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cesses of intercalation in “electrolyte — electrode” system. Using the nonequilibrium statis-
tical operator method the generalized transport equations of Nernst-Planck type for ions
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1. Introduction

Theoretical studies of electro-diffusion transport processes of ions and electrons in the “electrode —
electrolyte” systems remain actual nowadays [1–7]. They are linked with a need to describe nonequi-
librium processes of intercalation as well as to develop a theory suitable for practical application to
predicting and controlling these processes. The difficulties in describing processes at electrode are first
of all related with surface phenomena at electrolyte — electrode interface. In this region, complicated
processes of adsorption and diffusion take place which are connected with a problem of charge accumu-
lation at battery electrodes [8]. In the system “electrode (anode) — electrolyte — electrode (cathode)”,
the anode plays role of the source of both electrons, which move to cathode by the corresponding
electric circle, and lithium ions in electrolyte. A cathode is typically a metallic system (nickel, for
example) covered with active material containing carbon and in which lithium ions intercalate from
the solution. Herewith, an important issue is the following one. The electrochemical processes in
electrolyte solution can be described using methods of classical statistical mechanics, whereas in the
region near the electrolyte —electrode interface and inside the electrodes, description of diffusion and
intercalation processes should be implemented by means of the modern methods of quantum statistical
physics.

In this field, the electrochemical impendance studies [9–11] of electro-diffusion transport processes in
Li-ion batteries [12–16] were carried out and intercalation/deintercalation processes were investigated
using nonequilibrium thermodynamics [6,8,17–21]. In paper Ref. [8], it was proposed a generalized
theoretical description of capacity loss and statistics on the battery lifetime from the viewpoint of
formation of “electrolyte — electrode” interface near the negatively charged electrode is proposed. Basic
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Statistical description of electro-diffusion processes of ions intercalation 179

mechanisms of ion intercalation in the “electrolyte — electrode” systems were studied in papers [22–27]
based on the lattice model [28–30] and the Blume-Emery-Griffiths model [31]. Computer simulation
studies are very important in this field as well [9,32–34]. In particular, in Refs. [3,33] thermodynamic
and structural properties of LixTiO2 were investigated using a cluster expansion method based on
calculation of pseudopotential energy, which correctly predicts phase behavior of Li intercalation into
TiO2 and occupation of sites. The cluster expansion allows to carry out Monte Carlo calculations
of thermodynamics. This make it possible to determine a configuration of lithium and its chemical
potential as a function of lithium concentration at temperature 300 K. For LixTiO2 at 1

2 < x < 1 a
two-phase region was obtained, which is consistent with the experiments on diffraction. In Ref. [34]
microstructures on surfaces of graphite particles detected in carbon anodes were investigated by means
of high-resolution electron microscopy. The surfaces consist of structures built on similarly to carbon
nanotubes. Mechanism of formation of these nanostructures was investigated using the method of
molecular dynamics based on the Tersoff potential. Electrochemical measurements showed that carbon
anodes composed of these structures provide high performance of the battery with a high discharge
capacity and low irreversible capacity.

In Ref. [28] intercalation of ions into the base material is studied using the distortion lattice gas
model. It was shown that the effective potential of ions arises from the host distortion induced by
intercalation. This interaction induces a distinct peak at the flow-concentration diagram. Effective
potential can be a negative in a certain region. It means that there is a region with attraction,
which is the limit for increasing the distortion effect. Under these conditions intercalants condense
around the deformed domains of the host. This consists with the experiments on LixMn2O4 in which
a similar formation of a drop was observed. It turns out that the effect of permselection plays an
important role in the electrochemical intercalation. It is important to note the results of paper [31]
in which the pseudospin-electron model based on the Blum-Emery-Griffiths one is used to describe
the phase transitions and phase separations in the intercalated crystals. It is shown that due to the
nature of one-site electron-electron and electron-pseudospin interactions the partition function of this
model can be represented as a product of the partition functions of independent pseudospin (with two
shifted parameters) and electron subsystems. The phase diagrams of the model, diagrams of the phase
separations and concentrations of the intercalated particles depending on their chemical potential were
built exactly for zero temperature and in the mean-field approximation for nonzero temperature. It was
shown that in some range of values of the chemical potential, direct interaction between intercalated
particles and the basic layer of electrons leads to a separation in phases with different concentration of
particles and electrons.

The theoretical and experimental studies of chemical diffusion coefficient for lithium ions in in-
tercalation processes into various electrode materials are actively carried out [35–40]. A complicated
dependence of chemical diffusion coefficient on a degree of electrochemical intercalation and on alter-
ation of structure of cathode material is analyzed as well. In particular, in Ref. [35] based on a detailed
analysis of experimental investigations for various materials an important conclusion was drawn: the
structure of intercalated material has the main influence on the chemical diffusion coefficient. Conse-
quently, it is important to take into account to some extent the altering of microstructure of cathode
material, in particular, via its polarization properties.

In the present paper we propose a statistical theory to description of electro-diffusion processes in
“electrolyte — electrode” system while taking electromagnetic processes into account by means of the
D. Zubarev nonequilibrium statistical operator (NSO) method [41,42]. In section 2 we formulate the
model and its Hamiltonian. In the third section, using the Zubarev NSO method [41,42] we obtain
the nonequilibrium statistical operator for the “electrolyte — electrode” system as a function of cor-
responding parameters of a reduced description (observables). We receive the generalized transport
equations of the Nernst-Planck type for ions and electrons for description of electro-diffusion processes
of intercalation. In section 4 the set of equations for ion and electron flows in the “electrolyte —
electrode” system is obtained. In these equations mechanisms of transport are described by the gen-
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180 Kostrobij P. P. et al.

eralized diffusion coefficients which are calculated in the fifth section in Gaussian approximation for
time dependence via the zero and the second moments of time correlation function.

2. Hamiltonian of the system

Physical processes in batteries during charging and discharging can be divided into transitional (with
nonstationary flows of ions and electrons) and stationary (with stationary flows of ions and electrons)
ones. The driving forces of these processes are differences in potentials of electric fields of an electrolyte
and an electrode. When we deal with the transitional processes (including charging or discharging)
the potentials of electric fields are not stationary and according to Maxwell’s equations for electro-
magnetic fields in each subsystem vector potential acts on each charged particle and determines the
nonequilibrium magnetic field. Transitional processes are fast processes of charge transport between
the electrodes which lead to strong polarization in the electrolyte and electrode, namely to the change
of dynamic dielectric functions. Obviously, for each transitional process, there is its own characteristic
time of charge transport by ions and electrons, in particular, time of ion intercalation/deintercalation
into the electrode structure. Intercalation of ions into the electrode structure on the stage of transi-
tional processes modifies strongly a dielectric function of the electrode and electrolyte which apparently,
via the relaxation phenomena induce stationary processes of charging and discharging of the battery,
time of which is much larger than the time of transitional processes. That is, the stationary processes
of charge transport are formed by strongly polarization subsystems of the electrolyte and electrode on
the stage of transition processes.

