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This paper is devoted to analysis of the multi-electrode piezoceramic bars’ forced vibra-
tions. Analytical model is built for a thin and narrow piezoelectric ceramic bar with
three pairs of divided electrodes on the upper and lower main surfaces. The formulae for
input admittance, characteristic (resonant and anti-resonant) frequencies as well as for
transform ratio are obtained. The fundamental modes of vibrations of thin piezoelectric
bar and their odd and even overtones are studied. A new experimental simple technique
with additional commutation permits to study many resonators’ parameters: admittance,
impedance, phase angles, power components etc. Experiments have been carried out with
TsTBS-3 bar-prism 70.3×8.1×6.8/7.1 mm size. It is established that a high electromechan-
ical coupling may be obtained for bar’s longitudinal overtones by means of the electrode
coating dividing and anti-phase electrical loading. In partly shorted electrodes case, not
only odd but even longitudinal modes can be induced, which are absent for full electrodes
case.
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1. Introduction

Modern piezoelectric components, while performing similar or better than electromagnetic ones, can be
effectively used for device miniaturization [1–3]. Since piezoelectric ultrasonic motors and transformers
have 1/10-th size comparing to equivalent-power-level electromagnetic devices and do not produce
electromagnetic noise, piezoelectric components have been replacing with electromagnetic analogs.
The industry is interested in even higher efficiency and forces a research towards more power dense
piezoelectric technologies, while scaling sizes go down. However, the power density in piezoelectric
devices is still limited by material’s inherent losses which stems from the microscopic domain dynamics,
resulting in generation of heat. Therefore, to advance the device miniaturization, it is necessary to
consider the energy loss mechanisms.

When an alternating electric field is applied to a non-center symmetric crystal or polarized piezoce-
ramic sample, mechanic vibrations are induced, which with an appropriate frequency cause mechanical
resonance with great strains and stresses. A phenomenon of strain increasing due to accumulated
electric energy is known as a piezoelectric resonance [4–7, etc]. Both the direct piezoelectric effect – a
conversion of mechanical energy into electrical energy, and the inverse piezoelectric effect – a conversion
of electric energy into mechanical energy, are linear physical phenomena with respect to the induced
fields.

Piezoelectric ceramic elements’ vibrations are characterized by a great electromechanical coupling
between electric fields and elastic displacements or stresses. It is possible to calculate any amplitude
with accounting the energy losses only [5–10]. The analytic solutions for fundamental modes of the
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electro-elastic vibrations of simple geometric form bodies such as bars, rods, disks, circular or cylin-
drical rings, etc. [5–7] are used in standards for determination real parts of the dielectric, elastic and
piezoelectric coefficients.

A very thin electrode coating on sample surfaces serves to polarize and to induce mechanic vibrations
simultaneously. It is basically anticipated that a piezoelectric resonator with full electrode has its
maximum electromechanical coupling factor (EMCF) on fundamental modes of vibration. However,
sometimes it is not possible to impose a full electrode on the piezoelectric resonator faces due to the
mechanical clamping or electrical insulation of the resonator. Small facet on the piezoelectric ceramic
ring or disc edges is one of the examples of such electrode deposition deficiency [11–13]. There is also
possibility of EMCF enhancement by the divided electrode pattern optimization [14–17].

The work [10] is devoted to modeling of the loss-energy piezoceramic resonators by Van-Dyke-
type electric equivalent networks with passive elements. It was shown that when piezoelectric sample
is excited by constant voltage, the instantaneous power in sample increases at resonance frequency
in many times with respect to off-resonant case. When sample is excited by constant current the
instantaneous power decreases at resonance frequency in the same ratio. Thus, the reason of admittance
curve nonlinearity at constant voltage and its absence at a constant current is higher or lower level of
an instantaneous power.

Imaginary parts of the dielectric, elastic and piezoelectric coefficients usually are determined on
maxima/minima admittances [4–8]. Very important role in energy losses belongs to mechanic quality
factor Q, which is different for resonance and anti-resonance [18].

