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Abstract. The quantitative theory of diffraction by 
azimuthally ordered circular nanotubes of any chemical 
composition is offered. The pseudoorthogonality effect, 
earlier found out experimentally, is considered. The 
obtained results are compared with X-ray diffraction 
patterns of oriented preparations of chrysotile nanotubes. 
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1. Introduction 

Structure of circular nanotubes (Fig. 1), being a 
special case of the chiral ones with a zero chiral angle [1], 
and diffraction by them were considered by several 
authors in the 50’s of the last century on the example of 
chrysotile nanotubes [2-7]. Similar results were obtained, 
however the most promising appears the approach offered 
by E. Whittaker. The apparatus proposed in this article is 
the further development of his approach. After the 
discovery of carbon nanotubes their two circular 
structures have been called “armchair” and “zigzag”. 

The cylindrical coordinates of the j-th atom of v-th 
Bravais cell of n-th site circle of m-th cylindrical layer of 
multilayer circular nanotubes are [1]: 
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It differs from those proposed by Whittaker [5] 
only by the choice of coordinate system. Here a and b – 
the lattice parameters of layer, corresponding to longitu-

dinal and circular directions, accordingly; d – thickness of 
layer; xj, yj and zj – radial, circular and longitudinal linear 
coordinates of atom in a cell, accordingly; ρ0 – radius of 
internal layer; M – number of layers; N – length of 
nanotube in terms of a. Value pm – quantity of cells on a 
circle of m-th cylinder – is integer by definition. 

The atoms of a unit cell, having identical radial 
coordinate, belong to one atomic sheet. The origin in the 
radial direction of the cell is selected on the sheet on 
which the cell size along the arc of a circle does not 
change with changes in the radius of the layer. Chrysotile 
has five sheets, and the origin is selected on the level of 
octahedral cations of magnesium; in carbon nanotubes 
there is only one sheet and hence the choice is obvious. 

 
 
 
 
 
 
 
 
          jx  
         mρ  
        jy  
   mjρ  
       jmνϕ  
  νϕm  
  mε  

  
 

Fig. 1. Designations in circular nanotube 
 

The azimuthal angle εm and longitudinal shift Δzm 
determine an origin of lattice on the m-th cylinder; the 
character of their change determines the azimuthal and 
longitudinal shift polytype modifications [1] of multiwall 
circular nanotube, accordingly. 
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The essential point of Whittaker’s model is the 
assumption that the initial angular phases εm are absolutely 
random [5], that is the cylindrical lattices of circular (and 
chiral) nanotubes have azimuthally disordered character. 
The alternative proposed by the authors of this article is 
the model of azimuthally ordered circular (and chiral) 
nanotubes. The authors do not refute a possibility of 
existence of azimuthally disordered nanotubes, however 
personal experience of the researches (nanotubes from 
more than 30 chrysotile deposits in the USSR) allows 
them to speak about at least the prevalence of the 
azimuthally ordered model among the chiral nanotubes. 

This article is the first of a series of articles devoted 
to diffraction by circular, chiral and spiral multiwall 
nanotubes of arbitrary chemical composition. The 
modeling profiles of diffraction are calculated for cases of 
electron microdiffraction by single nanotube and of X-ray 
diffraction by oriented preparations of chrysotile 
nanotubes and are compared with the results of the 
research by the method of X-ray scanning of reciprocal 
space of textured polycrystals [8]. Correction factors 
(polarization, geometrical, absorption, etc.) at this stage of 
development were not considered. 

2. Diffuse Reflexes 

Whittaker has divided all nanotube reflexes hkl into 
two groups: “strong” reflexes, whose index k is equal to 
zero, and the form, as a whole, corresponds to usual 
crystal reflexes, and “diffuse” with k ≠ 0 and asymmetric 
form. If you enter in reciprocal space the cylindrical 
coordinates {R, φ*, z*}, all reflexes of circular nanotube 
will be located extremely on so-called “layer planes” with 
coordinates z* = h/a. 

Let us consider section of reciprocal space by a 
plane {R, z*} passing through a nanotube axis, which 
corresponds to electron microdiffraction experiment on a 
single nanotube or to method of scanning of reciprocal 
space using oriented preparation of nanotubes. In this 
plane the reflexes will appear on so-called “layer lines”, 
which are the crossings of the plane {R, z*} with layer 
planes. So, for example, the picture looks to the electron 
microdiffraction pattern of single circular nanotube, 
oriented perpendicularly to an electron beam. 

