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3anpononoBano JiHiliHi MartemaTuuHi Momeni Max-plus mexanismiB Ta MeTodiB
ynpaBjinas TpadikoM, siK IS MEPEKEBOro By3/1a 0KpeMo (IIaHyBAIbLHUK 00CIyTOBYBAHHS Yepr
OydepiB MapmipyTH3aTopy), TaK i AJs yciei Mmepesxi (aropurvu Mapmpyru3saunii). Mogeni, mo
nojaHi, 1al0Th 3MOry MiABUINMTH e(eKTHUBHICTh OLIHKU MapaMeTpiB SIKOCTi, OCKiIbKH B HUX
BPaXOBAHO OCHOBHi mapamerpu Tpadiky, mo HaaxoAuTh. TakoX 3anmponoHOBaHi
MaTeMaTH4Hi Mo/esi BIATBOPIOIOTH IHHAMIKY po00TH NMJIAHYBAJbHMKA B MPOCTOPi cTaHIiB, a
nepexia g0 6asucy Max-plus anredpu aa€ 3Mory oTpuMAaTH 3aAaHi OIIHKH 3 ypaxyBaHHSIM
HeOoOXiTHMX MmapaMeTpiB IKOCTi 00CJTYrOBYBaHHS.

KuarouoBi ciaoBa: mnapaMerpu SIKOCTI 00CJYroByBaHHsl, MeXaHi3MH Ta MeTOIH
ynpapJjiHaa TpagikoMm, MJIaHYBaJbHUK 00CJIYroByBaHHsl 4Yepr OydepiB Mmapuipyrusatopa,
aJropuTMH MapupyTtusamii, Max-plus aaredpa, AucKpeTHO-MOAIEBA CMCTEMa, MPOCTIpP CTaHIB.
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Development of next generation networ ks concept let to reconfigure the most of existing
traffic controls at telecommunication node. Necessity of its modification causes of low efficient
networ k resour ces usage. Among of frequently used traffic controls at telecommunication node
are service queues schedulers. This is due to traffic “conditioning” feature and as result
opportunity of decreasing data lost level. For modern telecommunication devices most
common are schedulerswith fair and hybrid queue servicing. Limitation of existing algorithms
can be explained by it static character at the same time with dynamic changing character of
incoming traffic and it non-controllability. For modification of these algorithms, for malized an
optimization problem, limitations of which are quality of service parameters. Also being of
mor e than one queue at one network device suggests packet service synchronization. All these
tasks can be solved with two ways, presented in the paper: discrete-event models and M ax-plus
algebralinear models. For every model was find state space equations by conversion into M ax-
plus algebra basis. Control functions in represented models execute vectors of incoming
request delays and requests service time. The solving of the given optimization problem isin
finding of adjustments vector, which in fact shows the required queue buffer space size for
every computing cycle. Thus, in represented article for the first time the max-plus algebra
applications is showed for the solving traffic management tasks.

Key words: traffic controls, queue service discipline, Max-plus algebra, discrete-event
system, state space.

I ntroduction
Because of traffic management mechanisms and methods that take into consideration quality of
service (QoS) requirements to different application the next generation modern conception is carried out.
Wherein the most full-featured and developed technology in what this conception involved is Multy-
protocol Labd switching technology (MPLS). In particular it has an extension that directs to the flexible
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traffic management — MPL S Traffic Engineering (MPLS-TE). However despite of all function possibilities
that were initially laid in MPLS-TE mechanisms, its potential is not realized completely. This due to
mathematic models and methods restrictions on which basic traffic management mechanisms are based on
such as routing protocols and queue schedulers' mechanisms [1].

Shortest pass graph models in modern routing protocols are not take into consideration all features
of traffic that is not allowed to find out routes along which all quality of service requirements are provided.
Queue schedulers' mechanisms are into static models which are not taken into consideration dynamic
traffic feature that does not let to have the origina traffic estimates. Hence the difficulty of basic
management traffic mechanisms description for the MPLS networks and development new ones are
connected with some presenting of traffic dynamic and with the necessity of finding tasks solutions which
are relating to different open system model levels.

Because of traffic management tasks in view of network resources usage performance with the
required quality of service became the most basic in line with telecommunicate networks' recourses
management then mathematic models’ designing of effective traffic management algorithm is the actual
researching problem.

The aim of this work is to present the usage of different linear max-plus algebra models for an
increasing the quality of modeling compared with existing mathematical models on what traffic
management models and mechanisms are based on.

