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1. Introduction

The processes of hydrothermal treatment of materials to dry are power-consuming, and the application
of thermo-moist treatment is the main means to create energy saving technologies of their drying.
The use of thermal regimes of drying which vary in time can significantly save the thermal energy
in the process and increase the material quality parameters. When the temperature of the drying
agent decreases, the temperature of the surface layers of the material decreases too. In this regard,
an additional temperature gradient arises that drives the moisture movement in the material to dry.
During cooling, the relative moisture of drying agent increases, thermo moist processing of the surface
of the material has place due to which internal stresses are reduced. There are still undefined moments
how to perform thermo moist processing and how long it should be for different materials. This requires
the development of methods for studying the processes of heat and mass transfer and diagnosis of stress-
strain state of materials, and determining according to the results of diagnosis the optimal values of the
parameters of the drying agent [1]. To avoid material cracking is also possible in the way of decreasing
of the tensile stress by reducing the differences in moisture along cross-section. This can be achieved
by weakening of the regime at the beginning of drying and conducting thermo treatment in the middle
and at the end of the process [2]. Problems of modeling the drying processes with taking into account
changes in the state of moisture in the body over time, qualitative analysis of the formation and
dynamics of the area of dried pores in terms of isothermal drying and two-phase zone are investigated
in [3–6].

The aim of this paper is to construct an approximate solution of the nonlinear problem of drying
the layer of the thickness

2L0(−L0 6 y 6 L0) (1)

under the influence of a convection and heat unsteady flow of the drying agent in order to estimate
the influence of variable in time thermal regime of the drying plant onto the process.
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The evenness and symmetry of bilateral drying the material is reached by means of circulation of
drying agent. We shall solve the problem as a problem with changeable in time boundary of phase
transition. Mass transfer occurs with the thickness (1) of the body.

2. Problem formulation

The problem is reduced to solving the following system of equations in the dried domain.
The equation of balance of energy (the heat equation)

[

Π(cvγv + caγa) + (1−Π) csγs

]∂T

∂t
=

∂

∂y

(

λc
∂T

∂y

)

+W, Lm 6 y 6 L0, 0 6 Lm 6 L0. (2.1)

The equation of mass transfer

γv
Kg

µg

∂2P

∂y2
+

∂

∂y

[

D1

(

∂γv
∂y

)]

= 0, γa
Kg

µg

∂P

∂y
+D1

(

∂γa
∂y

)

= 0. (2.2)

The equation of energy balance on the moving boundary of phase transitions y = Lm

−λc
∂T

∂y

∣

∣

∣

∣

y=Lm+0

= rk
Kg

µg

∂P

∂y

∣

∣

∣

∣

y=Lm+0

. (2.3)

Linearized equation of state on moving boundary of phase transitions y = Lm

Tm = Tmk + αmkPn, (2.4)

where cv, γv; ca, γa is the heat capacity and the density of vapor and air, respectively; F is the source

factor, Π is the porosity of the material; D1 =
(

D + 1.064
√

RT
Mv

ε
)

is the effective coefficient of diffusion;

Kg is the coefficient of gas permeability; µg is the coefficient of dynamic viscosity; R, T are the gas
constant and the temperature; ε is the coefficient of vapour molecular flow; Tmk = 9TkVk

8V , αmk = 3TkV
8Vk

,
here Tk, Vk are the critical temperature and the volume, rk is the heat of phase transition.

In particular, in [7, 8] the temperature of saturated vapour Tm = 83+16 · 10−5Pn is linear approx-
imation of the state equation for the change of saturated vapour pressure Pn.

On the border y = L0 we assume a heat transfer by Newton’s law

λc
∂T

∂y
+ α̃

[

T − u(t)
]

= 0, (2.5)

where α̃ is the heat transfer coefficient, u(t) is variable in time the temperature of drying agent, λc is
effective thermal conductance of dried domain; and on the interface of a phase transition y = Lm, we
consider that

T = Tm, (2.6)

where Tm is unknown phase transition temperature dependent only on the vapor pressure Pn, i.e.
Tm = f(Pn). In addition, we use the formula

D1 = D1
ij =

(

1/D∞
i + (1− αijyi)/Dij

)−1
,

where D1
va = D1

av = D1 is the effective coefficient of diffusion, Dva = Dav = Dij is the effective binary
coefficient of diffusion in macropores, the term in the expression D∞

v = D∞ represents the Knudsen’s
effect of vapour flow in micropores.
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Solving the thermal-convective drying problem for porous solids 3

On the surfaces of porous plate, the conditions of convective mass transfer are satisfied. Due to
the symmetry of the problem, let us write down them only for one of the sides. The conditions on the
surfaces y = L0 and y = Lm of the gas domain can be written as follows
for y = L0

γv
K

µg

∂P

∂y
+D1

(

∂γv
∂y

)

= −j1, γa = γa0, (2.7)

for y = Lm

γv = γn, (2.8)

j1 = β̃ (γv − γ0) . (2.9)

