss when a vibration velocity is relatively large. The degradation
mechanism of the mechanical quality factor Qm with increasing electric field and vibration velocity is
assumed. Fig. 5 shows the change in mechanical Qm with vibration velocity is almost constant for a
small electric field / velocity ratio, but above a certain vibration level Qm degrades drastically, where
temperature rise starts to be observed.

Table 5. Dependence of equivalent network parameters upon sample size (mm2).

Samples, 50 x 1.3 66.4 x 3.1 35.4 x 4.1 30 x 8 50 x 1.2 50 x 1.15
material TBK-3 TsTBS-3 TsTS-19 PKD TsTS-19 TsTBS-3

C0, nF 14 000 18 490 5770 1386 19 000 28 000

fr, kHz 65.913 31.581 58.929 78.581 41.135 46.224

fa1, kHz 67.917 36.454 69.184 88.820 44.846 52.361

fa2, kHz 67.57 36.62 69.027 96.81 44.76 52.38

C, nF 545 4703 1660 494 2767 5217

L, mHn 10.7 5.48 4.56 8.104 5.42 2.27

r, Ohm 4.45 7.66 19.2 13.5 14 3.3

k2p 0.1 0.31 0.32 0.25 0.21 0.34

Qr 1000 140 86 300 100 200

Qa 1020 179 98 368 109 226

Authors [11] conclude that Rm, mainly related to the extensive mechanical loss, is insensitive to
the vibration velocity, while Rd, related to the extensive dielectric loss, increases significantly around
a certain critical vibration velocity. Thus, the resonance loss at a small vibration velocity is mainly
determined by the extensive mechanical loss which provides a high mechanical quality factor Qm,
and with increasing vibration velocity, the extensive dielectric loss contribution significantly increases.
After Rd exceeds Rm, we started to observe heat generation. All three graphs of Fig. 5 are plotted
in principle “as is”, i.e. its not might to explain, why do such phenomena exist? Quality factors and
vibration velocity change simultaneously when power supply is rose and both are consequence of a
mechanic stress increasing or another reason.

During recent time I studied the radial vibrations a number of piezoelectric disks made from different
ceramics and with various thickness / radius ratio. The equivalent R, C, L parameters as well as
anti-resonant frequencies were determined with using expressions (21)–(23). Results are presented in
Table 5 (notations are same that in Table 4). Its show the higher mechanical quality factor Q the greater
equivalent inductance L and the lower equivalent capacity C. Calculated with accounting clamped
capacity anti-resonant frequencies fa2 are close to measured fa1, excepting thick disk 30× 8mm from
PKD material, for which calculated value exceeds measured one in 1.1 time.

To finish this chapter I want to look in the Fig. 6, which demonstrates phase shifts between real /
imaginary parts of first and second thin disk radial vibration admittance calculated with formula (13)
and determined experimentally with using formula (18).
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 Fig. 6. Calculated and measured phase relations for first two radial resonances.

Both higher graph’s two curves were plotted in frequency intervals 2− 2.5 and 5.3− 5.6. Symbols
An = v = atan(w)(w = imag(Y )/real(Y ), unbroken lines) are phase shift’s angles and |An| = abs(v)
(broken lines) are modulus of phase shifts. A reason of such plotting is that. Voltmeter measures
only effective values of voltage and not sensitive to its polarity. And determined with using cosine
low (18) angles of a characteristic triangle are imaged as its modulus. Lower graphs in Fig. 6 represent
of phase-frequency relations between sides of this triangle.

A behavior of an angle β near first resonance and antiresonance as well as on second resonance is
similar to calculated relations for |An|. On the second anti-resonance angles minimum does not rich
zero that explains with experimental inaccuracies at small currents measurement.

6. Conclusions

Variants of the known Van-Dyke-type electric equivalent circuit for vibrations of piezoceramic res-
onators at small and high input power levels as well as those of R, L, C model have been estimated.

The high-power behaviour of piezotransducers is very sensitive to loading conditions and differs for
1) constant voltage, 2) constant current, 3) constant vibration velocity, and 4) constant input power.

The results of Fig. 1 can be explained in the following way. When a piezoceramic piece (specimen)
is excited by constant voltage drop, the instantaneous power in the specimen at resonance frequency
increases in many times in comparison with the off-resonance case. And when the specimen is excited
by constant current, the instantaneous power in the specimen at resonance frequency decreases in
the same ratio. Thus, the reason why the admittance curve is non-linear at constant voltage and
why it is absent at constant current is a lower level of instantaneous power. Modeling of piezoelectric
vibrations by means of R, L, C elements permits us to study these influences on resonant/anti-resonant
frequencies as well as on full-conductivities.

Our conception of taking into account only constant (frequency independent) magnitudes of di-
electrics, elastic, and piezoelastic loss tangents does not contradict analytical and experimental results.
Additional resistor for taking into account high-power conditions influences the resonance to less extent
than it does for anti-resonance; and, in my opinion, it must be connected to the equivalent circuit in-
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series with the clamped sunt capacitance as it was proposed many years ago by W.Mason for Rochelle
salt.

Ten years ago Alex Mezheritsky asked us and himself: “Elastic, dielectric and piezoelectric losses

in piezoceramics: how does it work all together?”. Now this question may be rewritten as: “How and

why does it work all together?”.

To answer these and similar questions, further investigations are required very much.
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Моделювання п’єзокерамiчних резонаторiв з втратами енергiї
електричними еквiвалентними схемами з пасивними елементами

Карлаш В.Л.

Iнститут механiки iм. С. П. Тимошенка НАН України, Київ, Україна

вул. Несторова, 3, Київ, 03057, Україна

Стаття присвячена аналiзу сучасних досягнень в проблемi втрат енергiї в п’єзокера-
мiчних резонаторах. Нова експериментальна технiка разом з комп’ютером дозволяє
наносити багато параметрiв резонатора: адмiтанс, iмпеданс, фазовi кути, компоненти
потужностi тощо. Подана думка автора, чому добротностi на резонансi та антирезо-
нансi рiзнi. Причина полягає у величинах затиснутої ємностi та коефiцiєнту зв’язку.
Чим кращий електромеханiчний зв’язок, тим сильнiше затиснута ємнiсть i тим бiль-
ший її вплив на анти-резонансну частоту й добротнiсть. Встановлено також, що
значна нелiнiйнiсть адмiтансу в режимi сталої напруги спричинена рiвнем миттєвої
потужностi.

Ключовi слова: п’єзокерамiчнi резонатори, електромеханiчний зв’язок, затисну-

та ємнiсть, миттєва потужнiсть
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