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This paper is devoted to analysis of the electric loading conditions problem for piezoceramic
resonators’ forced vibrations. New simple experimental technique together with computing
permits us to study many resonators’ parameters: admittance, impedance, phase angles,
power components, etc. for constant input voltage, constant sample voltage and constant
sample current electric conditions based on experimental data for “as it is” regime. Such
computer modeling makes it possible to decrease the experimental difficulties and to study
in linear approximations the dependence of resonators’ parameters on loading conditions.
The fundamental modes of vibrations of a thin piezoelectric bar and high cylindrical
shell are given as example. It is established that considerable admittance nonlinearity in
constant voltage regime and its absence for constant current case are caused by different
behavior of instantaneous power level.
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1. Introduction

Piezoceramic elements, while performing similarly or better than electromagnetic ones, are more suit-
able for miniaturization’s purpose [1–3]. When uniform mechanic stress is applied in a non-centered
symmetric crystal or polarized piezoceramic sample there is a movement of positive and negative ions
with respect to each other, creating an electric charge at the surface. This is a direct piezoelectric
effect – a conversion of mechanical energy into electrical energy. When electric field is applied to the
sample an elastic strain is produced. This is an inverse piezoelectric effect – a conversion of an electric
energy into mechanical energy. When an alternating electric field is applied mechanic vibrations are
induced, which at appropriate frequency cause mechanical resonance with great strains and stresses.
A phenomenon of strain increasing due to accumulated electric energy is known as a piezoelectric
resonance [4–7 etc]. Both direct and inverse piezoelectric effects are linear physical phenomena with
respect to the induced fields.

Vibrations of piezoceramic elements are characterized by great electromechanical coupling between
electric fields and elastic displacements or stresses. The internal physical processes nature in such bodies
drives to the fact that mechanical displacements, strains and stresses, sample admittance, impedance or
instantaneous power have both real and imaginary parts. Thus, it is possible to calculate any amplitude
with accounting the energy losses only [5–10]. The analytic solutions for electro-elastic vibrations of
simple geometric form bodies such as bars, rods, disks, circular or cylindrical rings etc [5–7] are used
in standards for determination of the real parts of dielectric, elastic and piezoelectric coefficients.

Ref [10] was devoted to modeling of the loss-energy piezoceramic resonators by Van-Dyke-type
electric equivalent networks with passive elements. It was shown that when the piezoelectric sample
is excited by the constant voltage the instantaneous power in the sample increases at a resonance
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frequency in many times in respect to off-resonance case. When sample is excited by constant current
an instantaneous power decreases at resonance frequency in same ratio. Thus, the reason of admittance
curve nonlinearity at the constant voltage and its absence at the constant current is high or low level
of an instantaneous power.

Imaginary parts of the dielectric, elastic and piezoelectric coefficients usually are determined at
maxima/minima admittance, what was first proposed by Martin [11]. Very important role in energy
losses belongs to mechanic quality factor Q, which differs for resonance and anti-resonance cases [12].

In Ref [13], on the example of famous problem of radial vibrations of thin piezoceramic full electrode
disk, the expressions for instantaneous power were derived, and graphs of the admittance and power
change near resonance/anti-resonance at constant voltage (with the constant amplitude) or the constant
current (with the constant amplitude) were plotted. Calculations were performed in complex form
with taking into account the experimentally determined mechanic, dielectric and piezoelectric energy
losses. It was shown that for constant voltage regime the instantaneous power sharply increases near
resonance but it decreases for the constant current regime. This accounts for the existence or absence
of nonlinearity which was discovered in Ref [2].

This paper is devoted to analysis of the electric loading conditions problem for piezoceramic
resonators’ forced vibrations. An idea of the step-by-step voltage measuring in modern Mason’s
schema [14] is developed and method for the determination of phase shifts between admittance’s
or power’s components with cosine law are used [8–10]. New simple experimental technique together
with computing permits to study many resonators’ parameters: admittance, impedance, phase angles,
power components etc for constant input voltage, constant sample voltage, constant sample current
and constant instantaneous power electric conditions based on experimental data for “as it is” regime.
“As it is” regime for experimental investigation means that sample voltage, input voltage and loading
resistor voltage are measured separately and consecutively. The regimes of constant voltage, constant
currant constant power mean that their amplitudes are installed at the beginning of experiment and
not changed for selected frequency range. Such experiments for frequency range near the fundamental
mode of the thin disk radial vibrations have been described in paper [8]. It was shown that admittance’s
components and phase angles for constant sample current, constant sample voltage and constant input
voltage exhibit the same results.