This paper is devoted to analysis of the multi-electrode piezoceramic bars’ forced vibrations. An-
alytical model is constructed for a thin and narrow piezoelectric ceramic bar with three pairs of di-
vided electrodes on the upper and lower main surfaces. The fundamental modes of vibrations of
the thin piezoelectric bar and their odd and even overtones are studied. A new simple experimental
technique with additional computation permits to study many resonators’ parameters: admittance,
impedance, phase angles, power components etc. Experiments were provided with TsTBS-3 bar-prism
of 70.3 × 8.1× 6.8/7.1mm size. It was established that high electromechanical coupling may be ob-
tained for bar’s longitudinal overtones by means of the electrode coating dividing and anti-phase
loading. In shorted part electrodes can be excited by not only odd but even longitudinal modes, which
are absent for full electrodes case.

The results of computer simulation and experimental data are in good agreement.

2. Analytic relations for admittance of the thin piezoceramic bars with divided elec-
trodes

Piezoelectric bars with transversal polarization became already a “touchstone” in many experimental
researches because their vibrations are described by simple mathematical formulae, and the first over-
tone lies far on frequency from fundamental resonance [6–15]. The mechanical and electric values of
these structures are coupled between itself by so-called the transversal coefficient of electromechanical
coupling (EMCF) k31 and this is a reason why the longitudinal vibrations of such bars are known as
k31 mode [1–3,18].

In Refs [8–10] it was shown that the piezoelectric resonator’s admittance may be presented in
calculations as imaginary conductivity of the inter-electrode sample capacitance C0 multiplied by the
ratio of anti-resonance determinant ∆a(κ) to resonance ∆(κ) determinant

Ype = jωC0

∆a

∆r

=
j2πf01C0κ

κ01

∆a

∆r

= ja0κ
∆a

∆r

,

(

a0 =
2πf01C0

κ01

)

. (1)

In (1) j is the imaginary unit, ω is the angular frequency, f01 is the resonant frequency, κ01 and κ are
the dimensionless resonant frequency and the running dimensionless frequency, which are dependent
on geometric sample’s form.
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Let us look at a simple piezoelectric ceramic system (thin and narrow piezoelectric ceramic bar),
in which three pairs of the various electrodes are axially symmetric (Fig. 1). Electrodes are shown as
thick lines. The central electrode I has a size −a 6 y 6 a, the right part II lies on a 6 y 6 l, and
the left part III has a length −l 6 y 6 −a. All notations coincide with Refs [7–10]. Electric exciting
field, mechanical displacement and stress in bar’s parts are Ei, Ui and σi (i = 1, 2, 3) accordingly. The
input voltage is V0e

jωt, the multiplier ejωt hereinafter is omitted.
The boundary conditions are the following: both edges of the bar are free from stresses, mechanical

displacements and stresses are continuous on the dividing lines of electrodes, furthermore vibrations
are symmetric Uyi (y) = −Uyi (−y)

σy3(−l) = σy2(l) = 0, Uy1(a) = Uy2(a), Uy1(0) = 0, Uy1(−a) = Uy3(−a),

σy1(a) = σy2(a), σy1(−a) = σy3(−a). (2)

Constitutive and motion equations are of the forms:

εyi =
∂Uyi

∂y
= sE11σyi + d31Exi, Dxi = εT33Exi + d31σyi,

d2Uyi

dy2
+ ρω2sE11Uyi = 0. (3)

Solutions of the motion equation, deformations and stresses can be expressed as

Uyi = Ai sin ky +Bi cos ky, εyi = Aik cos ky −Bik sin ky, (k2 = ρω2sE
11
), (4)

εyi = sE11σyi + d31Exi, σyi =
εyi

sE
11

−
d31Exi

sE
11

=
Aik cos ky −Bik sin ky

sE
11

−
d31Exi

sE
11

. (5)

III I II

Fig. 1. Schema of the multi-electrode piezoceramic bar.