Here β̃ is the mass transfer coefficient, γn is the density of saturated vapor at the given temperature
of phase transition (unknown), γ0 is the density of vapor in environment outside the porous body (in
a drying agent). We introduce dimensionless variables τ = at

L2

0

, κ = y
L0

, κm = Lm

L0
, where κm the

dimensionless coordinate of the boundary of the phase transition. In particular cases the temperature
of the drying agent can be represented as a Fourier series

u (τ) = α0 +

p
∑

n=1

(

αn cos ν
2
nτ + βn sin ν

2
nτ

)

. (2.10)

The equations of the movement of the interface

dκm
dt

= − j (κm)

ΠγLL0
(2.11)

with the initial condition
κm = 1. (2.12)

The system of equations (2.1), (2.12) describes a model of convective heat-drying of a plate (layer)
in a drying installation with variable boundary phase transition.

The heat equation takes the form

∂T

∂τ
(κ, τ) =

∂2T (κ, τ)

∂κ2
+ F, (2.13)

where F =
L2W

acγ
is the source factor, a =

λc

Π[(1− κm)(cvγv + caγa)] + (1−Π)csγs
and the boundary

conditions on the boundary κ = 1

∂T

∂κ
+H[T − u(τ)] = 0, H =

α̃L0

λ
, (2.14)

and on the interface of the phase transition κ = κm

T = Tm. (2.15)

We solve the problem under the following initial condition

T (κ, 0) = f(κ). (2.16)

Further, to construct the solution of the problem (2.1), (2.5), and (2.7) we use the influence func-
tion (Green’s) of the problem with the variable boundary of phase transition κm under homogeneous
boundary conditions of the first and the third kind.
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The influence function

G(κ, κm, ξ, τ) =

∞
∑

n=1

[

sinµn(κ−κm)
µn

] [

cosµn (1− ξ) +H sinµn(1−ξ)
µn

]

e−µ2
nτ

cosµn (1− κm) [(µ2
n +H2) (1− κm) +H]

, (2.17)

where µn are the roots of the transcendental equation

tg µn (1− κm) = −µn

H
, (2.18)

is obtained from the solution of the heat conduction problem (2.13), (2.14) where the functions u(τ) and
W are given implicitly using Laplace transforms, formulae of Duhamel-Neumann, and the convolution
theorem under the assumption that

Tm(κm, τ) = 0, u(1, τ) = 0.

2.1. Representation of the solution of heat conduction problem in trigonometric form

It is known that an arbitrary function defined at the interval of the length 2l can be expanded in a
Fourier series, which is identical with the Fourier series of its periodic extension along the whole axis
Ox. Let the control functions u(τ are represented as a trigonometric series (2.6). The solution of the
heat conduction problem (2.13)–(2.16) under the absence of internal sources F = 0 we try in the form

T (κ, τ) = T1(κ, τ) + T ∗(κ, τ).

Here the function

T1(κ, τ) = ϕ0(κ) +

p
∑

n=1

[

ϕn(κ) cos ν
2
nτ + χn(κ) sin ν

2
nτ

]

(2.19)

is the solution of the heat equation that satisfies the boundary conditions of the problem, but does
not satisfy the initial condition. T ∗ is the solution of the heat conduction problem that satisfies the
initial condition and the homogeneous boundary conditions. Therefore, it is basic for solving at the
initial period when the temperature distribution is strongly affected by the initial state, i.e. during the
irregular regime.

If we substitute the solution (2.19) into the equation (2.13) and into the boundary conditions, to
determine the unknown functions ϕn(κ), χn(κ) (n = 0, 1, . . . , p; ν0 = 0) we obtain the system of
equations [9]

d2ϕn

dκ2
− ν2nχn = 0 (n = 0, 1, . . . , p; ν0 = 0),

d2χn

dκ2
+ ν2nϕn = 0 (n = 1, . . . , p; ), (2.20)

and taking into account the representations (2.19) — the boundary conditions take the form

dϕn(1)

dκ
+Hϕn(1) = Hαn, ϕn(κm) = 0 (n = 0, 1, . . . , p); (2.21)

dχn(1)

dκ
+Hχn(1) = Hβn, χn(κm) = 0, (n = 0, 1, . . . , p). (2.22)

The term T ∗(κ, τ) we determine from the heat equation

∂T ∗

∂τ
(κ, τ) =

∂2T ∗(κ, τ)

∂κ2
(2.23)
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Solving the thermal-convective drying problem for porous solids 5

with homogeneous boundary conditions

∂T ∗(1, τ)

∂κ
+HT ∗(1, τ) = 0, T ∗(κm, τ) = 0 (2.24)

and the initial condition so that it satisfies the condition (2.7). T ∗(κ, 0) = f(κ)− T0(κ), where T0(κ)
is the solution of the problem (2.19)–(2.22) for τ = 0.

From the first equation of the system (2.20) for n = 0 we find ϕ0(κ) = a0 + b0κ, where

a0 =
Tm(1 +H)−Hα0κm

[1 +H(1− κm)]
, b0 =

H(α0 − Tm)

[1 +H(1− κm)]
. (2.25)

Tm is still unknown function.
For solving the system of equations (2.22) (n = 1, . . . , p), we introduce the complex function

Φn(κ) = ϕn(κ)− iχn(κ).