There are two various modeling technique in this paper: an iterative process and electric loading
condition simulation. First model permits to determine the coupling coefficients and loss energy tan-
gents on a base of measured maxima/minima admittance values. Second model serves for simulation
of electric loading conditions and it is based on experimental measured data for “as it is” regime. Both
models are very suitable for the decreasing of investigation difficulties.

Computer modeling makes possible to study in linear approximations the dependence of resonators’
parameters from loading conditions.

The fundamental modes of thin piezoelectric bar [1–3,12,15–17] and high cylindrical shells [5] are
given as example. It was established that admittance, impedance, phase shifts are independent from
loading conditions. It was established that admittance, impedance, phase shifts are independent from
loading conditions. High admittance nonlinearity in constant voltage regime and its absence for con-
stant current case are created by different behavior of instantaneous power. The instantaneous power
reaches maximum level at resonances for the constant sample voltage and at anti-resonances for the
constant sample current. To modeling of constant power regime for the thin piezoelectric ceramic bar
it is necessary to increase input voltage and sample voltage near resonance on 30− 40% and in several
times at anti-resonance with respect to off-resonance case.

2. Admittance, impedance and power components for thin piezoceramic bars and rings

Piezoelectric bars with transversal polarization became already a ‘touchstone’ in many experimental re-
searches because their vibrations are described by simple mathematical formulas, and the first overtone
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lies far from fundamental resonance as to frequency [5–12]. The mechanical and electric values of these
structures are coupled between themselves by the so-called transversal coefficient of electromechanical
coupling (EMC) k31, that is why the longitudinal vibrations of such bars in foreign publications quite
often name a k31 mode [1–3,12].

In Refs [8–10,13] it was shown that the piezoelectric resonator’s admittance can be presented in
calculations as imaginary conductivity of the inter-electrode sample capacitance C0 multiplied by the
ratio of anti-resonance ∆a(x) to resonance ∆(x) determinants

Y = jωC0

∆a(x)

∆(x)
(1)

where j is the imaginary unit, ω is the angular frequency, x is the dimensionless frequency, which
depends on geometric sample’s form.

For thin bar with thickness polarization and high cylindrical shell with radial polarization the
following formulae were derived accordingly [5]

Yb = jωC0

[

1− k2
31

+
k2
31
sinx

x cos x

]

= jωC0

∆a(x)

∆(x)
, (2)

∆(x) = cos(x), ∆a(x) = (1− k231)∆(x) + k231 sinx/x;

Yhk = jωC0

[

1− k2p +
(1 + ν)k2pω

2
r

2(ω2
r − ω2)

]

= jωC0

∆a(x)

∆(x)
, (3)

∆(x) = ω2

r − ω2, ∆a(x) = (1− k2p)∆(x) + (1 + ν)k2pω
2

r/2.

Here j is the imaginary unit, ω and ωr are the angular frequency and the resonant angular frequency
respectively, k31 and kp are the transverse coupling coefficient and the planar coupling coefficient, and
ν is Poisson’s ratio.

All the variables, functions and electro-elastic coefficients in (1)–(3) are complex [4, 8, 13]. The
dimensionless frequency x is determined for the thin bar case as

x =
(

ρsE
11

)1/2
ωl/2 =

(

ρsE
110

)1/2
(1− js11m/2)ωl/2 = x1 − jx2, sE

11
= sE

110
(1− js11m) (4)

and for the high cylindrical ring case as

x = ω/ωr = ωR
(

ρsE
11

)1/2
= ωR

(

ρsE
110

)1/2
(1− js11m/2) = x1 − jx2. (5)

Here l is the bar length, R is exterior ring’s radius, x1 and x2 are the real and imaginary parts of the
complex dimensionless frequency x, sE

11
is the complex elastic compliances, ρ is the density.