We consider the electrolyte — electrode system, when electrolyte is presented as a classical sub-
system of interacting ions, electrons and molecules, whereas the electrode is presented as a quantum
subsystem, in which ions can intercalate from solution. We consider ion model with the Hamiltonian
on the stage of transitional processes represented as

H = Hf +H int +Hs. (1)

Here,

Hf = Hi +
∑

α

Nα∑

j=1

Zαeϕf (rj; t)

is the Hamiltonian of the electrolyte subsystem, positively and negatively charged ions of which are
considered on the classical level of interactions in the solution with a dielectric function,

Hi =
∑

α

Nα∑

j=1

1

2mα

(
pj −

Zαe

c
Af (rj ; t)

)2

+
∑

αβ

NαNβ∑

j 6=k=1

Vαβ(rj , rk) (2)

is the Hamiltonian of ions, pj is the momentum of jth ion of species α having mass mα; Vαβ(rj, rk) =

=
ZαZβe

2

rjk
is the Coloumb interaction between ions of valences Zα and Zβ, e is the electron charge

and rjk is the distance between ions.
H int is the Hamiltonian describing interaction of ions and electrons of electrolyte with the surface

of electrode. It should describe a polarization, an adsorption and other surface properties. This is
important for the formation of “electrolyte — electrode” interface at the negatively charged electrode,
which affects the cyclic charge/discharge processes and the life time of battery [8]. The potential can
be modeled on the both classical and quantum levels depending on the model.
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Hs is the Hamiltonian describing the interaction of the intercalated ions and electrons with the
electrode structure (it may be an insulator with the layered structure or other porous one):

Hs = Hs
i +He + Vei.

Here,

Hs
i =

~
2

2mα

Nα∑

j=1

(
∇j −

Zαe

c
As(rj ; t)

)2

+ Vii + Vis +
∑

α

Nα∑

j=1

Zαeϕs(rj ; t) (3)

is the Hamiltonian of ions intercalated in the structure of the electrode with the model interaction
potential Vii; Vis is potential of interaction of ions with the structure of the electrode and Vie is the
model interaction potential of intercalated ions and electrons described by the Hamiltonian:

He =
~
2

2me

Ne∑

j=1

(
∇j −

e

c
As(rj ; t)

)2
+ Vee + Ves +

Ne∑

j=1

eϕs(rj; t) (4)

which is the complete Hamiltonian of the electron subsystem in the structure of the electrode. As(rj ; t),
ϕs(rj; t) are vector and scalar potential of the electromagnetic field acting on electrons and ions inter-
calated in the matrix of the electrode with dielectric function εf . Ves is the potential of interaction of
electrons with the structure of electrode. Af (rj ; t), As(rj ; t) and ϕf (rj ; t), ϕs(rj ; t) are the vector and
the scalar potentials of the electromagnetic field, which during the charging/discharging of batteries are
the driving forces of transport processes of ions in the electrolyte and intercalated ions and electrons in
the electrode. They form the transitional processes that significantly change the polarization properties
of both electrolyte and electrode, which in turn lead to a redistribution of charge, certain orientation
of the polarized solvent molecules and the emergence of a stationary flows of ions and electrons in the
processes of charging or discharging of the battery.

3. Nonequilibrium statistical operator of the “electrolyte — electrode” system

The nonequilibrium state of the “electrolyte — electrode” system can be described by the reduced set
of observed variables:

nf
α(r, t) = 〈n̂f

α(r)〉
t, (5)

which are the average values of densities of ions in the electrolyte subsystem. Here, n̂α(rf ) =

=

Nα∑

j=1

δ(rf − rj) are the microscopic densities of ions of species α in the electrolyte with the dielectric

function εf .
nα(rs, t) = 〈n̂α(rs)〉

t, ne(rs, t) = 〈n̂e(rs)〉
t, (6)

are the nonequilibrium average densities of intercalated ions and electrons in the electrode structure
with the dielectric function εs. Here, the quantum operators of density of ions n̂α(rs) = Ψ̂+

α (rs)Ψ̂α(rs)
and electrons n̂e(rs) = Ψ̂+

e (rs)Ψ̂e(rs) are built on the creation Ψ̂+
α (rs), Ψ̂

+
e (rs) and annihilation

Ψ̂α(rs), Ψ̂e(rs) operators. Index “f” denotes the electrolyte subsystem, and “s” corresponds to elec-
trode. In Eqs. (5) and (6) the nonequilibrium averages 〈. . .〉t = Sp . . .ρ(t) and are calculated using the
nonequilibrium statistical operator ρ(t) for particles of the “electrolyte — electrode” system. To find
it we use the Zubarev NSO method [41,42], where nonequilibrium statistical operator of the system
is obtained as a solution of the Liouville equation ∂

∂t
ρ(t) + iL(t)ρ(t) = −ε(ρ(t) − ρq(t)) with a source

ε(ρ(t)−ρq(t)). The latter describes the relaxation of the distribution ρ(t) to ρq(t), which is determined
from the extremum of the information entropy at fixed values of the parameters of reduced description
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and saving the normalization condition. In general form, the solution of Liouville equation can be
presented as follows:

ρ(t) = ρq(t)−

t∫

−∞

eε(t
′−t)T (t, t′)(1− Pq(t

′))iLρq(t
′)dt′, (7)

where iL is the Liouville operator corresponding to the Hamiltonian of the model (1).