Then the associated system of equations (2.22) for functions ϕn(κ), χn(κ) is reduced to separate p
equations for complex functions Φn(κ)

d2Φn

dκ2
− iν2nΦn = 0 (n = 1, 2, . . . , p), i =

√
−1, (2.26)

having the solutions
Φn(κ) = Cn ch

√
iνnκ+Dn sh

√
iνnκ. (2.27)

From these expressions, after presenting complex coefficients in algebraic form Cn = an + ibn, Dn =
= cn + idn, and considering that

√
i = 1+i√

2
, and denoting

νnκ√
2

= ν̃nκ,

ch
√
iνnκ = ch ν̃nκ cos ν̃nκ + i sh ν̃nκ sin ν̃nκ,

sh
√
iνnκ = sh ν̃nκ cos ν̃nκ + i ch ν̃nκ sin ν̃nκ; (2.28)

we find the functions ϕn (κ) and χn (κ):

ϕn(κ) = anY1 (ν̃nκ, ν̃nκ)− bnY2 (ν̃nκ, ν̃nκ) + cnY3 (ν̃nκ, ν̃nκ)− dnY4 (ν̃nκ, ν̃nκ) , (2.29)

χn(κ) = −anY2 (ν̃nκ, ν̃nκ)−bnY1 (ν̃nκ, ν̃nκ)−cnY4 (ν̃nκ, ν̃nκ)−dnY3 (ν̃nκ, ν̃nκ) , (n = 1, 2, . . . , p). (2.30)

Here Ym (ν̃nκ, ν̃nκ) (m = 1, 2, 3, 4) are hyperbole-trigonometric functions of the form

Y1 (ν̃nκ, ν̃kn) = ch ν̃nκ cos ν̃kκ, Y2 (ν̃nκ, ν̃kκ) = sh ν̃nκ sin ν̃kκ, (2.31)

Y3 (ν̃nκ, ν̃kκ) = sh ν̃nκ cos ν̃kκ, Y4 (ν̃nκ, ν̃kκ) = ch ν̃nκ sin ν̃kκ. (2.32)

On the basis of the boundary conditions, the coefficients an, bn, cn, dn are the functions of the
moving coordinate κm and they have the form

an(κm) =
∆1(κm)

∆(κm)
, bn(κm) =

∆2(κm)

∆(κm)
,

cn(κm) =
∆3(κm)

∆(κm)
, dn(κm) =

∆4(κm)

∆(κm)
,

(2.33)

where ∆i(κm, (i = 1, 2, 3, 4) are determinants of the fourth order. In order to simplify the solving, we

denote Ym (ν̃nκ, ν̃nκ) = Ym

(

νnκ√
2

)

.
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With this, we take into account that

Y ′
1

(

νnκ√
2

)

=
νn√
2
[Y3 (ν̃nκ)− Y4 (ν̃nκ)] , Y ′

2

(

νnκ√
2

)

=
νn√
2
[Y4 (ν̃nκ) + Y3 (ν̃nκ)] ,

Y ′
3

(

νnκ√
2

)

=
νn√
2
[Y1 (ν̃nκ)− Y2 (ν̃nκ)] , Y ′

4

(

νnκ√
2

)

=
νn√
2
[Y2 (ν̃nκ) + Y1 (ν̃nκ)] . (2.34)

∆(κm) = |δij | are determinants of the system of equations ∆(κm)xn = f , where xn = (an, bn, cn, dn)
T

δ11 =
νn√
2

[

Y3

(

νn√
2

)

− Y4

(

νn√
2

)]

+HY1

(

νn√
2

)

,

δ12 = −
{

νn√
2

[

Y3

(

νn√
2

)

+ Y4

(

νn√
2

)]

+HY2

(

νn√
2

)}

,

δ13 =
νn√
2

[

Y1

(

νn√
2

)

− Y2

(

νn√
2

)]

+HY3

(

νn√
2

)

,

δ14 = −
{

νn√
2

[

Y1

(

νn√
2

)

+ Y2

(

νn√
2

)]

+HY4

(

νn√
2

)}

,

δ21 = δ12, δ22 = −δ11, δ23 = δ14, δ24 = −δ13,

δ31 = Y1

(

νn√
2
κm

)

, δ32 = −Y2

(

νn√
2
κm

)

, δ33 = Y3

(

νn√
2
κm

)

, δ34 = −Y4

(

νn√
2
κm

)

,

δ41 = −Y2

(

νn√
2
κm

)

, δ42 = −Y1

(

νn√
2
κm

)

, δ43 = −Y4

(

νn√
2
κm

)

, δ44 = −Y3

(

νn√
2
κm

)

. (2.35)

The column of constant terms has the form

f =









Hαn

Hβn
0
0









. (2.36)

A solution of the boundary value problem (2.23), (2.24) we write as follows

T ∗(κ, τ) =

1
∫

κm

G(κ, κm, ξ, τ)f1 (ξ) dξ =

∞
∑

n=1

An
sinµn(κ− κm)