Admittance (or full conductivity) characterizes sample’s possibility to conduct the electric current
and is determined as the ratio of the sample current to the sample voltage. This parameter is convenient
near the resonance of piezoelectric sample where it reaches maximum value. But for anti-resonant
frequency region it is more convenient to use impedance because it reaches its maximum value at anti-
resonance. The admittance Y and the impedance Z are in inverse ratio and for impedance calculation
we can use the following simple relation

Z =
1

Y
. (6)

There are three characteristic power’s components in sinusoidal alternative current circuit: the
instantaneous power P in volt-ampere (VA), which is voltage drop U on some circuit area in some
time moment multiplied on circuit’s current I in the same moment, the active power Pa in watts (W),
which is distinguished on active resistance and heats it, and the reactive power Pre in volt-ampere

Mathematical Modeling and Computing, Vol. 2, No. 2, pp. 115–127 (2015)



118 BezverkhyiO. I., Zinchuk L. P., KarlashV. L.

reactive (VAr), which is distinguished on reactive circuit’s elements (inductances or capacitances) and
creates electric or magnetic fields [13]

P = UI, Pa = UI cosα, Pre = UI sinα. (7)

When the piezoresonator’s voltage is U1 and the piezoresonator’s current is I0 we can write

U1 = I0/Y, I0 = U1Y, P = U1I0 = I20/Y = U2

1Y, (8)

Pa = P cosα, Pre = P sinα, α = arccot(w1), w1 = Re(Y )/ Im(Y ).

These formulae permit us to realize in calculations the regimes of constant voltage U1 = const,
constant current I0 = const or constant power P = const if admittance expressions (1)–(3) are known.
The real parts of the coupling coefficients k31 and kp for the relations (2) and (3) can be determined
in experiments with using the formulae

k2
310

1− k2
310

=
π

2

fn
fm

tan

[

(fn − fm)π

2fm

]

, (9)

2(1 − k2p0)

(1 + ν)k2p0
=

f2
m

f2
n − f2

m

. (10)

Here fm and fn are the frequencies of maximum and minimum admittance respectively, ν is the Poisson
ratio.

The real component of fundamental dimensionless resonance frequency for thin piezoceramic bar
with thickness polarization is equal to π/2 and for high cylindrical ring with radial polarization it is
equal to 1.0. Anti-resonance dimensionless frequencies are determined by coupling coefficients k31 or
kp, which can be written as

k231 =
d2
31

sE
11
εT
33

=
d2
310

sE
110

εT
330

[1 + j(s11m + ε33m − 2d31m)] = k2310[1 + j(s11m + ε33m − 2d31m)],

k2p =
2

1− ν
k2
31

=
2

1− ν
k2
310

[1 + j(s11m + ε33m − 2d31m)] = k2p0[1 + j(s11m + ε33m − 2d31m)] (11)

(sE
11

= sE
110

(1− js11m), εT
33

= ε330(1− jε33m), d31 = d310(1− jd31m), d2
31

= d2
310

(1− 2jd31m)),

because electromechanical loss tangents’ values are usually small enough.
In our experiments, in parallel to generator’s output or coordinating divider, the piezoelement Pe

and the loading resistors R were included and we could measure for randomly chosen frequency range
the voltages Upe on the samples and UR on loading resistors as well as the input voltage Uin, the inter-
electrode capacitance C0 and the dielectric loss tangent tan δ = ε33m. The voltage UR is proportional
to the electrical current Ipe in the resistor and the sample. The loading resistor near the resonance
was of 11.2Ohm and near the anti-resonance 20 kOhm.

Ipe =
UR

R
. (12)

The ratio of current to voltage is determined as admittance

Ype =
Ipe
Upe

=
UR

RUpe
. (13)
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The product of sample current and sample voltage is determined as instantaneous power

Ppe = UpeIpe =
URUpe

R
. (14)

The three measured voltages Upe, UR, and Uin create peculiar characteristic triangle and the angles
between its sides were calculated with using the cosine law [8–10]

cosα =
U2
pe + U2

R − U2

in

2UpeUR
, cos β =

U2

in + U2

R − U2
pe

2UinUR
, cos γ =

U2

in + U2
pe − U2

R

2UinUpe
. (15)

The angle α, formed sides UR and Upe, characterizes the change of phases between the current and
voltage drop in the piezoelement. The angle β, formed by the sides Uin and UR corresponds to the
phase shift between the output voltage of generator and consumable current. The angle γ, formed by
the sides Uin and Upe, characterizes the difference of phases between the output voltage of generator
and voltage drop on the piezoelement.