T (t, t′) = exp


−

t∫

t′

(1− Pq(t
′′))iLdt′′


 (8)

is the generalized evolution operator containing the Kawasaki-Gunton projection Pq(t
′) whose structure

depends on the structure of quasiequilibrium statistical operator ρq(t) for the selected set of reduced
description parameters. In our case, ρq(t) calculated from the extremum of the information entropy at
fixed values of the observed variables (5) and (6) and the normalization condition

∫
dΓρq(t) = 1 can

be presented in the following form

ρq(t) = exp

{
− Φ(t)− β

(
H ′ −

∑

l

∑

α

∫
drl (µα(rl; t) + Zαeϕ(rl; t)) n̂α(rl)

−

∫
drs(µe(rs; t)− eϕ(rs; t))n̂e(rs)

)}
, (9)

where

Φ(t) = ln

∫
dΓ exp

{
β
(
H ′ −

∑

l

∑

α

∫
drl(µα(rl; t) + Zαeϕ(rl; t))n̂

l
α(rl)

−

∫
drs(µe(rs; t)− eϕ(rs; t))n̂

l
e(rs)

)}
(10)

is the Massieu-Planck functional [41,42] (l = f ; s). In these relations,

H ′ =
∑

α

Nα∑

j=1

1

2mα
p2j +

~
2

2mα

Nα∑

j=1

(∇j)
2 +

∑

αβ

NαNβ∑

j 6=k=1

Vαβ(rj , rk)

+ Vii + Vie +
~
2

2me

Ne∑

j=1

(∇j)
2 + Vee. (11)

µα(rl; t) denotes a local nonequilibrium value of the chemical potential of ions of species α, and µe(rs; t)
is a local nonequilibrium value of the chemical potential of electrons, which are determined from the
self-consistency conditions:

〈nα(rl)〉
t = 〈n̂α(rl)〉

t
q, 〈ne(rs)〉

t = 〈n̂e(rs)〉
t
q. (12)

Quasiequilibrium statistical operator ρq(t) describes the dynamic equilibrium of charge distribution in
the “electrolyte — electrode” system.

Further, we consider the nonequilibrium transport processes of ions and electrons in the system
when the deviations δµα(rl; t) = µα(rl; t)−µα, δµe(rs; t) = µe(rs; t)−µe are small (here µα, µe are the
equilibrium values of chemical potential of ions of species α and electrons in respective subsystems).
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Then, expanding the quasiequilibrium statistical operator (9) in a series in deviations mentioned above
and restricting ourselves by the linear approximation we obtain:

ρq(t) =

(
1−

∑

l

∑

α

∫
drlδµα(rl; t)n̂α(rl)−

∫
drsδµe(rs; t)n̂

l
e(rs)

)
ρϕ(t), (13)

where

ρϕ(t) = exp

{
− Φϕ(t)− β

(
H ′ −

∑

α

µαnα − µene −
∑

l

∑

α

∫
drlZαeϕ(rl; t)n̂α(rl)

+

∫
drseϕ(rs; t)n̂e(rs)

)}
(14)

is a new quasiequilibrium statistical operator and

n̂e(rs; τ) =

1∫

0

dτρτϕ(t)n̂e(rs)ρ
−τ
ϕ (t),

n̂α(rl; τ) =

1∫

0

dτρτϕ(t)n̂α(rl)ρ
−τ
ϕ (t)

are quantum operators. Determining the parameters δµα(rl; t), δµe(rs; t) in (13) from the self-
consistency conditions (12) we obtain the following expression for the quasiequilibrium statistical
operator:

ρq(t) =

(
1 +

∑

l,l′

∑

αγ

∫
drl

∫
drl′δnγ(rl′ ; t)[Φ̃

−1
d (rl′ , rl; t)]γαn̂α(rl)

+

∫
drs

∫
drs′δne(rs′ ; t)[Φ̃

−1
d (rs′ , rs; t)]eene(rs; τ)

)
ρϕ(t), (15)

where δnγ(rl′ ; t) = 〈n̂γ(rl)〉
t − 〈n̂γ(rl)〉

t
ϕ, δn̄e(rs′ ; t) = 〈n̄e(rs)〉

t − 〈n̄e(rs)〉
t
ϕ and the average values

〈n̂γ(rl)〉
t
ϕ, 〈n̄e(rs)〉

t
ϕ are calculated using the quasiequilibrium statistical operator (9). [Φ̃−1

d (rl′ , rl; t)]γα,

[Φ̃−1
d (rs′ , rs; t)]ee elements of the matrix inverse to the matrix Φ̃d(rl′ , rl; t) whose elements are Kubo-like

quasiequilibrium correlation functions “density-density”

Φαγ(rl, rl′ ; t) = 〈n̂α(rl)n̂γ(rl′ ; τ)〉
t
ϕ, (16)

Φee(rs, rs′ ; t) = 〈n̄e(rs)n̄e(rs′ ; τ)〉
t
ϕ. (17)

In Eqs. (16), (17) a new renormalized density operator for the electronic subsystem appears

n̄e(rs) = n̂e(rs)−
∑

l,l′

∑

αγ

∫
drl

∫
drl′Φeγ(rs, rl′ ; t)[Φ̃

−1(rl′ , rl; t)]γαn̂α(rl).

It arises in a result of the exclusion of parameters δµα(rl; t), δµe(rs; t) in ρq(t) using the corresponding
self-consistency conditions (12). Here,

Φeγ(rs, rl′ ; t) = 〈n̂e(rs)n̂γ(rl′ ; τ)〉
t
ϕ, (18)

Φee(rs, rs′ ; t) = 〈n̂e(rs)n̂e(rs′ ; τ)〉
t
ϕ, (19)
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and [Φ̃−1(rl′ , rl; t)]γα are the elements of the matrix inverse to the matrix Φ̃(rl′ , rl; t), whose elements
are quasiequilibrium correlation functions (16), (18) and (19). It is important to note that n̂γ(rl′) and
n̄e(rs′) are orthogonal in the sense that 〈n̂γ(rl′)n̄e(rs′)〉

t
ϕ = 0 and, therefore, the matrix Φ̃d(rl′ , rl; t) is

diagonal. In correlation function Φαγ(rl, rl′ ; t), if ions of α and γ species are located in the electrolyte
solution, the n̂α(rl) and n̂γ(rl′) are classic dynamic variables, if the ions are located in the electrode
subsystem then n̂α(rl) and n̂γ(rl′) are quantum density operators. In a similar manner, we also have
the correlation functions for the densities of ions located in the electrolyte and electrode. Φeγ(rs, rl′ ; t)
is the quasiequilibrium correlation function of electrons density in the electrode subsystem and ions
density in the electrolyte or electrode.