µn
exp

(

−µ2
nτ

)

, (2.37)

An =
1

∆n(µn, κm)

1
∫

κm

f1(ξ)

[

cosµn(1− ξ) +
H

µn
sinµn(1− ξ)

]

dξ, (2.38)

∆n (µn, κm) = cosµn (1− κm)
[(

µ2
n +H2

)

(1− κm) +H
]

, (2.39)

f1(κ) = f(κ)− T̄0, (2.40)

where

T̄0 = T1(κ, 0) =
P
∑

n=0

ϕn(κ).
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Solving the thermal-convective drying problem for porous solids 7

If the initial temperature distribution is uniform, i.e. T (κ, 0) = T0, with taking into account (2.17),
the contribution of the initial temperature into T ∗(κ, κm, τ) has the form

T ∗
0 (κ, κm) =

∞
∑

n=1

sinµn (κ− κm)

µn
A∗

n(κm)e−µ2
nτ , (2.41)

A∗
n =

2T0H

∆n

{

sinµn(1− κm)

µn
− H

µ2
n

[cosµn(1− κm)− 1]

}

. (2.42)

The contribution of the sum
p
∑

n=1
ϕn(κ) into T ∗(κ, κm) we represent as

T ∗
ϕ = −

1
∫

κm

p
∑

k=1

ϕn(ξ)×G(κ, κm, ξ, τ)dξ,

T ∗ =
∞
∑

n=1

sinµn (κ− κm)

µn
An (κm) e−µnτ , (2.43)

where

An (κm) =

p
∑

k=1

[

akZ̃
∗
nk1 − bkZ̃

∗
nk2 + ckZ̃

∗
nk3 − dkZ̃

∗
nk4

]

; (2.44)

Z̃∗
nki =

2H

∆n

Z∗
nki; (2.45)

Z∗
nk1 (µn,νk, 1, κm) = (∆1n) 〈g1kn Φ11kn [αkξ, β1knξ] + g2kn Φ12kn [αkξ, β2knξ]〉1κm

+

+ (∆2n) 〈g1kn Φ21kn [αkξ, β1knξ] + g2kn Φ22kn [αkξ, β2knξ]〉1κm
;

Z∗
nk2 (µn,νk, 1, κm) = (∆1n) 〈g2kn Φ32kn [αkξ, β2knξ]− g1kn Φ31kn [αkξ, β1knξ]〉1κm

+

+ (∆2n) 〈g2kn Φ42kn [αkξ, β1knξ]− g1kn Φ41kn [αkξ, β1knξ]〉1κm
;

Z∗
nk3 (µn,νk, 1, κm) = (∆1n) 〈g1kn Φ41kn [αkξ, β1knξ] + g2kn Φ42kn [αkξ, β2knξ]〉1κm

−
− (∆2n) 〈g2kn Φ32kn [αkξ, β2knξ] + g1kn Φ31kn [αkξ, β1knξ]〉1κm

;

Z∗
nk4 (µn,νk, 1, κm) = (∆1n) 〈g1kn Φ21kn [αkξ, β1knξ]− g2kn Φ22kn [αkξ, β2knξ]〉1κm

+

+ (∆2n) 〈g2kn Φ12kn [αkξ, β2knξ]− g1kn Φ11kn [αkξ, β1knξ]〉1κm
. (2.46)

∆1n = cosµn +
H

µn
sinµn,∆2n = sinµn − H

µn
cosµn,

{αk Y3 [αkξ, βjknξ] + βjknY4 [αkξ , βjknξ]} = Φ1jkn(ξ);

{αk Y2 [αkξ, βjknξ]− βjknY1 [αkξ , βjknξ]} = Φ2jkn(ξ);

{−αk Y4 [αkξ, βjknξ] + βjknY3 [αkξ , βjknξ]} = Φ3jkn(ξ);

{αk Y1 [αkξ, βjknξ] + βjknY2 [αkξ, βjknξ]} = Φ4jkn (ξ) ; (2.47)

αk =
νk√
2
, β1kn =

νk√
2
+ µn, β2kn = − νk√

2
+ µn,

g1kn =
1

2

[

ν2
k

2 +
(

νk√
2
+ µn

)2
] , g2kn =

1

2

[

ν2
k

2 +
(

− νk√
2
+ µn

)2
] , (2.48)
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T ∗ + T ∗
0 =

∞
∑

n=1

sinµn(κ− κm)

µn
Bn(κm)e−µnτ , (2.49)

Bm(κm) = Am(κm) +A∗
m(κm). (2.50)

This sum contributes to the temperature change just within the interval [κm, 1] of variable thickness.
Thereby, the temperature under random convective heating, depending on the time, can be written

as

T (κ, τ) = ϕ0(κ) +

p
∑

n=1

[

ϕn(κ) cos ν
2
nτ + χn(κ) sin ν

2
nτ

]

+
∞
∑

n=1

sinµn(κ− κm)

µn
Bn(κm)e−µ2

nτ , (2.51)

where

Bn(κm) =
2T0H

∆n

{

sinµn (1− κm)

µn
− H

µ2
n

[cosµn(1− κm)− 1]

}

+

+

p
∑

k=1

{

ak (κm)

[

Z̃∗
nk1

(

νk√
2

)

− Z̃∗
nk1

(

νkκm√
2

)]

− bk (κm)

[

Z̃∗
nk2

(

νk√
2

)

− Z̃∗
nk2

(

νkκm√
2

)]

+

+ ck (κm)

[

Z̃∗
nk3

(

νk√
2

)

− Z̃∗
nk3

(

νkκm√
2

)]

− dk (κm)

[

Z̃∗
nk4

(

νk√
2

)

− Z̃∗
nk4

(

νkκm√
2

)]}

.

