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A two-level model for the structure of a natural gas transmission system has been built 

with the use of methods of set and graph theories. The model is intended for development of 

software for automation of management by the system. 
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У статті запропонована дворівнева модель структури газотранспортної системи, 

побудована із використанням методів теорій множин і графів і зорієнтована на 

створення програмного комплексу для автоматизації управління магістральними 

газопроводами.  
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Introduction 

Gas transmission systems (GTS) are used to transport large amounts of natural gas across long 

distances from producing regions to consumption regions. GTS is a global complex system of 

interconnected trunk pipelines and storage facilities, equipped with compressor stations, junction nodes, 

valves, pressure regulators and gauges. All these facilities, in the aggregate, form a integral engineering 

complex the configuration of which can change over its life period, depending on suppliers’ and 

consumers’ demands, operation conditions, technical specification etc. Due to that, GTS can be classified 

as a nonlinear large-scale controlled continuous dynamic system subjected to concentrated and distributed 

loadings. Essential processes for functioning of this system are: mass, momentum and energy transport by 

gas mixtures; force and heat exchange between transmitted gas and transmission facilities; mass, 

momentum and energy exchange between GTS and environment.  

Effective control of this system is possible on the basis of computerization of technological 

processes, administrative management, maintaining services, emergency-repair services and other 

subdivisions of GTS with the use of hardware-software systems (HSS) [1,2,3]. These HSS should be based 

on mathematical models. The models form theoretical basis for formulation of direct and inverse problems 

for simulation of gas flows, optimization of operational modes of compressor station and configuration of 

GTS. These models can also provide mathematical tools for evaluation of reliability and residual life of 

GTS, ecological and business risks assessment, etc.  

A model of structure of GTS is an important part of mathematical tools of HSS. It is necessary for 

mathematical formulation of the problem for mass, momentum, and energy transfer in gas mixture 

transported by GTS, modeling the stress-strained state of elements of gas transport infrastructure, 

evaluation of their strength and reliability. The model of structure is also required for graphical 

representations of GTS’ configuration correspondingly to the needs of all groups of HSS users, etc.  



 2 

The model of GTS structure should satisfy the following requirements: a) represent GTS as a 

heterogeneous system with the thoroughness that is sufficient for implementation of all HSS’ functions 

with given accuracy; b) take into account the variability of GTS’ configuration under its operation; 

c) provide the possibilities for creation an adaptive user HSS interface that can be adjusted to needs of 

users of different groups.  

Graph theory methods are usually used for modeling of GTS’ structure [4]. That enables us to take 

into account the dimensional heterogeneity of GTS, namely — presence of the node and line elements in 

its structure. This approach is convenient for formation of numerical models of gas-dynamic processes in 

the system. But such model does not reflect the inherent functional heterogeneity of node and line elements 

of GTS. The node and line elements can belong to different categories distinguished by their operational 

functions, technical specifications, parameters etc.  

The mentioned approach to modeling of the GTS’ structure can considerably complicate 

implementation of the functions responsible for accounting variability of GTS’ configuration, graphical 

representation of structure of GTS, adaptive user interface etc. This can result in restricted functionality of 

HSS built on the base of such structure model.  

Therewith, the model of GTS’ structure is used for mathematical problems of different types: 

a) modeling of gas-dynamic processes in the gas mixtures, b) calculation of stress-strained state of GTS’ 

elements, c) graphical representation of the structure of GTS and reflection of results of numerical 

simulation in forms suitable for the users of different groups etc. The problems of different types can 

require the models that reflect the structure of GTS with different thoroughness. The known approach to 

modeling of structure of GTS can not provide such facility. 

A two-level model of structure of GTS is considered in this paper. The model is built with the use of 

methods of set and graph theories and is aimed at creation of HSS for automation of management by GTS. 

The model of configuration is the upper level of the structure model. On this level, GTS is considered as a 

system integrating heterogeneous physical objects — pipelines (line objects) and node elements of 

different categories. The lower level just reflects the topology of GTS; it is represented by a configuration 

graph. Mappings that determine correspondences between objects of models of these two levels are built. 

Data structures for representation of the physical and topological models in computer programs are 

considered. 

Remarks regarding denotations used in the paper. In this paper, to distinguish objects of the 

mathematical model, the sets and sequences are denoted by upper-case hand-written characters (font 

DECOR); for their elements upper- or lowercase letters of Times New Roman italic are used. Mappings 

between sets are denoted by capital hand-written characters with the use the font FRENCH SCRIPT MT 

(French Script MT). 

The two-level model of structure of GTS 

We consider GTS as a system that joins the node elements of different categories (inputs, outputs, 

bifurcations, junctions, valves etc.) and the line elements (pipelines) of different categories into a 

connected network. The line elements of different categories can be distinguished by the pipeline’s type 

(underground or ground-surface pipeline, offshore or onshore pipeline, pipelines mounted on supports or 

installed with the use of cable structures etc.). They also can differ in their technical features, such as 

diameter and length of the pipe, roughness of its inner surface etc.  