On the base (1) – (5) we can obtain

A1 =
d31E2

k cos kl
+

d31(E1 − E2)

k cos kl
cos(kl − ka), A2 =

d31E2

k cos kl
+

d31(E1 − E2)

k cos kl
sin kl sin ka,

B2 =
d31(E1 −E2)

k cos kl
cos kl sin ka, A3 = A2 +

d31(E3 − E2)

k cos(kl − ka)
cos kl,

B3 = −A3

cos kl

sin kl
+

d31E3

k sin kl
, B1 = 0. (6)

It must be noted here that for anti-phase loading case, when E2 = −E1 (E2 = E3), these relations
coincide with the formulae (6) of Ref [14].

Electric charge and current for I and II bar’s regions are obtained after integration of the electrical
displacement [6]

Q1 =

∫

S

Dx1dS = εT
33
S1E1

[

1− k2
31

+
k2
31

γκ

∆1

∆
sin γκ

]

, I1 = −jωCT
1
V1

[

1− k2
31

+
k2
31

γκ

∆1

∆
sin γκ

]

,

Q2 = εT33S2E1

[

(1− k231)µ2 +
k2
31

(κ− γκ)

∆0

∆

]

, I2 = −jωCT
2 V1

[

(1− k231)µ2 +
k2
31

(κ− γκ)

∆0

∆

]

, (7)
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where
∆ = cos κ, ∆1 = µ2 + (1− µ2) cos(κ− γκ), ∆2 = µ2 + (1− µ2) sin γκ sinκ,

∆3 = (1− µ2) sin γκ cos κ, ∆0 = ∆2(sinκ− sin γκ) + ∆3(cos κ− cos γκ),

κ = kl, γ = a/l, µ2 =
E2

E1

, E1 = −
V1

δ
, E2 = −

V2

δ
, k2

31
=

d2
31

sE
11
εT
33

,

CT
1
=

εT
33
S1

δ
, S1 = 2a · 2b, δ = 2h, CT

2
=

εT
33
S2

δ
, S2 = (l − a) · 2b,

CT
0 =

εT
33
2l · 2b

δ
= CT

1 + 2CT
2 , CT

1 = γCT
0 , CT

2 =
1− γ

2
CT
0 . (8)

The full resonator’s current I and its admittance Y depend on a way of an electrical loading. When
parts II and III have equal potential we may to write down

I = I1 + 2I2 = −jωCT
1
V1

[

1− k2
31

+
k2
31

γκ

∆1

∆
sin γκ

]

− j2ωCT
2
V1

[

(1− k2
31
)µ2 +

k2
31

(κ− γκ)

∆0

∆

]

= −jωCT
0
V1

{

γ

[

1− k2
31

+
k2
31

γκ

∆1

∆
sin γκ

]

+ (1− γ)

[

(1− k2
31
)µ2 +

k2
31

(κ− γκ)

∆0

∆

]}

, (9)

Y =
I

V1

= −jωCT
0

{

γ

[

1− k231 +
k2
31

γκ

∆1

∆
sin γκ

]

+ (1− γ)

[

(1− k231)µ2 +
k2
31

(κ− γκ)

∆0

∆

]}

. (10)

The resonant and anti-resonant frequencies are determined from the following relations

∆(κ) = cos(κ) = 0, (11)

(1− k2
31
)∆γ1 + k2

31
(∆1 sin γκ+∆0)

/

κ = 0, (γ1 = γ + (1− γ)µ2). (12)

As it is concluded from (11), (12), the resonant frequencies depend on κ only, but the anti-resonant
frequencies are determined by k31 too.

The multi-electrode piezoelectric ceramic bar with one or a number of free electrodes exhibits both
resonator and transformer features. The transformation ratio for no load work may be obtained from
the expressions (7), when I1 or I2 is to level zero

Kt1 =
1

µ21

, µ21 =
(k2

31
− 1)γκ cos κ

k2
31
sin γκ(1− cos(κ− γκ))

−
cos(κ− γκ)

1− cos(κ− γκ)
, Kt2 = µ22,

µ22 =
z2

z2 − z1
, z1 = k231 + (1− k231)(1 − γ)κ cos κ, z2 = k231 sin γκ(1− cos(κ− γκ)). (13)

The transformation ratio Kt1 and the multiplier µ21 correspond to free (open) central electrode case,
while the transformation ratio Kt2 and the multiplier µ22 correspond to the case when edge electrodes
remain free. When output electrodes are connected with loading resistance RL the transformation
ratio may be derived from

Ii = Ui/RLi. (14)

In (14) Ii is current in i-th electrode circuit, Ui is the voltage on i-th electrode and RLi is the
resistance of loading resistor in i-th electrode circuit.