This formula shows that
Bn (κm = 1) = 0.

It should be noted that in the formula (2.51), the temperature of phase transition is still unknown.

3. Solving the problem of moisture conduction during convective drying

Transfer of vapor-air mixture in a dried area occurs mainly by means of the mechanism of molecular
diffusion, effusion, and filtration. For diffusion transfer, the driving force is the partial pressure gradient,
for filtration – the total pressure gradient in the gas phase. The structure of the medium occupied by
the gas phase does not significantly affect the value of the effective diffusion coefficient. In contrast
to diffusion, gas filtration in wetted porous matrices depends to a large extend on the structure. The
gas filtration coefficient increases with increasing porosity, the size of particles of input material, and
the reduction of liquid content in pores. The dependence of the filtration coefficient on the porosity
is described by the formula K = cΠ3(1−Π)−2d exp

(

−5κ2m
)

, where Π is the porosity, d is the average
particle size of the skeleton, κm is the saturation of the pore space with liquid, c is the empirical
constant c ≈ 1.6 · 10−7 ÷ 3.4 · 10−7.

If into the equations (2.2) we introduce the dimensionless variables γa = γa0ξ, γv = γnη, y = L0κ,
then we calculate the values of the dimensionless variables

ã =
D1Maµg

Kγa0RT0
, b̃ =

γn
γa0

Ma

Mv
, (3.1)

and assume D1 to be D1 =
(

D + 1.064ε
√

RT0

Mv

)

for a given change in temperature of the drying agent,

where T0 is the initial temperature; after that we can linearize the original system of equations. Here γao
is the air density on the outer walls of the plate. If we integrate the equation of the system (2.2) under
the condition that the air density is not significantly changed along the length of the capillary, the den-

sity of vapour η(κ, κm) will be determined as follows η =
[

−A+
√

(A+ 1)2 − 2B(η1 − η0)(κ − κm)
]

,
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where A = (1+ã)

b̃
, B = −β′A, β′ = L0β̃

D1
. On the surface κ = 1, the equation is satisfied

b̃

(1 + ã)

(

η21 − 1
)

2
+ η1 − 1 + β′ (η1 − η0) (1− κm) = 0, (3.2)

the solution of which determines the value of the dimensionless density of vapour on the outer surface
of the plate. Here η1, η0 are the relative saturations of vapour on the surface of the plate and in the
drying agent. Denote zm = 1 − κm, where zm is the relative moisture loss in the drying process, and
denote the change of the width of the dried area. A physically reasonable solution has the form

η1 = −(A+Bzm) +
√

U + Szm +B2z2m, (3.3)

where
U = (A+ 1)2, S = 2B(A+ η0).

After determining the vapour density value on a wall, according to the condition (3.3) the value of
the flux j we present in the form

j = H1

{

−(a1 +Bzm) +
√

U + Szm +B2z2m

}

, (3.4)

where a1 = A+ η0, H1 = β̃γn0/ΠLγL, and the pressure at arbitrary point is equal to

P (κ, κm) =
γnη

Mv
RT (κ) =

[

−A+

√

(A+ 1)2 − 2B (η1 − η0) (κ− κm)

]

γn
Mv

RT (κ, κm) , (3.5)

where γn is the unknown value.

4. Determination of the phase transition temperature with taking into account tem-
perature gradient with the thickness of the plate

Let us determine phase transition temperature Tm from the condition (2.3)

−λ
∂T

∂κ

∣

∣

∣

∣

κ=κm

= rk
Kg

µg

∂P

∂κ

∣

∣

∣

∣

κ=κm

. (4.1)

where

T ′
κ(κm, τ) = (α0 − Tm)

H

1 +H
+

p
∑

n=1

[

ϕ′
n(κm) cos ν2nτ + χ′

n(κm) sin ν2nτ
]

+
∞
∑

n=1

Bn(κm)e−µ2
nτ .