The expression for amplitude of single circular 
nanotube diffuse reflexes hk0, obtained by Whittaker [5], 
up to the choice of coordinate system is as follows: 
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Let us assume that initial angular phases εm can 
have both random (Whittaker’s model), and ordered 
nature. As Whittaker calculated diffraction only by the 
polycrystalline oriented preparation, let us consider the 
intensity of single nanotube diffuse reflexes with εm-
random; for this let us present (3) as: 
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Summing over m and m' retains the terms 
corresponding to the third addendum when m' = m, only; 
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all the rest are equal to zero because of random character 
of the initial angular phases. This is fulfilled the better the 
greater the number of layers M in nanotube. The angular 
dependence of intensity disappears and the final 
expression looks like: 
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Thus, in the Whittaker’s model the intensity of 
diffuse reflexes of the single multiwall circular nanotube 
does not depend on the angle φ* and interlayer shifts. It is 
obvious that in case of oriented polycrystalline 
preparation of azimuthally disordered circular nanotubes 
the intensity of diffuse reflexes is described by the 
expression (5) too, averaged over the spreading of the 
parameters ρ0 and M. An example of calculation of diffuse 
reflexes of the chrysotile 1st layer line (the number of 
layer line is equal to value of index h) for last case in 
comparison with experiment [17] is given in Fig. 2. 

Expression (3) with εm-ordered is a basis for 
calculation of single azimuthally ordered circular nano-
tube diffuse reflexes. Value εm can be equal, for example, 
to 0 (orthogonal polytype) or Δbm/ρm, 0 < Δb < b 
(azimuthal monoclinic polytype modification). Examples 
of calculations of azimuthal shift polytypes of circular 
lattice with g = 5 [1] reflex 020 intensity distributions on a 
plane {R, φ*} are shown in Fig. 3 (the lines are drawn at 
the levels from 0 up to 10 % through 1 %).  
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Fig. 2. The diffuse reflexes of chrysolite 1st layer line in Whittaker’s model  
(shaped line) in comparison with the experimental ones (continuous line) 
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Fig. 3. The distribution of intensity of circular lattice polytypes reflex 020 on a plane {R, φ*}:  
orthogonal (a) and monoclinic with Δb = b/3 (b)  
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Fig. 4. Orientation of diffuse reflex on a plane {R, φ*} around radiation and layer line 
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Fig. 5. A reflex 020 of carbon “armchair” nanotube’s azimuthal monoclinic polytype (∆b = b/3)  

with various values φ* (degrees) 
 

It is necessary to take into account the spiral-like 
character of intensity distribution of azimuthally ordered 
nanotube diffuse reflexes in research of single nanotubes 
by the method of electron microdiffraction. The point is 
that the sites of a reciprocal lattice rotate together with 
nanotube while the layer line is always perpendicular to 
direction of incident radiation (Fig. 4). Hence, the 
distribution of intensity on a layer line depends on the 
orientation of nanotube around its axis relatively an 
electron beam. In Fig. 5 the examples of calculated 
profiles of a reflex 020 of carbon “armchair” nanotube 
azimuthal monoclinic polytypes on the layer lines 
corresponding to directions given in Fig. 3b by shaped and 
continuous lines (the profiles in Fig. 5 are drawn by the 
corresponding lines) are shown. 

The experimental registration of distributions 
shown in Fig. 3 is possible only by electron 
microdiffraction method with nanotube orientation 
parallel to an electron beam and only for a layer plane 
with h = 0 (that is taking place through the origin of 
reciprocal space). Nevertheless, the calculation of 
intensity distributions of diffuse reflexes on the other layer 
planes is necessary for description of position and form of 
diffuse reflexes on corresponding layer lines for the 
purpose of obtaining of structural information. 

Transiting to modeling of diffuse reflexes of 
oriented polycrystalline preparations of the azimuthally 
ordered circular nanotubes, it is necessary to average 
intensity (3) by the angle φ* (and also by the distribution 
of parameters ρ0 and M). Let us use (4), supposing εm-
ordered: 
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As numbers k and pm are integer by definition, only 
the third integral is not equal to zero and only when m' = 
m. Then we again, as well as in Whittaker’s model, obtain 
(5) and all its consequences. 

