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Запропоновано лінійні математичні моделі Max-plus механізмів та методів 
управління трафіком, як для мережевого вузла окремо (планувальник обслуговування черг 
буферів маршрутизатору), так і для усієї мережі (алгоритми маршрутизації). Моделі, що 
подані, дають змогу підвищити ефективність оцінки параметрів якості, оскільки в них 
враховано основні параметри трафіку, що надходить. Також запропоновані 
математичні моделі відтворюють динаміку роботи планувальника в просторі станів, а 
перехід до базису Max-plus алгебри дає змогу отримати задані оцінки з урахуванням 
необхідних параметрів якості обслуговування. 
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Development of next generation networks concept let to reconfigure the most of existing 
traffic controls at telecommunication node. Necessity of its modification causes of low efficient 
network resources usage. Among of frequently used traffic controls at telecommunication node 
are service queues schedulers. This is due to traffic “conditioning” feature and as result 
opportunity of decreasing data lost level. For modern telecommunication devices most 
common are schedulers with fair and hybrid queue servicing. Limitation of existing algorithms 
can be explained by it static character at the same time with dynamic changing character of 
incoming traffic and it non-controllability. For modification of these algorithms, formalized an 
optimization problem, limitations of which are quality of service parameters. Also being of 
more than one queue at one network device suggests packet service synchronization. All these 
tasks can be solved with two ways, presented in the paper: discrete-event models and Max-plus 
algebra linear models. For every model was find state space equations by conversion into Max-
plus algebra basis. Control functions in represented models execute vectors of incoming 
request delays and requests’ service time. The solving of the given optimization problem is in 
finding of adjustments vector, which in fact shows the required queue buffer space size for 
every computing cycle. Thus, in represented article for the first time the max-plus algebra 
applications is showed for the solving traffic management tasks. 

Key words: traffic controls, queue service discipline, Max-plus algebra, discrete-event 
system, state space. 

 
Introduction 

Because of traffic management mechanisms and methods that take into consideration quality of 
service (QoS) requirements to different application the next generation modern conception is carried out. 
Wherein the most full-featured and developed technology in what this conception involved is Multy-
protocol Label switching technology (MPLS). In particular it has an extension that directs to the flexible 
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traffic management − MPLS Traffic Engineering (MPLS-TE). However despite of all function possibilities 
that were initially laid in MPLS-TE mechanisms, its potential is not realized completely. This due to 
mathematic models and methods restrictions on which basic traffic management mechanisms are based on 
such as routing protocols and queue schedulers’ mechanisms [1]. 

Shortest pass graph models in modern routing protocols are not take into consideration all features 
of traffic that is not allowed to find out routes along which all quality of service requirements are provided. 
Queue schedulers’ mechanisms are into static models which are not taken into consideration dynamic 
traffic feature that does not let to have the original traffic estimates. Hence the difficulty of basic 
management traffic mechanisms description for the MPLS networks and development new ones are 
connected with some presenting of traffic dynamic and with the necessity of finding tasks solutions which 
are relating to different open system model levels. 

Because of traffic management tasks in view of network resources usage performance with the 
required quality of service became the most basic in line with telecommunicate networks’ recourses 
management then mathematic models’ designing of effective traffic management algorithm is the actual 
researching problem. 

The aim of this work is to present the usage of different linear max-plus algebra models for an 
increasing the quality of modeling compared with existing mathematical models on what traffic 
management models and mechanisms are based on. 

 
1. Presentation of Max-plus (minus) linear algebra 

Mathematical apparatus and algebras analysis is showed that the idempotent algebras are the 
universal tool for the describing traffic management mechanisms in general and its’ discrete-event features 
in particularly [2, 3]. 