Note, that ϕ′
n (κm), χ′

n (κm), Bn (κm) are related with with expansion coefficients of the drying agent
temperature control function. Therefore, we present

T ′
κ (κ, κm, τ) |κm

= Φ(κm, τ, αn, µn,H)− Tm
H

1 +H
= Φ− α12Tm, α12 =

H

1 +H
,

Φ (κm, τ, αn, µn, νn,H) = α0
H

1 +H
+

p
∑

n=1

[

ϕ′
nκ (κm) cos ν2nτ + χ′

nκ (κm) sin ν2nτ
]

+
∞
∑

n=1

Bn (κm) e−µ2
nτ

is a part of the temperature gradient, which is dependent on the expansion coefficients and the frequency
associated with a change in temperature of the drying agent, moisture saturation of the porous medium,
the rate drying agent.
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Considering the transport coefficients and specific heat of phase transition rk to be constant value
(when with the change in temperature of the phase transition from 100 to 150oC, the change of rk rep-
resents less than 20%) [7], and taking into account the linearized dependence between the temperature
and the pressure of phase transition Tm = Tmk +αmkPn, where the coefficient αmk ≈ 16 · 10−5 has the
dimension

[ oK
Πa

]

, and Tmk ≈ (83 + 273.15)oK, we obtain the quadratic equation to determine Tm

2
∑

i=0

CiT
i
m = 0, (4.2)

with the following coefficients

C2 =
B (η1 − η0)

A+ 1
+ α12 (1 + c11) , C1 = −

(

B (η1 − η0)

A+ 1
+ Φ (1 + c11) + Tmkα12

)

, C0 = TmkΦ,

c11 =
αmkλµg

rkKg
=

16λµg

105rkKg
.

The solution of this equation

Tm1 ≈ Tmk

[

B

A+ 1
(η1 − η0) + α12

]/[

B

A+ 1
(η1 − η0) + α12 (1 + c11)

]

+

+ Tmk

[

B

A+ 1
(η1 − η0) c11Φ

]/[

B

A+ 1
(η1 − η0) + α12 (1 + c11)

]

×

×
{

Tmk

[

B

A+ 1
(η1 − η0) + α12

]

− (1 + c11)Φ

}

, (4.3)

Tm2 = Φ(1 + c11)

/[

B

A+ 1
(η1 − η0) + α12 (1 + c11)

]

−

− Tmk

[

B

A+ 1
(η1 − η0) c11Φ

]/[

B

A+ 1
(η1 − η0) + α12 (1 + c11)

]

×

×
{

Tmk

[

B

A+ 1
(η1 − η0) + α12

]

− (1 + c11)Φ

}

where

α12 =
H

1 +H
.

Here and further, the argument next to the function Φ we do not write for simplification. The second
root of the equation depends mainly on the temperature gradient and is crucial for hard drying.

By linearizing of the expression (4.3), and neglecting the temperature gradient squares, we obtain

Tm ≈ Tmk

[

B

A+ 1
(η1 − η0) + α12

]/[

B

A+ 1
(η1 − η0) + α12 (1 + c11)

]

+ (4.4)

+ Tmk

[

B

A+ 1
(η1 − η0) c11Φ

]/[

B

A+ 1
(η1 − η0) + α12 (1 + c11)

] [

B

A+ 1
(η1 − η0) + α12

]

.

5. Determining the influence of changes in time in the temperature of the drying agent
on the drying process

After determining the flux of vapour on the surface, from the equations (3.2), (3.3), and (3.4) and
taking into account that 1 − κm = zm is the loss of relative moisture in the drying process and the
change of the width of dried area, we obtain the equation for determining the relative moisture changes
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in time and the equations of the liquid-gas interface movement

dzm
dτ

=
j(zm, T (τ))

ΠγLL
=

β̃γn0T0

ΠγLL (T0 + T (τ))
∣

∣

κm

[

− (a1 +Bzm) +
√

U + Szm +B2z2m

]

(5.1)

under the initial condition τ = 0:
zm = 0. (5.2)

For the solving the Cauchy problem (5.1), (5.2) we use the change of variables:

√

U + Szm +B2z2m = χ̃+ zmB.

Considering

zm =
χ̃2 − U

S − 2χ̃B
, χ̃− a1 =

2Bχ̃− S

2B
and

dzm
dχ

= 2

(

−Bχ̃2 + Sχ̃−BU
)

(S − 2Bχ̃)2
, (5.3)

we obtain the expression

4B

(

−Bχ̃2 + Sχ̃−BU
)

(

(2Bχ̃− S)3
)

(

1 +
Tm

T0

)

dχ̃ = Hd(tiz + tniz), (5.4)

where H = β̃γn0/ΠγLL.
The first members of the left and right sides of the equation correspond to isothermal drying

4B

(

−Bχ̃2 + Sχ̃−BU
)

(

(2Bχ̃− S)3
) dχ̃ = Hdtiz. (5.5)

The effect of change in temperature of the drying agent in time is determined from the equation

4B

(

−Bχ̃2 + Sχ̃−BU
)

(

(2Bχ̃− S)3
)

Tm

T0
dχ̃ = H dtniz (5.6)

Substituting the expression of the phase transition temperature from the equation (4.4) into (5.6), we
obtain

dχ̃

dt
=

HT0

4BTmk

(2Bχ̃− S)3

[−Bχ̃2 + Sχ̃−BU ]

{

(χ− a3)

(χ− a2)