The voltages Upe, UR, and Uin for “as it is” case together with according frequencies were entered in
PC and admittance’s, impedance’s, angle’s and power’s amplitude-frequency characteristics (AFChs)
were plotted with using the formulae (6), (12)–(15).

To model the constant current, the constant voltage or the constant power loading regimes the
following simple transition formulae were derived

Uin = Uin00, Upe = Uin00Upe0/Uin0, UR = Uin00UR0/Uin0; (16)

UR = UR00, Uin = UR00Uin0/UR0, Upe = UR00Upe0/UR0;

Upe = Upe00, Uin = Upe00Uin0/Upe0, UR = Upe00UR0/Upe0;

p0 = p00, t = [p0/(UR0Upeo)]
1/2, Upe = Upe0t, UR = UR0t, Uin = Uin0t.

Here Uin00, UR00, Upe00, p00 are the constant amplitude values which are taken for modelling while
Uin0, UR0, Upe0 are ones for “as it is” regime.

3. Experimental-computational determination of the coupling factors and loss coeffi-
cients

It is necessary to know the coupling factors and loss coefficients to calculate any amplitude for piezores-
onator’s vibrations. There are a number of experimental methods to determinate their works [6,15–17].
We used the simple experimental-analytical iterative process, which permits to obtain the refined val-
ues based on experimental data. This method was described in Ref [8] for the case of radial vibration
of thin disk, but imaginary part of the Poisson ratio was neglected.

In the case of thin piezoelectric bar, the iterative process is the following.
For determination of transversal EMCC (electro-mechanic coupling coefficient) k31, and tangents

of mechanical s11m and piezoelectric d31m losses of energy, the iterative steps were made for the
basic longitudinal resonance of TsTBS–3 bar with sizes 33.4 × 5.8 × 1.25mm. The sample had
C0 = 2.98 nF, tan δ = ε33m = 0.0093, Ym = 11.6mS, Yn = 0.0637mS (Zn = 15.7 kΩ), fm = 51.01 kHz,
fn = 53.04 kHz, fn/fm = 1.0398, a = 0.608mS, x01 = 1.571. The loading resistor was of 229 Ohms.
The multiplier a serves to coordinate dimensionless and resonant frequencies and it is introduced as

ωC0 = 2πf01C0x/x01 = ax, (a = 2πf01C0/x01), (17)

where x is the current value of dimensionless complex frequency, x01 is the active component of di-
mensionless frequency and f01 is the measured frequency of maximum admittance.
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Fig. 1 illustrates three iterative steps. For the sake of greater obviousness, the plots of complete
conductivity are given to the first row and the sample impedance is represented at the second row.
Graphs for every step are similar and they differ only with amplitudes and frequency positions of a
minimum of conductivity (or a maximum of impedance).

As a result of first iteration which was made in the interval of dimensionless frequencies
1.5 6 x 6 1.75 at the following chosen values k2

310
= 0.1, s11m = 0.01, ε33m = 0.0093, d31m = 0.01;

a = 0.608mS the following conductivities Ym = 7.8mS, Yn = 0.112mS and frequencies xn = 1.64,
xm = 1.571, xn/xm = 1.0446 were obtained (Fig. 1, а). It is required to diminish the ratio xn/xm, and
it can be done only with diminishing of k2

310
, and for Ym increasing it is necessary to diminish s11m.