3. Experimental technique and samples for investigation of the thin piezoceramic bars’
forced vibrations

The simple electrical network, which is shown in Fig. 2, permits us to measure with a great accuracy
three voltage drops: on piezoelement Upe, on measurement circuit input Uin and on loading resistor
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UR in a wide range around resonance and anti-resonance by single voltmeter V and commutation
of loading resistor or studying sample [8,9]. Voltmeter’s input (point “C”) may be jointed with the
voltage divider output (point “A”) or common connection of resistor and sample (point “B”). In top
switcher S1 position, as shown on Fig. 2, the voltmeter measures UR voltage. When switcher S1 is
in lower position, the voltmeter measures Upe voltage. This schema can realize three various loading
conditions: 1) the constant sample current, 2) the constant sample voltage, 3) the constant input
voltage. Based on the experimental data the amplitude-frequency characteristics (AFCh) for different
physical parameters of a resonator or transformer can be plotted in figures.

Three measured voltages Upe, UR, and Uin create a peculiar characteristic triangle [8,9] and angles
between its sides may be calculated with using the cosine law as

cosα =
U2
pe + U2

R − U2

in

2UpeUR

, cos β =
U2

in + U2

R − U2
pe

2UinUR

, cos γ =
U2

in + U2
pe − U2

R

2UinUpe

. (15)

Fig. 2. Schema of the experimental technique.

In (15), the angle α formed by the sides UR and Upe

characterizes the change of phases between a current
and voltage drop in piezoelement. The angle β, which
is formed by the sides Uin and UR, responses for a
phase shift between output voltage of generator and
consumable current. And the angle γ formed by the
sides Uin and Upe characterizes the difference of phases
between output voltage of generator and voltage drop
at piezoelement. The admittance (or full conductiv-
ity) characterizes sample’s possibility to conduct elec-
tric current and is determined as a ratio of the sample current to the sample voltage. This parameter is
convenient for analysis near piezoelectric sample resonance where it reaches a maximum value. In our
experiments, in parallel to generator’s output or coordinating divider R1, R2 output the piezoelement
PEl and loading resistor Rld in series were connected. The inter-electrode capacitance C0 and the
dielectric loss tangent tan δ = ε33m were measured by alternative current bridge using. The voltage
UR is proportional to the electrical current Ipe in the resistor and the sample

UR = IpeRld. (16)

The ratio of current to voltage is determined as admittance

Ype =
Ipe
Upe

=
UR

RldUpe

. (17)

The product of sample current by the sample voltage is determined as instantaneous power

Ppe = UpeIpe =
URUpe

Rld

. (18)

For piezo-transformer regime case, the input electrodes of the piezoceramic bar were connected
in parallel to R2 resistor, then voltages Uin and Uout were measured and transformation ratio was
determined as

Kt =
Uout

Uin

. (19)

The amplitude-frequency characteristics (AFC) of admittances, impedances, instant powers and
phase angles for several bar’s longitudinal modes of vibrations at various loading schemas were plotted
and compared with calculated ones.
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Our experiments were provided with three equal-size TsTBS-3 bar-prisms of 70.3×8.1×6.8/7.1mm
with thickness polarization in 20 ÷ 200 kHz frequency range. The first prism had full electrodes, the
second prism had one bilateral central electrode cut and the third prism had two bilateral electrodes
cut and three equal-area parts.