[

1− (χ− a1)
A+1
B

c11Φ

(χ− a2)
2

]}

, (5.7)

where

a1 = A+ η0, a2 = a1 −
A+ 1

B
α12, a3 = a1 −

A+ 1

B
α12 (c11 + 1) , (5.8)

κm = 1 − χ̃2−U
S−2χB , τ = at

L2 , ϕ′
nκ(κm), χ′

nκ(κm) are the derivatives of the functions ϕn(κ), χn(κ) for
κ = κm. The solution of the equation (5.7) must satisfy the initial condition

χ
∣

∣

t=0
=

√
U. (5.9)

The solution of the equation we try approximately by method of iterations. Integration the equation
(5.7) from zero to t with taking into account (5.9) yields

χ =

t
∫

0

F (χ, t)dt+ χ0. (5.10)
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In this equation the unknown function χ is under the integral sign. Thus, we have come to the integral
equation for the function χ that satisfies the equation (5.10) and the initial condition (5.9). We assume
χ0 = χ|t=0 =

√
U to be zero approximation of the solution.

The first approximation we obtain from (5.10) as

χ̃1(t) =
HT0

4BTmk

(

2B
√
U − S

)3

[−2BU + Sχ̃]











(√
U − a3

)

(√
U − a2

)






t−

(√
U − a1

)

A+1
B

c11Φ1(1, t)
(√

U − a2

)2

















+
√
U,

where

Φ(1, t) = α0
H

1 +H
t+

L2

a

p
∑

n=1

1

ν2

[

ϕ′
nκ(1) sin ν

2
n

at

L2
+ χ′

nκ (1)

(

cos ν2n
at

L2
− 1

)]

. (5.11)

Substituting the first approximation into the integrand in the equation (5.10), we obtain the second
approximation

χ2(t) =

t
∫

0

F (χ1(t), t)dt + χ0,

or

χ2 (t) =
HT0

4BTmk

(2Bχ̃1 (t)− S)3
[

−Bχ̃1 (t)
2 + Sχ̃1 (t)−BU

]×

×
{[

1−
A+1
B

c11α12

(χ1 (t)− a2)

][

t− [χ1 (t)− a1]
A+1
B

c11Φ2 (χ1 (t) , t)

[χ1 (t)− a2]
2

]}

+
√
U,

Φ2 (χ̃1(t), t) = α0
H

1 +H
t+

+
L2

a

p
∑

n=1

1

ν2n

[

ϕ′
nκ

(

1− χ̃2
1(t)− U

S − 2Bχ̃1(t)

)

cos ν2n
at

L2
+ χ′

nκ

(

1− χ̃2
1(t)− U

S − 2Bχ̃1(t)

)

sin ν2n
at

L2

]

+

+B0

(

1− χ̃2
1(t)− U

S − 2Bχ̃1(t)

)

+

∞
∑

n=1

Bn

(

1− χ̃2
1(t)− U

S − 2Bχ̃1(t)

)

e−µ2
n

at

L2 ,

where κm1(t) = 1− χ̃2

1
(t)−U

S−2Bχ̃1(t)
are the arguments to functions ϕ′

nκ(κm1), χ
′
nκ(κm1), B0(κm1), Bn(κm1).

Continuing this process, we obtain formulae for the sth approximation

χs (t) =
HT0

4BTmk

(2Bχ̃s−1 (t)− S)3
[

−Bχ̃s−1 (t)
2 + Sχ̃s−1 (t)−BU

]×

×
{[

1−
A+1
B

c11α12

(χs−1 (t)− a2)

] [

t− [χs−1 (t)− a1]
A+1
B

c11Φ2 (χs−1 (t) , t)

[χs−1 (t)− a2]
2

]}

+
√
U

Φ2 (χ̃s−1(t), t) = α0
H

1 +H
t+

L2

a

p
∑

n=1

1

ν2n

[

ϕ′
nκ

(

1− χ̃2
s−1(t)− U

S − 2Bχ̃s−1(t)

)

cos ν2n
at

L2
+

+ χ′
nκ

(

1− χ̃2
s−1 (t)− U

S − 2Bχ̃s−1 (t)

)

sin ν2n
at

L2

]

+

+B0

(

1− χ̃2
s−1 (t)− U

S − 2Bχ̃s−1 (t)

)

+
∞
∑

n=1

Bn

(

1− χ̃2
s−1 (t)− U

S − 2Bχ̃s−1 (t)

)

e−µ2
n

at

L2 . (5.12)
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5.1. Particular cases

In the case when in the solution of equation for determining the phase transition temperature (4.3)

the member Tmk

[

B
A+1 (η1 − η0) c11Φ

]

can be neglected, we obtain two solutions of the equation (4.2)

Tm = Tmk

[

B

A+ 1
(η1 − η0) + α12

]/[

B

A+ 1
(η1 − η0) + α12 (1 + c11)

]

, (5.13)

Tm = Φ(1 + c11)

/[

B

A+ 1
(η1 − η0) + α12(1 + c11)

]

. (5.14)

The first expression (5.13) can be treated as an approximate linearized solution to the phase transi-
tion temperature of soft modes, the second expression (5.14) — of hard modes, in which the temperature
gradient in the body is the main factor represented by Φ(κm, τ, αn, µn,H). Thus, we have defined the
non-stationary fields of potentials of energy and matter transference under the boundary conditions of
the third kind. The obtained approximate solutions establish the relations between heat-mass transfer
dependence and kinetic and geometric coefficients.