1. Presentation of M ax-plus (minus) linear algebra

Mathematical apparatus and algebras analysis is showed that the idempotent algebras are the
universal tool for the describing traffic management mechanisms in general and its' discrete-event features
in particularly [2, 3].

Idempotent semifield is a st of M real numbers, endowed with the operation A (associative
addition), and it has neutral element 0: 0A a=a forany al M andit isidempotent if aA a=a for any
al M. We say that the semifield is idempotent if there is one more operation A (commutative) has
neutral lement 1 and connected with A and distributive with both sides:

aA(bAc)=aAbAaAc, (1)
(bAc)Aa=bAaAcAa. )

The set R, with adding e =- ¥ , endowed with the operations A and A, that is for all x,yl R
define next:

xA y=max(x,y), (3)

XAy=x+y, (4)
with

xAe=e. ®)

There are two kinds of linear systems in R,,5 for any two matrices A :(aij) and B= (b,j) Size
" nand n” m for which are able to compute solutions:

{AA B}ij =aj Aby, (6)
e n e
{pAB}; = kA_laik Ay )
Multiplying and adding operations with matrices and scalars are defined also. So, for any | T R

and matrices A :(aij) szel” n.

{ AAL =1 Agy. (9)
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Matrix e, with al e elementsis zero matrix. Matrix |, with e elements on main diagonal and all
another e dementsis neutral matrix.

If AT R then getting matrix A" with n>0 can be defined as follows:

n

AN=AAKAA=AA. (10)
i=1

The most searching interest has matrix operation A", which is used for the solving space-state
equations with Max-plus algebra. If G(A) has no circuit with positive weight, then:

A"=AAAZAKAAMTL (11)
where n isthe dimension of matrix A .
It is possible to derive the min operation (Ryin =(Re,AGX), R, =RE{+¥}), from the two

operations AC and X asfollows[4]:
aA =min(a,b), (12)

aXxb=a+h, (13
foral a,bl Rg.

Besides of features that were given this algebra can be used for the optimization tasks solving,
formalizing, getting into and solutions of the space-state equations, for the making solutings about process
controllability.

1.1. Shortest path task solving with the M ax-minus algebra
Consider the following a digraph, D(V, E) (fig. 1), of telecommunication network, where the set of

vertices E represents channels and the weight dij of each arc actually represents the average time it takes

to get through the pass (i, j)1 E. It would like to find the smallest time, that takes packet propagation
between any two intersections.

Network digraph can be presented as follow matrix:

¥ ¥ 2 2 ¥p
2 ¥ ¥ ¥ 3%
D=% 3 ¥ ¥ 27
¥ ¥ 2 ¥ 1+
& ¥ ¥ ¥ ¥j

Fig. 1. Network digraph i i
Based on Dejkstra’'s algorithm the shortest path between any of

nodes can be find. As a result, there are the following passes between
node 4 and all another ones with weights: D(Rag) =5, D(Rac) =2, D(Rap) =2, D(Rag) =3. The

same way all another passes founded. For the simplicity get all resultsinto follow matrix D(R;;) :

834257¥9
¢5 ¥ 3 5 ¥-
D(Rj)=824¥ 2 ¥7
C2 4 7 ¥ ¥=
£ 3 21 ¥,
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The same task can be solved with Min-plus algebra. For this next equation can be solved [5]:

D*= A¢ (D), (14)
It (n-1)

DI —delay matrix n” n; n —network nodes.

Solving this task the element i, j of matrix D? can be counted as:
dij =min(di1+d1j,di2+d2j,K,din+dnj). (15)
For the matrix with delays which contains k arc passes is necessary to count DX Thus for the

n-node network matrix D! has to be counted. So for digraph (fig.1) has to be counted matrices D2,
D3, D* and then find the minimum of all matrices:

D* =DAW? AM3AtD?, (16)
¥ 5 2 2 39
€2 ¥ 4 4 3:
D"=¢5 3 ¥ 7 27
7 5 2 ¥ 1+

& ¥ ¥ ¥ ¥;
Thus all dements are minimum of delays along all network passesfrom i to j.