The next iteration was provided in the same frequency range at other set of values: k2
310

= 0.09,
s11m = 0.006, ε33m = 0.0093, d31m = 0.007, a = 0.608mS. The conductivities Ym = 11.7mS,
Yn = 0.0735mS and frequencies xn = 1.6321, xm = 1.571, xn/xm = 1.0389 were got (Fig. 1, b).
Maximum of the complete conductivity and ratio of frequencies approach experimental values, but for
diminishing of conductivity minimum it is necessary to reduce the tangent of piezoelectric losses. Last
(fifth) iteration was conducted in the same frequency interval at d31m = 0.004. We obtained the con-
ductivities Ym = 11.7mS, Yn = 0.0684mS and frequencies xn = 1.6321, xm = 1.571, xn/xm = 1.0389
(Fig. 1, c). The differences between the experimental and calculated data for Ym, Yn and fn/fm are
0.86%, 7.4%, and 0.03% respectively.
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Fig. 1. Stages of iterative process for a bar with 33.4×5.8×1.25 mm dimensions made of TsTBC-3 ceramics.

As the result of iterative procedures, it is possible to consider the following: k2
310

= 0.09;
s11m = 0.006; ε33m = 0.0093; d31m = 0.004. This information may be used for calculations of ad-
mittances, impedances, powers, displacements, strains or stresses in any point of a thin piezoelectric
bar.

Analogical iterative procedure was made for shot and high piezoelectric cylindrical rings with radial
polarization.

We made such steps in the case of radial vibrations of a high ring.
In Fig. 2 the admittance modulus is plotted as dashed line, the real part of the admittance is plotted

as solid line and the imaginary part of the admittance is plotted as dotted line. The right graphs refine
the interval near the minimum admittance.
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Fig. 2. An iterative process for cylindrical shell with 18.5× 15.7× 22 mm sizes made from TsTS-19 ceramics.
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The first iteration step (Fig. 2, a) was performed with the following data (cylindrical shell with di-
mensions 18.5×15.7×22mm made of TsTS–19 ceramics): C0 = 14480pF, ε33m = 0.0104, a = 7.02mS,
ν = 0.35, k2p = 0.2, s11m = 0.009, d31m = 0.012. The measured data were: Ym = 170mS, Yn = 0.14mS,
fm = 77.789 kHz, fn = 90.039 kHz, fn/fm = 1.1574. The resistance of loading resistor at the resonance
was equal to 11.2Ohm and at anti-resonance was equal to 229Ohm.

The calculated results xm = 1.0, Ym = 106mS, xn = 1.081, Yn = 0.4mS, xn/xm = 1.081 are not
in agreement with the experimental data. It is necessary to increase k2p value.

For the case of k2p = 0.3 (second step, Fig. 2, b) the results xm = 1.0, Ym = 106mS, xn = 1.1357,
Yn = 0.26mS; xn/xm = 1.1357 are in pure agreement with the experiment data. For the case of
k2p = 0.33 (third step Fig. 2, c) the results xm = 1.0, Ym = 170mS, xn = 1.154, Yn = 0.21mS,
xn/xm = 1.154 are in agreement with the experimental data. Decreasing of piezoelectric loss tangent to
a level d31m = 0.0067 (fourth step, Fig. 2, d) decreases the admittance minimum to value Yn = 0.153mS.

The iterative results xm = 1.0, Ym = 170mS, k2p = 0.33, s11m = 0.0095, ε33m = 0.0104,
d31m = 0.0067, xn = 1.154, Yn = 0.153mS; xn/xm = 1.154 are in very good agreement with ex-
perimental data: Ym = 170mS, Yn = 0.14mS, fm = 77.789 kHz, fn = 90.039 kHz, fn/fm = 1.1574.
The discrepancy for Ym is 0%, for Yn is 9.3% and for fn/fm is 0.26%.

Thus, for mentioned higher cylindrical shell the following refined data k2p = 0.33, d31m = 0.0067,
s11m = 0.0095, ε33m = 0.0104 were obtained.

4. The simulation of the electrical loading of piezoelectric elements on the basis of
experimental data

To estimate influence of the chosen electric loading regime on piezoceramic bar with dimensions
33.4 × 5.8× 1.25mm made of TsTBC-3 ceramics, the forced vibrations amplitude-frequencies char-
acteristics (AFChs) were plotted for the following cases: “as it is”, constant sample current, constant
sample voltage and constant sample power (Fig. 3). The conversion from one type of loading condi-
tions to other is performed using the formulae (16). The plots in the first row are given for “as it is”
case, the second row responds the constant current permanent amplitude of 1mA, the third row brings
results for the case when the sample voltage level equals 100mV (such value was experimentally got at
resonance) and the fourth row represents a case of the constant instantaneous power level 0.218mVA.
The voltage drops Uin (solid lines), Upe (dashed curves) and UR (dotted lines) are given in the first
column.