Define the relationship between time and dried area width for soft modes, when we can neglect the
second member for expression Tm.

From the equations (5.1) we obtain the equation for determining the relative moisture change in
time and the equation of movement of the liquid-gas interface

dzm
dτ

=
j(zm)

ΠγLL
=

β̃γn0T0

ΠγLL (T0 + Tm (τ))

[

− (a1 +Bzm) +
√

U + Szm +B2z2m

]

(5.15)

with the initial condition
if τ = 0, zm = 0. (5.16)

Substituting the expressions for the phase transition temperature from (5.13) into (5.15) and using
replacement (5.3), we obtain

4B
[

−Bχ̃2 + Sχ̃−BU
]

(2Bχ̃− S)3
dχ̃+

4BTmk

T0

[

−Bχ̃2 + Sχ̃−BU
]

(χ− a2)

(2Bχ̃− S)3 (χ− a3)
dχ̃ = Hdτ. (5.17)

After factorizing (to simple multipliers) the left side of the equation (5.17), we obtain

4B

[

A0

(χ̃− a3)
+

B0

(2Bχ̃− S)
+

C0

(2Bχ̃− S)2

]

+

+
4BTmk

T0

[

A1

(χ̃− a3)
+

B1

(2Bχ̃− S)
+

C1

(2Bχ̃− S)2
+

D1

(2Bχ̃− S)3

]

dχ̃ = dτ, (5.18)

where

A0 = − 1

4B
, C0 = B

(

a2
1
− U

)

, B0 = 0, A1 = − 1

4B

[

1 +

(

−a23 + 2a1a3 − U
)

(a3 − a2)

(a3 − a1)
3

]

,

D1 =

(

−a23 + 2a1a3 − U
)

(a3 − a2)

8B2 (a3 − a1)
3 , B1 =

(a2 − a3)

2

[

1 +

(

−a23 + 2a1a3 − U
)

(a3 − a1)
2

]

,

C1 =
(a1 − a2)

(a1 − a3)
B
(

a21 − U
)

.
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The solution of the equation (5.18) has the following form

4B

H

{

A0

2B
ln

∣

∣

∣

∣

2χ̃B − S

2
√
UB − S

∣

∣

∣

∣

− C0

2B

[

1

(2χ̃B − S)2
− 1

(2
√
UB − S)2

]}

+
4B

H
A1 ln

∣

∣

∣

∣

χ̃− a3√
U − a3

∣

∣

∣

∣

+

+
4B

H

{

B1

2B
ln

∣

∣

∣

∣

2χ̃B − S

2
√
UB − S

∣

∣

∣

∣

− C1

2B

[

1

2χ̃B − S
− 1

2
√
UB − S

]

−

− D1

2B

[

1

(2χ̃B − S)2
− 1

(2
√
UB − S)2

]}

= τ,

where
χ̃ =

√

U + Szm +B2z2m − zmB (zm = 1− κm) . (5.19)

6. Conclusions

The expression (5.19) defines the relations between the time of drying and the dried area width zm
as the function of the heat transfer coefficient (by means of the parameters a2, a3), the mass transfer
coefficient (by means of the parameters B, S, C55), permeability, diffusion, and average temperature
(by means of the parameters A, U). The term in the first braces gives us the expression of the relative
moisture change in time for the stationary temperature of soft regime when drying conditions are such
that the temperature gradient can be neglected. Comparing the expression (5.19) with the expression
of isothermal drying, we see that if in the stationary case the time of drying depends on the relative
moisture of the drying agent and the mass transfer coefficient; in the non-stationary mode all the
coefficients depend on the state equation at the interface as well as on the heat transfer coefficient,
which is not observable in isothermal convective drying. If zm = 1, we obtain the complete time of
drying. As can be seen in the soft drying mode, we can control the process by increasing or decreasing
the blow rate by means of the heat H or mass B transfer coefficients, moisture of the drying agent η0
by means of the coefficients a1, S, and varying the time of the drying agent temperature change by
means of the coefficients αn, βn of the expansion of the control function u(τ). All expressions we have
explicitly, so we can choose and minimize appropriate desired criteria of optimal mode of drying.
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Побудова розв’язку задачi про конвективно-теплове осушення
пористих тiл в сушильних установках
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Отриманi в роботi наближенi розв’язки одномiрної нелiнiйної математичної моделi
процесу сушiння пористих тiл дають можливiсть встановити температуру фазового
переходу при довiльних змiнах температурних режимiв сушильного агента, змiну
вiдносної вологостi в тiлi в процесi осушення, як функцiю геометричних та фiзичних
параметрiв, вплив швидкостi та вiдносної вологостi сушильного агента на процес
сушiння з метою оптимiзацiї процесу.
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