1.2. Processes representation in terms of M ax-plus algebra
Another way of applying max-plus algebra is to present processes in telecommunication devices, for
example the process of So let t; — time service kth packet at ith network device transmitter; &, —

incoming time of k th packet to i th transmitter queue; x (k) — start time of k th packet transmission to
network from i th transmitter. t ), — Set of real random non-negative values. At start time there are no
packets at the transmitters. Thus the process of coming and servicing packets can be presented as follows:

% (K) =t i A (aye A x (k- D)=ty A gy At Ax (k- D). (17)

Same concept can be laid into process of burst gathering and serving in optical networks. Let t;, —
reaction time of electronic switch communication matrix, x (k) —time of burst coming to the carrier wave
from ithinterface. g;, — kth burst gathering time, @ — container incoming time to the interface. Then
dynamic of the process can be described as follows:

% (K) =t i + i + max[aiy, % (k- 1)]. (18)
And in Max-plus algebra basi:
% (K) =t i A g A (ai A x (k- D) =ty A gy Ay Aty A gy A (k- D). (19)

The formula (19) is good for the 1 switch interface but for the n interfaces it transforms into
follows:
_10

e én o
>q(k)=tikAgikAgakg/§1>q k-r)a o (20)
- u

E
I —state index. Thus this model lets to research optical switch working process according to burst delays
getting into it.
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2. Discrete-event systems, Time event graphs and Max-plus algebra

Petri nets are often used to represent phenomena like synchronization, paralldlism and concurrency.
Generally speaking, the more their structure and semantics are daborated the more complex is their
analysis. The relatively simple class of Petri nets called Timed Event Graphs (TEGS) is likely to be the
most investigated one. Indeed, TEGs are easily represented in the form of linear equations in (Max,+)
algebra, provided that the places and the transitions be overtaking free. This linear (Max,+) form being

very similar to the state representation of the classical discrete linear systems.
s 4 s u sy Next figure represents TEG for the network device

working process.

. w g Onfigure, t; — packet admission; t, — packet getsinto
° o buffer; Ng — buffer size; t3 — packet is served with specified

rule of servicing a ; t, — getting packet to the network. To
Fig. 2. TEG with autonomous transition

get dynamic equation makes next designations. The
autonomous transition burning of what does not depend of
Petry net marking, designed as t;. Time moments of burning t; are made incoming set {u(k)}ysq. tsg

transmission burning is output and according time moment of kth burning designsas y(k) , k =1,2,K. Let
% (K), %> (k) being time moments of k th burning t, and t3 transmission. Then:
¥ (K+1) =xp(k- Ng+)Au(k +1),
Xo(K +1) = x(k +1) A a »xxy(K), (22)
y(k)  =a (k)

or in vector-matrix sign

® eo a® eod a® eo a0
x(k+1) = ox(k+1) A x(k) A KA x(k- Ng+DA ¢ Duk +1)
gﬁz‘?}’ %2%” %2%‘” ! gﬁ‘?

=Aog =A; =ANg =Bo (22)
y(K) = (§ 525 5(K),
=Cl
where x(k) = (X (K) xz(k))T ,and all matrices Aj =N, i =2,Ng -
Thefirst equationin (22) can be written next way:
x(k +1) = Ag XAy xx(k) A A, xx(k - 1) A KA By xu(k +1)) (23)

& €o & €0 &0
x(k +1) =%2 x(k) A KA Dx(k- Ng +DA g 2xu(k +1).
Sz %2@ E{f’

:Kl :KNq :BO

Lets: X(K) = (x(K)T x(k- )T K x(k- Ng +D)T)" and T(k) = u(k +1), then (23):

@+ 0 gal NN KON Ay oK) 0 aByo

eX(k) + ¢cE N N K N N =¢xk-1) + ¢N=+

Cx(k- 1 T ¢ +(s7xk-2 T eNT

k-1 SN EN KN N (k-2 _MN+>G(k)’

¢K * (K K K K K -QK , *
Kk-Ng+3Z N N N K k- Ng+2)Z &N (24)

Sx(k- Ng+25 &N 4“4&54&445@8“ VD5 G

=B

y(k) =@14 Aok 4§)>(x(k) x(k- )T K x(k- Ny +1) )T
=C
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this let possibility to rewrite equation (22) in space-state equations.

X(k+1) = A>X(k) A B>u(k),
y(k) = CXX(K).

For this mathematical model was made Gantt diagram (fig. 3) to show if the model works right.

-

2

Fig. 3. Gantt diagram of service process

events

time

From the figure naoticeable time moments of packets come u, and time moments of burning
transmissions t, and t,

Conclusion

In this paper, there was showed that many characteristics of the max-plus algebraic structure are
similar to those in more familiar mathematical structures. It can be used matrix operations, solve systems
of max-plus equations. Through applications, was showed that max-plus and min-plus algebras provide
interesting tools that can be used to formulate and solve many problems of optimization.

In this paper there were showed that max-plus models can accept more features of the original
telecommunication process then existing mathematical models. One more advantage of max-plus algebra is
its linearity. This algebra is provided another possibilities in telecommunication processes modeling then
existing queue theory and routing algorithms models.
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