Substituting (15) into (7) we obtain the following expression for the nonequilibrium statistical
operator:

ρ(t) = ρq(t)−

t∫

−∞

eε(t
′−t)Tq(t, t

′)

[
β
∑

lα

∫
drl(1− P (t′)) ˙̂nα(rl)Zαeϕ(rl; t

′) (20)

− β

∫
drs(1− P (t′)) ˙̂ne(rs)eϕ(rs; t

′)

]
ρϕ(t

′)dt′

−

t∫

−∞

eε(t
′−t)Tq(t, t

′)

[
∑

l,l′

∑

αγ

∫
drl

∫
drl′δnγ(rl′ ; t

′)[Φ̃−1
d (rl′ , rl; t

′)]γα(1− P (t′)) ˙̂nα(rl)

+

∫
drs

∫
drs′δn̄e(rs′ ; t

′)[Φ̃−1
d (rs′ , rs; t

′)]ee(1− P (t′)) ˙̄ne(rs; τ)

]
ρϕ(t

′)dt′

−

t∫

−∞

eε(t
′−t)Tq(t, t

′)

[
β
∑

l,l′,l′′

∑

αγα′

∫
drl

∫
drl′

∫
drl′′Zαeϕ(rl; t

′)

× δnγ(rl′′ ; t
′)[Φ̃−1

d (rl′′ , rl′ ; t
′)]γα′ [(1 − P (t′)) ˙̂nα(rl)]n̂α′(rl′)

+ β
∑

l

∑

α

∫
drl

∫
drs

∫
drs′Zαeϕ(rl; t

′)δn̄e(rs′ ; t
′)[Φ̃−1

d (rs′ , rs; t
′)]ee((1− P (t′)) ˙̂nα(rl))n̄e(rs; τ)

− β
∑

l,l′

∑

αγ

∫
drl

∫
drl′

∫
drseϕ(rs; t

′)δnγ(rl′ ; t
′)[Φ̃−1

d (rl′ , rl; t
′)]γα[(1− P (t′)) ˙̄ne(rl)]n̂α(rl)

− β

∫
drs

∫
drs′

∫
drs′′eϕ(rs; t

′)δn̄e(rs′′ ; t)[Φ̃
−1
d (rs′′ , rs′ ; t

′)]ee[(1− P (t′)) ˙̄ne(rs)]n̄e(rs′ ; τ)

]
ρϕ(t

′)dt′.

Using the NSO (20) we can build the transport equations for the nonequilibrium average values
〈n̂α(rl)〉

t, 〈n̄e(rs)〉
t. Here, P (t) is the generalized Mori projection operator which acts on dynamic

variables (quantum operators) and has the following structure:

P (t)Â = 〈Â〉tq +
∑

l,α

∫
drl

δ〈Â〉tq
δ〈n̂α(rl)〉t

(n̂α(rl)− 〈n̂α(rl)〉
t) +

∫
drs

δ〈Â〉tq
δ〈n̂e(rs)〉t

(n̂e(rs)− 〈n̂e(rs)〉
t). (21)

It possesses the properties P (t)(1 − P (t′)) = 0, P (t)n̂α(rl) = n̂α(rl), P (t)n̂e(rs) = n̂e(rs) and is
connected with the Kawasaki-Gunton projection operator by the relation

Pq(t)Âρq(t) =

1∫

0

dτρτq(t)P (t)Âρ1−τ
q (t)
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when Â are quantum operators, and by the relation Pq(t)Âρq(t) = ρq(t)Pq(t)Â, when Â are classical
dynamical variables. In the case of quasiequilibrium statistical operator (15), Pq(t) has the form

P (t)ρ′ =
(
ρq(t)−

∑

l,α

∫
drl

δρq(t)

δ〈n̂α(rl)〉t
〈n̂α(rl)〉

t

−

∫
drs

δρq(t)

δ〈n̂e(rs)〉t
〈n̂e(rs)〉

t
)
Spρ′

∑

l,α

∫
drl

δρq(t)

δ〈n̂α(rl)〉t
Sp(n̂α(rl)ρ

′)−

∫
drs

δρq(t)

δ〈n̂e(rs)〉t
Sp(n̂e(rs)ρ

′).

It acts on the statistical operators Pq(t)ρ(t) = ρq(t) and possesses the properties Pq(t)ρq(t) = ρq(t)
and Pq(t)(1−Pq(t

′)) = 0. For description of transport processes of ions in the “electrolyte — electrode”
system using nonequilibrium statistical operator (20) we can obtain the generalized transport equation
of the Nernst-Planck type:

∂

∂t
〈δn̂α(rl)〉

t =
∂

∂rl

(
j(1)α (rl; t) + j(2)α (rl; t) + j(3)α (rl; t)

)
, (22)

where the ion flows have the following structure:

j(1)α (rl; t) =
∑

l′γ

∫
drl′

t∫

−∞

eε(t
′−t)βD

αγ
jj (rl, rl′ ; t, t

′)
∂

∂rl′
Zγeϕ(rl′ ; t

′)dt′

−

∫
drs′

t∫

−∞

eε(t
′−t)βDαe

jj (rl, rs′ ; t, t
′)

∂

∂rs′
eϕ(rs′ ; t

′)dt′, (23)

j(2)α (rl; t) =
∑

l′γ

∫
drl′

∑

l′′α′

∫
drl′′

t∫

−∞

eε(t
′−t)Dαα′

jj (rl, rl′′ ; t, t
′)

∂

∂rl′′
[Φ̃−1

d (rl′′ , rl′ ; t
′)]α′γδnγ(rl′ ; t

′)dt′

+

∫
drs′

∫
drs′′

t∫

−∞

eε(t
′−t)Dαe

jj (rl, rs′′ ; t, t
′)

∂

∂rs′′
[Φ̃−1

d (rs′′ , rs′ ; t
′)]eeδn̄e(rs′ ; t

′)dt, (24)

j(3)α (rl; t) =
∑

l′l′′

∑

α′γ

∫
drl′

∫
drl′′

t∫

−∞

eε(t
′−t)D̄

αα′γ
jjn (rl, rl′ , rl′′ ; t, t

′)β
∂

∂rl′
Zα′eϕ(rl′ ; t

′)δnγ(rl′′ ; t
′)dt′

+
∑

l′γ

∫
drl′

∫
drs′

t∫

−∞

eε(t
′−t)βD̄

αγe
jjn (rl, rl′ , rs′ ; t, t

′)
∂

∂rl′
Zγeϕ(rl′ ; t

′)δn̄e(rs′ ; t
′)dt′

−
∑

l′γ

∫
drl′

∫
drs′

t∫

−∞

eε(t
′−t)βD̄

αeγ
jjn (rl, rs′ , rl′ ; t, t

′)
∂

∂rs′
eϕ(rs′ ; t

′)δnγ(rl′ ; t
′)dt′

−

∫
drs′

∫
drs′′

t∫

−∞

eε(t
′−t)βD̄αee

jjn(rl, rs′ , rs′′ ; t, t
′)