The second and third columns are accordingly built for AFChs of full conductivity and instantaneous
power. AFChs of the phase angles α (solid lines), β (dotted lines) and γ (dashed curves) are resulted
in the fourth column.

The analysis of the graphs shows the following facts. The regime of the electric loading does
not influence AFChs of full conductivity and phase shifts — they remain without changes at the
change of external electric conditions. At the same time, AFChs of instantaneous power and voltages
strongly depend on the chosen loading regime. At approaching to resonance in the regime “as it is” the
voltage Uin goes down (due to shunting operating of measuring circuit on the output of generator or
coordinating voltage divider). Sharp growth of the loading resistor voltage UR and decline of voltage
drops Upe on piezoelement take place. And at nearing to anti-resonance the voltage drops on the
loading resistor goes down and arrives at a minimum on certain frequency which is equated with
anti-resonance [5–7].

Forced vibrations of piezoelectric high cylindrical ring of 18.5× 15.7× 22mm sizes made of TsTS-
19 ceramics were studied in “as it is” regime with two loading resistor of 11.2 and 229Ohm. It was
established that the admittance maximum changes from 167 to 160mS (difference is 4.3%) only, while
impedance maximum changes from 1.22 to 7.3 kOhm (almost 6 times!).

Fig. 4 demonstrates the admittance’s AFChs at loading resistor 11.2 (first and second graphs) and
229Ohm resistance (third and fourth graphs). These graphs are plotted for regimes: “as it is” (first
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 Fig. 3. Amplitude-frequency characteristics of voltage, admittance, power and phase angles for a bar with

33.4× 5.8× 1.25mm dimensions made of TsTBC-3 ceramics.
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 Fig. 4. Amplitude-frequency characteristics of admittance for a high cylindrical ring at loading resistor 11.2
and 229Ohm.

and third curves) or constant power (second and fourth curves). Admittance’s AFChs do not depend
on electric loading regimes and they are weakly depending on loading resistor value.

Fig. 5 illustrates the voltage’s AFCh (first column), impedance’s AFCh (second column), instanta-
neous power’s AFCh (third column) and phase angles’ AFCh (fourth column) of high ring for regimes
“as it is” (first row) and after transformation data into the regimes of constant sample current (sec-
ond row), constant sample voltage (third row) or constant sample power (forth row) with using the
formulae (16) at the loading resistor of 11.2Ohm resistance. Graphs are plotted for frequency range
50− 100 kHz, in which two weak resonances and one strong resonance are observed.

Fig. 6 demonstrates the same AFChs at loading resistor 229Ohm resistance.
Fig. 3–6 show that the influence of electric loading conditions on the vibrations’ parameters of

piezoelectric ceramic sample is different for voltage drops, instant powers and admittance/impedance.
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 Fig. 5. Amplitude-frequency characteristics of voltage, impedance, power and phase angles for a high ring with
18.5× 15.7× 22mm dimensions made of TsTS-19 ceramics and loading resistor 11.2Ohm.

Although piezoceramic materials are known as nonlinear substance, our experience and literature
data testify that they may be regarded as almost linear for electric field up to 1000V/m level range.
All the graphs in this paper were built for linear approximations. The experimental investigation for
thin piezoceramic disk radial vibrations at the constant input voltage, constant sample voltage, and
constant sample current corroborated such intention [8].

5. Discussion of modeling results

Graphs of input Uin and sample Upe voltages partly or fully coincide after transformations from “as it
is” regime to the constant current and the constant power regimes. These curves are not separated on
black-white Figs.

In the regimes of constant sample current and constant sample voltage, the frequency locations of
instant power’s maxima coincide with frequency locations of input voltage maxima. In regimes “as it
is” the “failures” at resonance are observed in AFChs of instant power that may be a result of part of
power reduction by loading resistor. It is necessary to increase of the input voltage at anti-resonance
to realize the constant sample current regime and at resonance for realization of the constant sample
voltage regime.