4. Results of the experiments and calculations

Table 1 demonstrates measured values of inter-electrode capacities and dielectric loss tangents of the
three bar-prisms for several loading conditions. The contracted notations S1.1, S2.1, S2.2, S2.3, S3.1 –
S3.5 denote accordingly: the first prism and full electrodes; the second prism in-phase, anti-phase
or shorted electrodes; the third prism for cases of in-phase, anti-phase or free (open) inner or outer
electrodes. In S3.3 schema all lower electrodes were connected together, central upper electrode was
free and capacity between outer upper and all lower electrodes was measured. In S3.4 schema the
capacity between central upper and all lower electrodes was measured. At last, in S3.5 schema the
capacity between central and outer upper electrodes was measured. In lower table row the ratios Ci/C0

of measured capacities to capacities for full electrodes are presented.

Table 1. The inter-electrode capacities and dielectric loss tangents of the bar-prisms.

Schema S1.1 S2.1 S2.2 S2.3 S3.1 S3.2 S3.3 S3.4 S3.5

C, pF 1296 1300 1443 780 1228 1570 978 561 478

tan δ 0.0022 0.0026 0.0029 0.0031 0.0022 0.003 0.0026 0.0028 0.003

Ci/C0 1.0 1.0 1.11 0.6 1.0 1.278 0.796 0.45 0.389

The capacitances CT
1

, CT
2

, CT
0

are written in (8), (9) as capacitances of flat condenser when the
ratios of areas to thicknesses were multiplied by the dielectric constant εT

33
. It may seem that after

electrode separation the capacities of obtained parts must relate to the full sample capacity as corre-
sponding areas. It is seen from Table 1 that static capacities for full (S1.1) or in-phase (S2.1 and S3.1)
cases differ on 6% only. In contrast, anti-phase loading with one cut (schema S2.2) increases measured
capacity on 11% and anti-phase loading with two cuts (schema S3.2) increases measured capacity on
28%. In schema S2.3 case, when one half of an electrode coating is shorted, measured capacity is
equal to 780/1300 = 0.6, rather then 0.5 as we must to wait. In schemas S3.3 and S3.4 we may to
wait 2/3 and 1/3 from capacity ratios but measured data are higher. At last, in S3.5 schema the
capacity relation Ci/C0 is equal to 0.389 instead zero which is expected. The reason of the observed
phenomena lies in additional capacities which appear between electrode’s parts because dividing lines
are very narrow.

To verify the vibration’s modes for one bilateral central electrode cut case and loading schemas
S2.1 – S2.3, the piezotransformer transducer method [6, 7, 9] was applied. Eleven circle-shaped trans-
ducers of 3.1mm in diameter were divided in electrode coating in the middle of one half of a
70.3× 8.1mm surface and spaced along the bar as: 0; 3.2; 6.5; 9.5; 12.5; 15.5; 18.7; 21.5; 25; 28.2 and
32.2mm from the its center. Average transducer’s capacity between divided transducers and rest elec-
trode coating was equal to 135.2± 13pF. Main reason of the capacity deviation lies in various widths
of the dividing bounds. In Refs [6, 7] it was shown that piezotransformer transducer potentials are
proportional to mechanical stresses in according points and this method permits to study a resonant
stress state of piezoceramic samples. Analytical expressions for this bar’s case were presented in Ref
[17].

Fig. 3 represents the experimental frequency dependences of the input admittance of the one bi-
lateral cut prism for in-phase (a), anti-phase (b) and shorted (c) electrodes cases obtained with (16),
(17). Longitudinal modes L1, L3, L5 and L7 as well as a number of intensive resonances are observed
in frequency range 20÷ 200 kHz for in-phase load case. High-order longitudinal overtones are masked
with intensive modes and we must limit them by mode L7 for our prisms. In anti-phase loading case
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modes L2, L6 and their weak “satellites” L2*, L6* are registered. For shorted electrodes case, not only
odd L1, L3, L5 modes but even L2, L6, L2*, L6* longitudinal modes are excited, which are absent
for full electrodes case. But mode L4 not registered now. To excite even longitudinal mode L4, the
electrode coating must be divided in four equal parts with anti-phase electrical load.
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Fig. 3. Input admittance of the one bilateral electrode cut prism.
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Fig. 4. Calculated stress state for bar-prism with the one bilateral electrode cut.