∂

∂rs′
eϕ(rs′ ; t

′)δn̄e(rs′′ ; t
′)dt′. (25)
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Respectively, for the subsystem of electrons in the electrode structure the transport Nernst-Planck
type equation is as follows:

∂

∂t
〈δn̄e(rs)〉

t =
∂

∂rs

(
j(1)e (rs; t) + j(2)e (rs; t) + j(3)e (rs; t)

)
(26)

with the flows of electrons having the form:

j(1)e (rs; t) =
∑

l′γ

∫
drl′

t∫

−∞

eε(t
′−t)βD

eγ
jj (rs, rl′ ; t, t

′)
∂

∂rl′
Zγeϕ(rl′ ; t

′)dt′

−

∫
drs′

t∫

−∞

eε(t
′−t)βDee

jj (rs, rs′ ; t, t
′)

∂

∂rs′
eϕ(rs′ ; t

′)dt′, (27)

j(2)e (rs; t) =
∑

l′γ

∫
drl′

∑

l′′α′

∫
drl′′

t∫

−∞

eε(t
′−t)Deα′

jj (rs, rl′′ ; t, t
′)

∂

∂rl′′
[Φ̃−1

d (rl′′ , rl′ ; t
′)]α′γδnγ(rl′ ; t

′)dt′

+

∫
drs′

∫
drs′′

t∫

−∞

eε(t
′−t)Dee

jj (rs, rs′′ ; t, t
′)

∂

∂rs′′
[Φ̃−1

d (rs′′ , rs′ ; t
′)]eeδn̄e(rs′ ; t

′)dt′, (28)

j(3)e (rs; t) =
∑

l′l′′

∑

α′γ

∫
drl′

∫
drl′′

t∫

−∞

eε(t
′−t)D̄

eα′γ
jjn (rs, rl′ , rl′′ ; t, t

′)β
∂

∂rl′
Zα′eϕ(rl′ ; t

′)δnγ(rl′′ ; t
′)dt′

+
∑

l′γ

∫
drl′

∫
drs′

t∫

−∞

eε(t
′−t)βD̄

eγe
jjn(rs, rl′ , rs′ ; t, t

′)
∂

∂rl′
Zγeϕ(rl′ ; t

′)δn̄e(rs′ ; t
′)dt′

−
∑

l′γ

∫
drl′

∫
drs′

t∫

−∞

eε(t
′−t)βD̄

eeγ
jjn(rs, rs′ , rl′ ; t, t

′)
∂

∂rs′
eϕ(rs′ ; t

′)δnγ(rl′ ; t
′)dt′

−

∫
drs′

∫
drs′′

t∫

−∞

eε(t
′−t)βD̄eee

jjn(rs, rs′ , rs′′ ; t, t
′)

∂

∂rs′
eϕ(rs′ ; t

′)δn̄e(rs′′ ; t
′)dt′. (29)

Here,

D
αγ
jj (rl, rl′ ; t, t

′) =
〈
(1− P (t′))̂jα(rl)Tq(t, t

′)(1 − P (t′))̂jγ(rl′)
〉t′

ϕ
(30)

is the generalized diffusion coefficient of ions as a function of coordinates and time. When l = f

and l′ = f ′, we have diffusion coefficient in electrolyte solution. ĵα(rf ) = 1
mα

Nα∑
j=1

pjδ(rf − rj) is the

current density of ions of species α in the electrolyte solution. When l = f and l′ = s′, we have
a cross-diffusion coefficient for ions in the electrolyte solution and electrode. In this case, ĵα(rs) =
= ~

imα
(Ψ̂+

α (rs)∇sΨ̂α(rs)−∇sΨ̂
+
α (rs)Ψ̂α(rs)) is the operator of current density of ions in the electrode

structure. When l = s and l′ = s′, we have the generalized quantum diffusion coefficient for ions in
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the electrode subsystem.

Dαe
jj (rl, rs′ ; t, t

′) =

〈
(1− P (t′))̂jα(rl)Tq(t, t

′)

1∫

0

dτρτϕ(t)(1− P (t′))̂je(rs′)ρ
−τ
ϕ (t)

〉t′

ϕ

(31)

defines a generalized coefficient of ion-electron diffusion, herewith, ion can be in the electrolyte subsys-
tem or in the electrode one. Here, ĵe(rs) =

~

ime
(Ψ̂+

e (rs)∇sΨ̂e(rs) − ∇sΨ̂
+
e (rs)Ψ̂e(rs)) is the operator

of current density of ions in the electrode structure. Thus, Dαe
jj (rf , rs′ ; t, t

′) represents a correlation
between the currents of electrons and ions in the electrolyte and the electrode, i.e., the interfacial
diffusion coefficient. Obviously, it plays an important role in the intercalation of ions into the structure
of the electrode. In a similar way, Dαe

jj (rs, rs′ ; t, t
′) represents a correlation between the currents of ions

and electrons in the electrode. This is the quantum diffusion coefficient which plays an important role
in the processes of ions localization in the electrode structure. These processes are also affected by the
quantum diffusion coefficient of electrons in the electrode structure Dee

jj (rs, rs′ ; t, t
′). In fact, we have

a matrix of the generalized diffusion coefficients of ions and electrons for the “electrolyte — electrode”
system:

D(rl, rl′) =

∣∣∣∣∣∣∣∣

D++
jj (rf , rf ′) D+−

jj (rf , rf ′) D++
jj (rf , rs′) D+e

jj (rf , rs′)

D−+
jj (rf , rf ′) D−−

jj (rf , rf ′) D−+
jj (rf , rs′) D−e

jj (rf , rs′)

D++
jj (rs, rf ′) D+−

jj (rs, rf ′) D++
jj (rs, rs′) D+e

jj (rs, rs′)

De+
jj (rs, rf ′) De−

jj (rs, rf ′) De+
jj (rs, rs′) Dee

jj (rs, rs′)

∣∣∣∣∣∣∣∣
t

. (32)

In the generalized Nernst-Planck equations an important role belongs to transport kernels

D̄
αα′γ
jjn (rl, rl′ , rl′′ ; t, t

′) =
∑

l′′′α′′

∫
drl′′′

〈
(1−P (t′))̂jα(rl)Tq(t, t

′)(1−P (t′))̂jα′(rl′)n̂α′′(rl′′′ ; t
′)
〉t′

ϕ

× [Φ̃−1
d (rl′′′ , rl′′ ; t

′)]α′′γ (33)

Unlike the transport kernels related with the generalized coefficients, they are the correlation func-
tions of the third order and enter into the equations via the second order in the parameters
ϕ(rl′ ; t