In all polycrystalline cases positions of the main 
maxima of diffuse reflexes are obtained by equating of 
Bessel function argument (with xj = 0) to its index and take 

places near to points 0hk
kR
b

=  slightly displacing towards 

the large R, depending on the average radius of nanotube. 
The displacement is different for various diffuse reflexes 
and can be used for measurement of average radius. 

3. Strong Reflexes and 
Pseudoorthogonality Effect 

Following Whittaker [5] the intensity of strong 
reflexes h0l of single circular nanotube is described by the 
expression: 
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It has not the angular dependence and maxima of 
reflexes of, for example, longitudinal monoclinic polytype 
modification with Δzm = mΔz, where Δz – the constant 
longitudinal interlayer shift, are located in points 
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the positions of an orthogonal polytype reflexes are 
obtained from (7) with Δz = 0. It is obvious that the 
intensity (6) does not depend on the character of 
azimuthal ordering and (after averaging by distribution of 
parameters ρ0 and M) describes also the case of an 
oriented polycrystal. 

In view of the absence of strong reflexes sets pro-
files, including the origins of layer lines, in Whittaker’s 
articles, the authors have performed these calculations by 
the expression (6). In Fig. 6 the example of profile cal-
culation for strong reflexes of a 2nd layer line of oriented 
polycrystalline preparation of chrysotile nanotubes of 
longitudinal monoclinic polytype modification with 
constant interlayer shift is shown (shaped line). 

The profile contains a set of strong reflexes 20l in 
positions (7), corresponding to so-called clino-chrysotile 
with d = 0.73 nm, a = 0.534 nm and Δz = -a/13. The last 
parameter determines splitting of pairs 20 20l l− . 
However at the origin of a layer line the narrow reflex is 
clearly observed, whose location contradicts the 
expression (7). Its position corresponds to a reflex 200 of 
orthogonal polytype, while the calculation was made for a 
monoclinic model. 
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Fig. 6. Strong reflexes of a 2-nd layer line of chrysotile longitudinal monoclinic polytype  
(shaped line) in comparison with the experimental ones (continuous line) 
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Fig. 7. Strong reflexes of the beginning of 2nd layer line of monoclinic circular lattice  
with various number of layers 

 
Meanwhile, such reflections are often observed in a 

research of single nanotubes of chrysotile by electron 
microdiffraction:   the location of reflections on the whole 
is consistent with monoclinic polytype, with plus h00 
reflections of orthogonal polytype in complete absence of 
any other of his reflections [18]. The origin of these 
reflexes h00 remained unknown and they were named 
“pseudo-orthogonal”. Subsequently, during the researches 
by the method of X-ray scanning of reciprocal space, on 
the diffraction patterns of chrysotiles from some deposits 
this effect was faced too (Fig. 6, continuous line). Hence, 
as it was shown in macroscopic X-ray experiment, this is 
a rather mass phenomenon. 

Also there is a problem of indexing of this reflex. 
As the crystal system, whose diffraction pattern is 
simulated, is uniphase all its reflexes should be described 
by a uniform system of indexes. The Bravais cell of 
chrysotile allows existence of reflexes hkl with even 
values of h + k. For strong (k = 0) reflexes of the second 
layer line (h = 2) this means the presence of a set 20l with 
l = 0, ±1, ±2, …. However pseudoorthogonal reflex index 
is not enough: for all indexes, including 200, there are 
own reflexes. Hence, it is possible to put a question only 
about the appropriateness of using the indexes h, k and l of 
a basic set of reflexes for indexing of pseudoorthogonal 
reflexes. 

The applicability of index h is evident: the 
pseudoorthogonal reflex belongs to a layer plane with the 
certain value of h. The expression (7), describing strong 
reflexes, that is reflexes with k = 0, generates, the 
pseudoorthogonal reflexes also. Hence, the value of index 
k can also be assigned to them. 