Fig. 4 demonstrates calculated longitudinal stresses of one bilateral cut prism for in-phase (a), anti-
phase (b), and shorted (c) electrodes cases. Formulae of Ref [17], which are similar to the expression (5),
were used in calculations. Abscissa axis is bar’s length and ordinate axis is normalized longitudinal
stress σ∗ = σx/(d31Ex1). For full or in-phase electrodes case the most strong is fundamental mode
L1, then amplitude of L3 and L5 modes are less in 3 and 5 times accordingly. The sign of L3 mode
stresses changes in 1/3 distance from the edges and sign of mode L5 stresses changes in 1/5 distance
from the edges. To increase L3 mode it is necessary to divide an electrode coating in three equal parts
with bilateral cut and to load them in anti-phase. Such conclusion was made by Ref [14] authors on
base of the energy method. And to increase L5 mode it is necessary to divide an electrode coating in
five equal parts with bilateral cut and to load them in anti-phase.

In anti-phase case (Fig. 4, b) for prism with one bilateral electrode cut the odd modes L1, L3, L5

etc. are put down but even longitudinal modes L2, L6, L10 are selected. Stress amplitude of the
selected mode L2 reaches the same value which L1 mode has for full electrode case. When upper
and lower electrodes of one half of prism with one bilateral electrode cut are connected together or
shorted (Fig. 4, c), so strong non-uniformity appears that may excite odd L1, L3, L5 and even L2, L6

longitudinal modes. The stress amplitude for L1 and L2 modes are equal but in two times less then
for in-phase or anti-phase cases.

Fig. 5 illustrates measured longitudinal stresses of the one bilateral cut prism for in-phase (a),
anti-phase (b), and shorted (c) electrodes cases as piezotransformer transducer ratio distribution along
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Fig. 5. Distribution of transformation ratios for bar-prism with the one bilateral electrode cut.

one-half of prism. These graphs are similar to calculated figures. Since the voltmeter does not react
to potential, the sign of the transform ratios minima coincides with zero points of calculated lines.
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Fig. 6. Measured (a, b) and calculated (c, d) admittances for bar-prism with two bilateral electrode cuts.

Fig. 6 illustrates the measured (a, b) and the calculated (c, d) admittances for two bilateral cuts
prism. Experimental data presented in the in-phase load case for L1, L3, L5 modes and frequency
range 20÷140 kHz (Fig. 6, a). Modes L1, L5 in an anti-phase case are not registered and measurements
were carried out in narrowed range 75÷80 kHz (Fig. 6, b). The calculations for L1 mode with in-phase
electrodes (Fig. 6, c) and for L3 mode with anti-phase electrodes were made by formula (10) using.
Both calculated and measured data are in good agreement.

In two bilateral electrodes cuts prism’s case with 3.3 schema loading, when upper central electrode
was free (open circuit), the most admittance 6mS had mode L3 (Fig. 7, a), while for in-phase case
this parameter was 3.5mS. Admittance of fundamental longitudinal mode L1 decreased from 7.6mS
to 1.6mS. Modes L5 and L7 became entirely weak. In piezotransformer regime with free central or
outer upper electrodes the transform ratios for L1 (Fig. 7, b) and L3 (Fig. 7, c) modes are almost equal
values and depend on loading condition (schema S3.4 or S3.5) only. Calculated by using formula (1)
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data coincide with experimental ones. Transform ratios in the experiment were determined as the
relation (19).
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Fig. 7. Admittance (a) and transform ratios for L1 (b) and L3 (c) modes of bar-prism with two bilateral
electrode cuts.

Very interesting data were obtained for transform ratios of multi-electrode piezotransformer, when
prism-bar with two bilateral cuts had tree electrode pairs – in centre, near left edge and near right
edge (Fig. 8). Two left electrodes were connected with signal generator and rest electrodes were free.
Transform ratios are dependent on output electrode spacing and vibration modes. For fundamental
longitudinal mode L1 (Fig. 8, a) central upper (curve 1 ) and lower (curve 2 ) electrodes have maximum
electric potentials. A week dependence of the transform ratios from electrode spacing are observing
for L3 overtone (Fig. 8, c). Most dependence of the transform ratios from electrode spacing mode L2

demonstrates (Fig. 8, b). This mode for in-phase electrodes case is absent. Two potential maxima are
observing at frequencies 52.446 kHz and 53.109 kHz.
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Fig. 8. The transform ratios for L1 (a), L2 (b) and L3 (c) modes of bar-prism multi-electrode transformer.