′)δnγ(rl′′ ; t
′), ϕ(rl′ ; t

′)δn̄e(rs′ ; t
′), ϕ(rs′ ; t

′)δnγ(rl′ ; t
′), that describe dynamic correlation between

the field and the density fluctuations for ions and electrons. When α corresponds to positively charged
ions, equation (22) describes the electrodiffusion processes via the generalized diffusion coefficients. At
l = f equation describes temporal and spatial changes of densities of positively charged ions 〈n̂+(rf )〉

t

in electrolyte. At l = s equation describes the change of 〈n̂+(rs)〉
t of ions intercalated into electrode

structure. The processes in the corresponding subsystems are described by the generalized diffusion co-
efficients of positively charged ions D++

jj (rf , rf ′ ; t, t′) and by the generalized mutual diffusion coefficients

of positively and negatively charged ions D+−
jj (rf , rf ′ ; t, t′) in the electrolyte solution. Equations (22)

and (26) for the electronic subsystem include mutual “ion-ion” and “ion-electron” diffusion coefficients
D++

jj (rf , rs′ ; t, t
′) and D+e

jj (rf , rs′ ; t, t
′) which describe the temporal correlation between flows of ions

in electrolyte and flows of ions and electrons in electrode structure. D++
jj (rs, rs′ ; t, t

′), D+e
jj (rs, rs′ ; t, t

′),
Dee

jj (rs, rs′ ; t, t
′) are the quantum “ion-ion”, “ion-electron” and “electron-electron” diffusion coefficients

in the electrode structure.
It is important to note that neglecting the time memory effects and spatial heterogeneity (to make

transport coefficients constant) in flows (23)–(25) and (27)–(29), together with the Poisson equations
for the potentials ϕ(rl′ ; t

′) we obtain the Poisson-Nernst-Planck equation [6,8]. The corresponding
components of the flows of ions and electrons in the system of equations (22), (26) are connected with
the corresponding gradients:

∂

∂rl′
Zγeϕ(rl′ ; t

′),
∂

∂rs′
eϕ(rs′ ; t

′),
∂

∂rl′′
[Φ̃−1

d (rl′′ , rl′ ; t
′)]α′γ ,

∂

∂rs′′
[Φ̃−1

d (rs′′ , rs′ ; t
′)]ee.
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Moreover, gradients of the corresponding potentials

∂

∂rl′
ϕ(rf ; t

′) = E(rf ; t
′),

∂

∂rs′
ϕ(rs′ ; t

′) = E(rs′ ; t
′) (34)

induce electric fields in the respective subsystems with the corresponding tensors of the dielectric
functions.

D(rf ′ ; t′) =

∫
dt′
∫
drf ′′ ε̄(rf ′ , rf ′′ ; t′, t′′)E(rf ′′ ; t′),

D(rs′ ; t
′) =

∫
dt′
∫
drs′′ ε̄(rs′ , rs′′ ; t

′, t′′)E(rs′′ ; t
′) (35)

are the vectors of displacement of electric field in the electrolyte and electrode subsystems, which along
with the magnetic induction and the intensity of magnetic field satisfy the Maxwell equation:

∇ · B(rf , t) = 0,

∇ ·D(rf , t) =

N∑

α=1

Zαenα(rf , t),

∇× E(rf , t) = −
∂

∂t
B(rf , t),

∇× H(rf , t) =
∂

∂t
D(rf , t) +

∑

α

Zαejα(rf , t), (36)

where B(rf , t), E(rf , t) and D(rf , t), H(rf , t) are intensity and induction of the electric and magnetic
fields in the electrolyte caused by ions of species α with the density nα(rf , t) and the corresponding
currents of charge Zαejα(rf , t).

∇ ·B(rs, t) = 0,

∇ · D(rs, t) =

N∑

α=1

Zαenα(rs, t) + ene(rs, t),

∇× E(rs, t) =
∂

∂t
B(rs, t), (37)

∇× H(rs, t) =
∂

∂t
D(rs, t) +

∑

α

Zαejα(rs, t) + eje(rs, t),

where B(rs, t), E(rs, t) and D(rs, t), H(rs, t), jsα(r, t), jse(r, t) are intensity and induction of the electric
and magnetic fields in the electrode caused by ions and electrons with the charge densities Zαenα(rf , t)
and ene(rs, t) and the charge currents Zαejα(rf , t) and eje(rs, t). Both systems of equations for the
electrolyte and electrode (22), (26), (34), (35) are related by inter-phase partial diffusion coefficients
and boundary conditions at the electrolyte-electrode interface:

n · (Bs − Bf ) = 0,

n · (Ds − Df ) = Q(Sω, t),

n × (Es − Ef ) = 0,

n × (Hs −Hf ) = Q(Sω)νs(Sω, t),
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where Q(Sω, t) is the total surface electric charge at the “electrolyte — electrode” interface which
satisfies the conservation law:

∂

∂t
Q(Sω, t) = n · ji(Sω, t), νs(Sω, t) = νf (Sω, t).

n is a unit vector perpendicular to the interface “electrolyte — electrode”. ji(Sω, t) is the average
current of the surface charge. At the interface “electrolyte — electrode” Sω, the condition of continuity
is satisfied

∂

∂t
nα(Sω, t) =

∂

∂t
nf
a(Sω, t),

which leads to the equation describing the complexity of the transport processes in the “electrolyte —
electrode” interface area. It requires a detailed analysis and a separate consideration when a certain
model is chosen for the Hamiltonian Hint (which describes the interaction of ions of electrolyte with the
surface of electrode and should take into account polarization, adsorption and other surface properties).