Idempotent semifield is a set of M  real numbers, endowed with the operation ⊕  (associative 
addition), and it has neutral element 0 : aa =⊕0  for any Ma ∈  and it is idempotent if aaa =⊕  for any 

Ma ∈ . We say that the semifield is idempotent if there is one more operation ⊗ (commutative) has 
neutral element 1 and connected with ⊕  and distributive with both sides: 

 

( ) cabacba ⊗⊕⊗=⊕⊗ , (1) 
 

( ) acabacb ⊗⊕⊗=⊗⊕ . (2) 
 

The set R , with adding −∞=ε , endowed with the operations ⊕  and ⊗ , that is for all R∈yx,  
define next: 

),max( yxyx =⊕ ,  (3) 
 

yxyx +=⊗ , (4) 
with 

εε =⊗x . (5) 
 

There are two kinds of linear systems in maxR  for any two matrices ( )ija=A  and ( )ijb=B  size 
nl ×  and mn ×  for which are able to compute solutions: 

 

{ } ijijij ba ⊕=⊕ BA , (6) 

{ } kjik
n

kij ba ⊗⊕=⊗
=1

BA  (7) 

 

Multiplying and adding operations with matrices and scalars are defined also. So, for any R∈λ  
and matrices ( )ija=A  size nl × . 

{ } ijij a⊕=⊕ λλ A ,   (8) 
 

{ } ijij a⊗=⊗ λλ A . (9) 
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Matrix ε , with all ε elements is zero matrix. Matrix I , with e  elements on main diagonal and all 
another ε  elements is neutral matrix. 

If RA ∈  then getting matrix nA  with 0>n  can be defined as follows: 
 

AAAA
n

i
n

1=
⊗=⊗⊗= K . (10) 

 

The most searching interest has matrix operation *A , which is used for the solving space-state 
equations with Max-plus algebra. If G(A) has no circuit with positive weight, then: 

 

12* −⊕⊕⊕= nAAAA K , (11) 
 

where n is the dimension of matrix A . 
It is possible to derive the min operation ( ( )⋅′⊕′= ,,min εRR , { }∞+∪= RRε ), from the two 

operations ⊕′  and ⋅′  as follows [4]: 
),min( baba =⊕′ , (12) 

 

baba +=⋅′ , (13) 
for all ∈ba, εR . 

Besides of features that were given this algebra can be used for the optimization tasks solving, 
formalizing, getting into and solutions of the space-state equations, for the making solutings about process 
controllability. 

 
1.1. Shortest path task solving with the Max-minus algebra 

Consider the following a digraph, ),( EVD (fig. 1), of telecommunication network, where the set of 

vertices Е  represents channels and the weight ijd  of each arc actually represents the average time it takes 

to get through the pass Eji ∈),( . It would like to find the smallest time, that takes packet propagation 
between any two intersections. 

Network digraph can be presented as follow matrix: 
 




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




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D . 

 

Based on Dejkstra’s algorithm the shortest path between any of 
nodes can be find. As a result, there are the following passes between 

node А  and all another ones with weights: 3)(,2)(,2)(,5)( ==== ABADACAB RDRDRDRD . The 
same way all another passes founded. For the simplicity get all results into follow matrix )( ijRD : 
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)( ijRD . 

 
Fig. 1. Network digraph 
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The same task can be solved with Min-plus algebra. For this next equation can be solved [5]: 
 

)(
)1(

l
nl

DD
−∈

+ ⊕′= , (14) 

lD  – delay matrix nn× ; n  – network nodes. 

Solving this task the element ji,  of matrix 2D  can be counted as: 
 

),,,min( 2211 njinjijiij ddddddd +++= K . (15) 
 

For the matrix with delays which contains k  arc passes is necessary to count kD . Thus for the  
n -node network matrix 1−nD  has to be counted. So for digraph (fig.1) has to be counted matrices 2D , 

3D , 4D  and then find the minimum of all matrices: 
 

432 DDDDD ⊕′⊕′⊕′=+ , (16) 
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
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


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
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∞
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∞
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2735
3442
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D . 

Thus all elements are minimum of delays along all network passes from i  to j . 
 