The reason of a resonant frequency bifurcation may be an influence of the output electrodes on
input electrodes. Maxima of the transform ratio frequencies for multi-electrode transformer of L1,
L3 modes are higher than admittance maxima frequencies for in-phase case: 25.95 kHz and 78.95 kHz
instead 26.268 kHz and 77.639 kHz.

Dynamic electromechanical coupling factors (EMCF) were determined as [5–7]

k2d =
f2
a − f2

r

f2
a

∼=
f2
n − f2

m

f2
n

∼=
2(fn − fm)

fn
. (20)

In (20) fr and fa are the resonant and the anti-resonant frequencies, fm and fn are the maximum
and the minimum admittance frequencies.

It was established that the square value of EMCF for anti-phase loading case may reach up to
0.7 − 0.8 of the square value of EMCF of L1 mode at in-phase loading.
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5. Conclusions

Amplitude-frequency characteristics for piezoelectric bars with divided electrodes, which are obtained
in Institute Mechanics Research Laboratory (Department of Electroelasticity), showed that electric
loading regimes influence significantly the admittance, the impedance, and EMCF. A one-dimensional
bar model well describes frequency properties of such complicated piezoelectric sample as prism with
trapezium cross section. For experimental verification of vibration’s modes, the piezotransformer
transducer method elaborated in [6, 7, 9] is very suitable.

The selected overtones can be increased and other included fundamental resonances can be op-
pressed with electrode dividing and non-uniform electric loading.

Experiments have been carried out with TsTBS-3 70.3 × 8.1 × 6.8/7.1mm size bar-prism. It was
established that high electromechanical coupling may be obtained for bar’s longitudinal overtones by
means of the electrode coating dividing and anti-phase electrical loading. In shorted part electrodes
case, not only odd but even longitudinal modes can be excited, which are absent for full electrodes.

The high-frequencies longitudinal overtones are masked by intensive lateral and thickness modes.
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Моделювання й експериментальна верифiкацiя вимушених
коливань тонких багатоелектродних п’єзокерамiчних стрижнiв

Безверхий О. I., Зiнчук Л. П., Карлаш В. Л.

Iнститут механiки iм. С. П. Тимошенка НАН України

вул. Несторова, 3, 03057, Київ, Україна

Проаналiзовано вимушенi коливання багатоелектродних п’єзокерамiчних стрижнiв.
Побудовано аналiтичну модель для тонкого й вузького п’єзокерамiчного стрижня
з трьома парами роздiлених електродiв на горiшнiй i нижнiй основних поверхнях.
Отримано формули вхiдного адмiтансу, характеристичних (резонансних i антирезо-
нансних) частот, а також коефiцiєнтiв трансформацiї. Дослiджувались основнi моди
коливань i їхнi парнi та непарнi обертони. Нова проста експериментальна методика
з додатковою комутацiєю дає змогу вивчати багато параметрiв резонатора: адмi-
танс, iмпеданс, фазовi кути, компоненти потужностi тощо. Експерименти велися iз
стрижнями-призмами розмiром 70.3 × 8.1 × 6.8/7.1мм iз керамiки ЦТБС–3. Вста-
новлено, що високий електромеханiчний зв’язок на обертонах поздовжнiх коливань
стрижня можна отримати через роздiлення електродного покриття i протифазного
електричного навантаження. У разi коротко замкнутих окремих електродiв можуть
збуджуватися не тiльки непарнi, а й парнi поздовжнi моди, яких за суцiльних елек-
тродiв немає.

Ключовi слова: багатоелектродний п’єзокерамiчий стрижень, вимушенi коли-

вання, електромеханiчний зв’язок, вхiдна провiднiсть, коефiцiєнт трансформацiї.
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