4. Stationary flows of ions and electrons

Regime of stationary ion and electron flows is an important stage of the battery lifetime. For the study
of flows of ions and electrons we differentiate them by time and then obtain:

∂

∂t
j(1)α (rl; t) =

∑

l′γ

∫
drl′βD

αγ
jj (rl, rl′ ; t)

∂

∂rl′
Zγeϕ(rl′ ; t)

−

∫
drs′βD

αe
jj (rl, rs′ ; t, t

′)
∂

∂rs′
eϕ(rs′ ; t

′), (38)

∂

∂t
j(2)α (rl; t) =

∑

l′γ

∫
drl′

∑

l′′α′

∫
drl′′D

αα′

jj (rl, rl′′ ; t)
∂

∂rl′′
[Φ̃−1

d (rl′′ , rl′ ; t)]α′γδnγ(rl′ ; t)

+

∫
drs′

∫
drs′′D

αe
jj (rl, rs′′ ; t)

∂

∂rs′′
[Φ̃−1

d (rs′′ , rs′ ; t)]eeδn̄e(rs′ ; t), (39)

∂

∂t
j(3)α (rl; t) =

∑

l′l′′

∑

α′γ

∫
drl′

∫
drl′′βD̄

αα′γ
jjn (rl, rl′ , rl′′ ; t)

∂

∂rl′
Zα′eϕ(rl′ ; t)δnγ(rl′′ ; t)

+
∑

l′γ

∫
drl′

∫
drs′βD̄

αγe
jjn (rl, rl′ , rs′ ; t)

∂

∂rl′
Zγeϕ(rl′ ; t)δn̄e(rs′ ; t)

−
∑

l′γ

∫
drl′

∫
drs′βD̄

αeγ
jjn (rl, rs′ , rl′ ; t)

∂

∂rs′
eϕ(rs′ ; t)δnγ(rl′ ; t)

−

∫
drs′

∫
drs′′βD̄

αee
jjn(rl, rs′ , rs′′ ; t)

∂

∂rs′
eϕ(rs′ ; t)δn̄e(rs′′ ; t) (40)

for ions, and

∂

∂t
j(1)e (rs; t) =

∑

l′γ

∫
drl′βD

eγ
jj (rs, rl′ ; t) ·

∂

∂rl′
Zγeϕ(rl′ ; t)

−

∫
drs′βD

ee
jj(rs, rs′ ; t)

∂

∂rs′
eϕ(rs′ ; t), (41)
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∂

∂t
j(2)e (rs; t) =

∑

l′γ

∫
drl′

∑

l′′α′

∫
drl′′D

eα′

jj (rs, rl′′ ; t)
∂

∂rl′′
[Φ̃−1

d (rl′′ , rl′ ; t)]α′γδnγ(rl′ ; t)

+

∫
drs′

∫
drs′′D

ee
jj (rs, rs′′ ; t)

∂

∂rs′′
[Φ̃−1

d (rs′′ , rs′ ; t)]eeδn̄e(rs′ ; t), (42)

∂

∂t
j(3)e (rs; t) =

∑

l′l′′

∑

α′γ

∫
drl′

∫
drl′′βD̄

eα′γ
jjn (rs, rl′ , rl′′ ; t)

∂

∂rl′
Zα′eϕ(rl′ ; t)δnγ(rl′′ ; t)

+
∑

l′γ

∫
drl′

∫
drs′βD̄

eγe
jjn(rs, rl′ , rs′ ; t)

∂

∂rl′
Zγeϕ(rl′ ; t)δn̄e(rs′ ; t)

−
∑

l′γ

∫
drl′

∫
drs′βD̄

eeγ
jjn(rs, rs′ , rl′ ; t)

∂

∂rs′
eϕ(rs′ ; t)δnγ(rl′ ; t)

−

∫
drs′

∫
drs′′βD̄

eee
jjn(rs, rs′ , rs′′ ; t)

∂

∂rs′
eϕ(rs′ ; t)δn̄e(rs′′ ; t) (43)

for electrons. Therefore, transport equations (22), (26) can be rewritten down as follows:

∂2

∂t2
〈δn̂α(rl)〉

t =
∂

∂t

∂

∂rl
·
(
j(1)α (rl; t) + j(2)α (rl; t) + j(3)α (rl; t)

)
(44)

∂2

∂t2
〈δn̄e(rs)〉

t =
∂

∂t

∂

∂rs
·
(
j(1)e (rs; t) + j(2)e (rs; t) + j(3)e (rs; t)

)
. (45)

Stationarity of ion and electron flows in the system means that ∂
∂t
Zαe(j

(1)
α (rl; t) + j

(2)
α (rl; t) +

+ j
(3)
α (rl; t)) = 0, ∂

∂t
e(j

(1)
e (rl; t)+ j

(2)
e (rl; t)+ j

(3)
e (rl; t)) = 0. As a result, we obtain a set of equations for

the stationary average values of number densities of ions and electrons and the electric field potentials
in different subsystems when mechanisms of transport of ions and electrons are described by the
stationary values of generalized diffusion coefficients and transport kernels (33).

5. Generalized diffusion coefficients

Since generalized diffusion coefficients (32) and transport kernels (33) can not be calculated exactly,
Lorentz or Gaussian approximations of time dependence are frequently used. Expanding evolution op-

erator (8) in
t∫
t′
(1−Pq(t

′′))iLdt′′, and calculating the corresponding moments, time correlation function

(30) can be presented as follows:

D
αγ
jj (rl, rl′ ; t, t

′) = D
αγ
0jj(rl, rl′ ; t, t

′)e−λ
αγ
jj (rl,rl′ ;t,t

′)(1 +B
αγ
jj (rl, rl′ ; t, t

′)), (46)

where the zero moment

D
αγ
0jj(rl, rl′ ; t, t

′) =
〈
(1− P (t))̂jα(rl)(1 − P (t′))̂je(rs′)

〉t′

ϕ
(47)

is a diffusion coefficient of ions in quasiequilibrium state described by distribution (14). In (46)

λ
αγ
jj (rl, rl′ ; t, t

′) =

〈
(1− P (t))̂jα(rl)

( t∫

t′

(1− Pq(t
′′))iLdt′′

)2

(1− P (t′))̂je(rs′)

〉t′

ϕ

〈
(1− P (t))̂jα(rl)(1− P (t′))̂je(rs′)

〉t′
ϕ

(48)
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is a normalized second moment. B
αγ
jj (rl, rl′ ; t, t

′) is a function including higher moments of the corre-
lation function “current-current”. Here we took into account the structure of statistical operator (14)
and the action P (t)̂jα(rl). Taking this into consideration we can calculate the zero moment at l = f ,
l′ = f ′:

D
αγ
0jj(rl, rl′ ; t, t

′) = 〈̂jα(rl)̂je(rs′)〉
t′

ϕ

=
〈 Nα∑

j=1

pj

mα
·

pj

mα
δ(rf − rj)

〉t′

ϕ
δαγδ(rf − rf ′)

=
3β

mα
Fα(rf ; t

′)δαγδ(rf − rf ′), (49)

where

Fα(rf ; t
′) =

〈 Nα∑

j=1

δ(rf − rj)
〉t′

ϕ
(50)

is the quasiequilibrium unary distribution function of ions of species α in the electrolyte solution calcu-

lated for quasiequilibrium state (14). Similarly, in function D̄
αα′γ
jjn (rl, rl′ , rl′′ ; t, t