1.2. Processes representation in terms of Max-plus algebra 
Another way of applying max-plus algebra is to present processes in telecommunication devices, for 

example the process of So let ikτ  – time service k th packet at i th network device transmitter; ika  – 
incoming time of k th packet to i th transmitter queue; )(kxi  – start time of k th packet transmission to 
network from i th transmitter. ikik a,τ  – set of real random non-negative values. At start time there are no 
packets at the transmitters. Thus the process of coming and servicing packets can be presented as follows: 

 

( ) ).1()1()( −⊗⊕⊗=−⊕⊗= kxakxakx iikikikiikiki τττ   (17) 
 

Same concept can be laid into process of burst gathering and serving in optical networks. Let ikτ  – 
reaction time of electronic switch communication matrix, )(kxi  – time of burst coming to the carrier wave 
from i th interface. ikg  – k th burst gathering time, ika  – container incoming time to the interface. Then 
dynamic of the process can be described as follows: 

 

[ ])1(,max)( −++= kxagkx iikikiki τ .      (18) 
 

And in Max-plus algebra basi: 
 

( ) ).1()1()( −⊗⊗⊕⊗⊗=−⊕⊗⊗= kxgagkxagkx iikikikikikiikikiki τττ          (19) 
 

The formula (19) is good for the 1 switch interface but for the n  interfaces it transforms into 
follows: 






















−⊕⊗⊗=

−
−

=

1
1

1
)()( ii

n

i
kikiki rkxagkx τ ,      (20) 

 

ir  – state index. Thus this model lets to research optical switch working process according to burst delays 
getting into it. 
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2. Discrete-event systems, Time event graphs and Max-plus algebra 
Petri nets are often used to represent phenomena like synchronization, parallelism and concurrency. 

Generally speaking, the more their structure and semantics are elaborated the more complex is their 
analysis. The relatively simple class of Petri nets called Timed Event Graphs (TEGs) is likely to be the 
most investigated one. Indeed, TEGs are easily represented in the form of linear equations in (Max,+) 
algebra, provided that the places and the transitions be overtaking free. This linear (Max,+) form being 
very similar to the state representation of the classical discrete linear systems.  

Next figure represents TEG for the network device 
working process.  

On figure, 1t  – packet admission; 2t  – packet gets into 
buffer; qN  – buffer size; 3t  – packet is served with specified 

rule of servicing α ; 4t  – getting packet to the network. To 
get dynamic equation makes next designations. The 
autonomous transition burning of what does not depend of 

Petry net marking, designed as 1t . Time moments of burning 1t  are made incoming set 1)}({ ≥kku . 4t  
transmission burning is output and according time moment of kth burning designs as )(ky , K,2,1=k . Let 

)(),( 21 kxkx  being time moments of k th burning 2t  and 3t  transmission. Then: 

),()(
),()1()1(

),1()1()1(

2

212

21

kxky
kxkxkx

kuNkxkx q

⋅=
⋅⊕+=+

+⊕+−=+

α
α     (21) 

 

or in vector-matrix sign 
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 (22) 

where Tkxkxk ))()(()( 21=x , and all matrices 1,2, −== qi NiNA . 
The first equation in (22) can be written next way: 

))1()1()(()1( 0210 +⋅⊕⊕−⋅⊕⋅⋅=+ ∗ kukxkxk BAAAx K ,   (23) 
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Lets: TT
q

TT Nkkkk ))1()1()(()(~ +−−= xxxx K  and )1()(~ += kuku , then (23): 
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Fig. 2. TEG with autonomous transition 
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this let possibility to rewrite equation (22) in space-state equations.  
 

).(~)(
),()(~)1(~

kky
kukk

xC
BxAx

⋅=
⋅⊕⋅=+

 

 

For this mathematical model was made Gantt diagram (fig. 3) to show if the model works right. 
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time
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From the figure noticeable time moments of packets come u , and time moments of burning 
transmissions 2t  and 3t  

 
Conclusion 

In this paper, there was showed that many characteristics of the max-plus algebraic structure are 
similar to those in more familiar mathematical structures. It can be used matrix operations, solve systems 
of max-plus equations. Through applications, was showed that max-plus and min-plus algebras provide 
interesting tools that can be used to formulate and solve many problems of optimization.  

In this paper there were showed that max-plus models can accept more features of the original 
telecommunication process then existing mathematical models. One more advantage of max-plus algebra is 
its linearity. This algebra is provided another possibilities in telecommunication processes modeling then 
existing queue theory and routing algorithms models. 
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Fig. 3. Gantt diagram of service process 