To determine the applicability of index l it is 
enough to consider a case of diffraction by monoclinic 
lattice: 
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The index l of the basic set of reflexes arises from 
the summation in (8) over m as a condition of extremum 
of this sum. Actually, it numbers points of extremum (7). 
The points of extremum begin when R = hΔz/ad and 
spread further towards the large values of R. However the 
pseudoorthogonal reflex takes place when R = 0. The-
refore, it does not enter into the set of reflexes, numbered 
by index l, and this index cannot be assigned to it. 

On the other hand, when R is so small the sum of 
oscillations of Bessel function “tails”, multiplied by the 
oscillating exponent, have no (when h ≠ 0) character of  
δ-function, that is can not give a reflex connected with any 
integer parameter. Therefore in Fig. 6 and 7 the 
pseudoorthogonal reflexes have indexes 20. 

The pseudoorthogonal reflex is the result of 
summation of the main maxima of Bessel functions of the 
zero order, multiplied by pm and a complex exponent. Its 
abnormally small width is determined by the large factor 
2πρm in argument of Bessel function. The dependence of a 
pseudoorthogonal reflex on the number of layers is shown 
in Fig. 7. It is necessary to take into account during the 
experimental registration of pseudoorthogonal reflexes 
that after effect of apparatus function of experimental 
device the intensity of so narrow maxima is sharply 
reduced and can become comparable with other reflexes 
of the diffraction pattern. 

4. Conclusions 

Modeling of single circular nanotube diffuse 
reflexes shows essential difference between the 
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Whittaker’s model and the azimuthally ordered model and 
allows determining the azimuthal shift polytype 
modification in the last case. The greatest effect is 
achieved by modeling distribution of intensity in a plane 
{R, φ*}, corresponding, in the case of zero layer plane, to 
electron microdiffraction by nanotube oriented parallel to 
electron beam. However such experimental technique is 
just starting to develop. 

Diffuse reflexes of polycrystalline preparations of 
circular nanotubes do not allow to distinguish the 
Whittaker’s and azimuthally ordered models and to 
determine the polytype modifications, but their modeling 
allows determining parameter b and average radius of 
nanotubes. The calculations of intensity distribution 
lengthways layer lines of oriented polycrystalline samples 
of circular nanotubes have shown the presence of 
oscillations in the tails of diffuse reflexes, which have 
never been observed experimentally. These oscillations 
could not be smoothed out, neither the author nor 
Whittaker, by his own admission [7], for any values of the 
parameters set by averaging the nanotubes. This allows 
making conclusion about the insignificant concentration 
of circular nanotubes in the investigated samples. 

The modeling of strong reflexes both of single 
circular nanotubes and their polycrystalline preparations 
allows to determine longitudinal shift polytype 
modification and parameters d and Δz/a. 

The research of pseudoorthogonality effect has 
shown that the cylindrical crystals have an additional set 
of pseudoorthogonal reflexes of type h0. The authors 
assume that these reflexes arise owing to the fact that even 
a separate atomic circle, being a two-dimensional object, 
is capable of scattering falling radiation directly. Thus, the 
pseudoorthogonality effect is the additional coherent 
scattering when radiation is diffracted by nanotubes. The 

pseudoorthogonality effect is specific for curvilinear 
crystals and cannot have analogues among the rectilinear 
ones. In further articles of this series the character of 
pseudoorthogonality effect in other types of nanotubes 
will be considered. 

In the next article of this series the quantitative 
theory of diffraction by chiral nanotubes of arbitrary 
chemical composition will be presented, from which the 
results of this article will follow as a special case of  zero-
carbon chirality. The experimental profiles, used in the 
article were obtained with the participation of Krinary 
G.A., Eskina G.M., and Sabirova N.U.  
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ОСОБЛИВОСТІ ДИФРАКЦІЇ  
НА НЕХІРАЛЬНИХ НАНОТРУБКАХ 

 
Анотація. Запропоновано кількісну теорію дифракції 

будь-якої хімічної композиції на азимутально впорядкованих 
кругових нанотрубках. Розглянуто псевдоортогональний 
ефект, знайдений експериментально нами раніше. Проведено 
порівняння отриманих результатів з рентгенодифракційними 
моделями орієнтованих препаратів хризотилових нанотрубок. 

 
Ключові слова: кругова нанотрубка, дифракція, елект-

ронна мікродіфракція, шарова лінія, зигзаг, хризотил. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 