Regimes of constant instantaneous power may be realized with simultaneous increasing both the
resonant and anti-resonant input voltage. The degree of such increasing depends on loading resistor
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 Fig. 6. Amplitude-frequency characteristics of voltage, impedance, power and phase angles for high ring with
18.5× 15.7× 22mm dimensions made from TsTS-19 ceramics at loading resistor 229Ohm.

value and consists of a number of tens percents near resonance to several times near anti-resonance
as compared to off-resonance case. Loading resistor value influences anti-resonance admittance and
impedance in many times and in several tens of percents at resonance. Impedance’s AFChs for 229Ohm
loading resistance are sharper then for 11.2Ohm case.

The phase shift between sample voltage and sample current (angle α) reaches π radian at resonances
and anti-resonances and it changes from π/2 to π in frequency range. The phase shift between output
voltage of generator or voltage divider and consumable current (angle β) is equal to π/2 radian in
frequency range. It declines to zero at resonances and anti-resonances. And difference of phases
between output voltage of generator (voltage divider) and voltage drop on piezoelement (angle γ)
declines to zero at resonances and may reach π/2 radian level at off-resonance frequencies.

6. Conclusions

Amplitude-frequency characteristics for piezoelectric bars, disks, short and high cylindrical rings which
were obtained at the S. P.Timoshenko Institute of Mechanics of NASU (Department of electroelasticity)
shown that electric loading regimes do not influence admittance, impedance and phase angles.

The independence of these parameters from electrical loading regimes are explained simply — rela-
tions between voltage drops Uin, Upe, and UR are not changed. But voltage drop level and instantaneous
power are very sensitive to the electric loading conditions.
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Two modeling techniques were described in this paper: an iterative process and electric loading
condition simulation. Iterative results for both thin piezoelectric ceramic bar and high cylindrical ring
show that the energy-loss elastic, dielectric and piezoelectric tangents have commensurate values.

For modeling the constant power regime, it is necessary to increase the input voltage and the sample
voltage near resonance by 30−40% and in several times at anti-resonance as compared to off resonance
case.

The Refs [1–3,16] results may be explained in the following way.
When piezoelectric sample is excited by constant voltage the instantaneous power in sample in-

creases at resonance frequency in many times as compared to off-resonance case. And when a sample
is excited by constant current, the instantaneous power in the sample decreases at resonance frequency
in that ratio. Thus, the cause of admittance curve nonlinearity at constant voltage and its absence at
constant current is upper or lower level of an instantaneous power.

The linear approximation for transformation of measured data permits us to study main features
of the piezoelectric resonators’ vibrations without mathematical and experimental difficulties. Such
methodology gives us the possibility to make clear the general tendencies in the piezoelectric sample
behaviour for various electric loading conditions.
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Моделювання умов електричного навантаження п’єзокерамiчних
резонаторiв основане на експериментальних даних

БезверхийО. I., ЗiнчукЛ.П., Карлаш В.Л.

Iнститут механiки iм. С. П. Тимошенка НАН України

вул. Несторова, 3, 03057, Київ, Україна

Проаналiзовано проблему моделювання умов електричного навантаження за виму-
шених коливань п’єзокерамiчних резонаторiв. Основана на експериментальних да-
них для режиму “як є” нова проста експериментальна технiка разом з обчисленнями
дала змогу вивчати багато параметрiв резонатора: адмiтанс, iмпеданс, фазовi кути,
компоненти потужностi тощо для електричних умов сталої вхiдної напруги, сталої
напруги на зразку, сталого струму в зразку. Таке комп’ютерне моделювання робить
можливим зменшувати експериментальнi труднощi й вивчати в лiнiйному наближен-
нi залежнiсть параметрiв резонатора вiд умов навантаження. Основнi моди коливань
тонкого п’єзоелектричного стержня i високої цилiндричної оболонки поданi як при-
клад. Встановлено, що значна нелiнiйнiсть адмiтансу в режимi сталої напруги та її
вiдсутнiсть для випадку сталого струму спричиненi рiзною поведiнкою рiвня миттєвої
потужностi.

Ключовi слова: вимушенi коливання, п’єзокерамiчних резонаторiв, електромеха-

нiчний зв’язок, тонкi п’єзоелектричнi пластини й оболонки, миттєва потужнiсть
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