′) the time correlation

function 〈(1 − P (t))̂jα(rl)Tq(t, t
′)(1− P (t′))̂jα′(rl′)n̂α′′(rl′′ ; t

′)〉t
′

ϕ can be calculated via the moments:

〈(1 − P (t))̂jα(rl)Tq(t, t
′)(1− P (t′))̂jα′(rl′)n̂α′′(rl′′ ; t

′)〉t
′

ϕ

= Dαα′α′′

0jjn (rl, rl′ , rl′′ ; t, t
′)e−λαα′α′′

jjn (rl,rl′ ,rl′′ ;t,t
′)(1 +Bαα′α′′

jjn (rl, rl′ , rl′′ ; t, t
′)),

where at l = f, l′ = f ′, l′′ = f ′′ the zero moment has the following form:

Dαα′α′′

0jjn (rl, rl′ , rl′′ ; t, t
′) = 〈(1− P (t))̂jα(rl)(1 − P (t′))̂jα′(rl′)n̂α′′(rl′′ ; t

′)〉t
′

ϕ

=
3β

mα
Fαα′′(rfrf ′′ ; t′)δαα′δ(rf − rf ′). (51)

Here, Fαα′′(rfrf ′′ ; t′) is the quasiequilibrium pair distribution function of ions of species α, α′′ in
the electrolyte solution calculated for quasiequilibrium state (14). λαα′α′′

jjn (rl, rl′ , rl′′ ; t, t
′) is the nor-

malized second moment and Bαα′α′′

jjn (rl, rl′ , rl′′ ; t, t
′) is a function including higher moments of the

corresponding correlation function 〈(1 − P (t))̂jα(rl)Tq(t, t
′)(1 − P (t′))̂jα′(rl′)n̂α′′(rl′′ ; t

′)〉t
′

ϕ. Thus, the
diffusion coefficients in quasiequilibrium state (14) are expressed via unary quasiequilibrium distri-
bution functions Fα(rf ; t

′), and Dαα′α′′

0jjn (rl, rl′ , rl′′ ; t, t
′) — via the pair quasiequilibrium distribution

functions Fαα′′(rfrf ′′ ; t′), which, obviously, should be calculated based on quasiequilibrium statistical
operator (14). In this case, a method of functional integration [42,43] can be implemented. This
allows one to obtain quasiequilibrium unary and pair distribution functions for ions and electrons in
the “electrolyte — electrode” system with taking into account a specific character of short-range and
long-range interactions between particles in electrolyte (classical description) and in electrode (quan-
tum description) as well as at their interface. For calculation of quantum “ion-ion”, “ion-electron” and
“electron-electron” diffusion coefficients a method of moments can be used as well. However, in our
opinion, here the tunneling processes, effective interactions inside the electrode structure should be
considered based on quantum models like in Ref. [31].

6. Conclusions

Summarizing, we proposed a statistical theory of classical-quantum description of electrodiffusion trans-
port processes of ions and electrons in the “electrolyte — electrode” system using the NSO method.
The presented theory takes the spatial heterogeneity and memory effects into account. The model and
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corresponding Hamiltonian are formulated and the nonequilibrium statistical operator for the “elec-
trolyte — electrode” system as the functional of the corresponding parameters of the reduced description
of the nonequilibrium processes (observable parameters) is obtained. In this approach, we receive the
generalized transport equations such as Nernst-Planck equation for electrons and ions in the “elec-
trolyte — electrode” system using the method of nonequilibrium statistical operator. These equations
take into account the time memory effects and spatial heterogeneity. An important contributions to the

generalized Nernst-Planck type equations are provided by the transport kernels D̄
αα′γ
jjn (rl, rl′ , rl′′ ; t, t

′)
which, unlike the generalized diffusion coefficients, are the third-order correlation functions and en-
ter into equations via terms of second order in the parameters ϕ(rl′ ; t

′)δnγ(rl′′ ; t
′), ϕ(rl′ ; t

′)δn̄e(rs′ ; t
′),

ϕ(rs′ ; t
′)δnγ(rl′ ; t

′) which describe the dynamic correlations between the field and a density. We also
obtained the system of equations for the flows of ions and electrons from which the conditions of the
existence of stationary processes can be determined. Approximate calculation of diffusion coefficients
by means of the method of moments in Gaussian approximation provides us the relationship between
the unary and pair distribution functions of quasiequilibrium state (14) which, as it was mentioned,
can be calculated using a method of functional integration [42,43]. An important open issue consists in
the appearance of bound states of Li ions with electrons and Li ions inside electrode. For description
of such processes, the transport equations should be complemented with the equations for “ion-ion”,
“ion-electron” and “electron-electron” nonequilibrium pair distribution functions within the electrode
structure. These problems we will consider in our future works. Besides, within the classical descrip-
tion of an electrolyte we did not consider explicitly polar molecules of solvent which, evidently, can
significantly effect the polarization processes due to their orientational movement and can be trans-
ported into the porous structure of electrode (what leads to a decrease of porosity and cleavage). This
needs a separate study as well.
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[41] Zubarev D. N., Morozov V. G., Röpke G. Statistical Mechanics of Nonequilibrium Processes, vol.1.
Akademie Verlag, Berlin (1997).

[42] Kostrobij P. P., Tokarchuk M. V., Markovych B. M., Ignatyuk V. V., Hnativ B. V. Reaction-diffusion pro-
cesses in systems “metal–gas”. Lviv Polytechnic National University, Lviv (2009), (in Ukrainian).

[43] Kostrobij P. P., Markovych B. M., Vasylenko A. I., Tokarchuk M. V. Condens. Matter Phys. 14, 43001
(2011).

Статистичний опис електродифузiйних процесiв iнтеркаляцiї iонiв
в системi “електролiт-електрод”
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Запропоновано статистичну теорiю класично-квантового опису електродифузiйних
процесiв iнтеркаляцiї в системi “електролiт-електрод”. Отримано узагальненi рiвнян-
ня Нернста-Планка для iонiв та електронiв в системi “електролiт-електрод”, викори-
стовуючи метод нерiвноважного статистичного оператора. Отриманi рiвняння пе-
реносу враховують ефекти пам’ятi в часi та просторову неоднорiднiсть. Проведено
аналiтичнi обчислення просторово неоднорiдних коефiцiєнтiв дифузiї в межах кла-
сичного опису.

Ключовi слова: iнтеркаляцiя, електро-дифузiйний процес, рiвняння переносу, не-

рiвноважний статистичний оператор
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