Configuration of GTS can change over its lifetime. The number of node and line elements of various 

categories can vary as a result of valves opening or closing, installation of new facilities and removing 

from operation some existing ones etc. To take into consideration the variability of GTS, we consider the 

two-level model of GTS’ structure. The upper level of the model takes into account physical properties and 

technical features of GTS’ elements, whereas the lower level is presented by the configuration graph that is 

the topological model of GTS (Fig.1).   

The collection of node and line elements of various categories forms the set of objects of GTS 

configuration’s model (Fig.2). The configuration chart represents the physical links between the node and 

line elements, converting the collections of node and line elements into a connected structure. 
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The graph of configuration represents the topology of the actual configuration of GTS. The set of its 

vertices is formed from the set of node elements, and the set of edges is formed from the set of the line 

elements which are presented in the actual configuration of GTS.  

 

 

Fig.1.The two-level model of structure of GTS and other constituents of its mathematical model  

The mappings (see fig.1) are the third constituent of the model of structure. They are destined to 

establish the correspondences between the objects of configuration model G on the one hand and the sets 

of vertices and edges of configuration graph G  on the other hand. It enables us to construct the 

configuration graph on the base of the model of actual configuration and vise versa — to build the 

configuration model of actual configuration starting from its configuration graph.  

 

 

Fig 2. The model of configuration of GTS 

Model of configuration of GTS and its graph 

We consider GTS as a 3D structure of interconnected node and line elements, which links the set of 

inputs  1 2, , , nW W W 
W

W  with the set of outputs  1 2, , , nO O O 
O

O . The inputs W  and outputs O 

are two categories of node elements that make up the set of external node elements. The set of internal 

node elements also can be divided into several categories, depending on their structure, technical features, 

operational parameters etc. Let nN  be the number of the categories of node elements, and Kn , where 

 1,2, ,K n  N , be the number of node elements of the category K . Then the set of node elements of the 

category K  is  1 2, , ,
K

K K K K
nN N N N , where K

lN ,  1,2, , Kl n   stands for a node element of 

category K . The set of categories of node elements is  1 2, , , n  N
NC N N N . For definiteness, we 
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consider the set of inputs W  as 1 NN C , and the set of outputs Oas n N
NN C . Obviously, the set of 

all node elements is determined as 
1

n K

K
 NN N . 

Let  1 2, , , n T
TC T T T=  be the set of categories of pipelines (line elements). Here nT  stands for 

the number of pipeline categories; the set of pipelines of category  1,2, , LL m   is 

 1 2, , ,
L

L L L L
mT T T T , where Lm  is the number of line elements of category L . Then the set of line 

element is determined as 
1

n L

L
TT T= . 

The configurtion chart determines connections between the node and line elements. This chart can 

also reflect the categories of node and line elements, numbering of these elements within categories etc. 

Thus, the configuration model reflects the geometrical heterogeneity of GTS (presence of node and 

line elements in its structure) and its functional heterogeneity (presence of categories of node and line 

elements). The configuration chart of GTS can be presented by the graph  ,G N T . Its node set is the set 

N  of node elements structured by the set NC , and the set of edges is the set T  of line elements 

structured by the set of pipeline categories TC : 
1

n K

K
 NN N , 

1

n L

LT TT
= . The elements of each of 

sets KN  and LT  are numbered independently:   1 2, , ,
K

K K K K
nN N N N ,  1 2, , ,

L

L L L L
mT T T T , where  

Kn   is the number of node elements of the category K , Lm  is the number of line elements of the category 

L , 
1

n

K K
n n


  N

N N ,  
1

n

L L
n m


  T

T T . 

The topological model reflects only the dimensional heterogeneity of GTS. It is presented as the 

graph  ,G  X E , where X  and E  are the sets of vertices and edges. The set X  presents all node 

elements and the set E presents all line elements of the configuration model: n XX , n EE . 

To link a model configuration and topological model of the GTS, it is necessary to establish the 

correspondence GG  between the graphs G and G . To do this, correspondences between sets of node 

elements KN ,  1,2, ,K n  N  and the set of vertices GX  as well as between the sets of line 

elements LT ,  1,2, ,L n  T  and the set of edges GE  should be established. 

Correspondences between the node elements and vertices of the configuration graph 

Let  1,2, ,n  XI  be a finite sequence of natural numbers, where n  X X N . Since the sets I  

and X  of the same power, a one-to-one correspondence can be established between them. Any such 

correspondence X I  introduces a numbering of the vertices. This transforms the set X  into the 

sequence  lX l  X I , so we can address its elements using indexes: i iX  X .  

To map the sets of inputs W  and the set of outputs O onto the set of vertices X , we define the 

sequences WI  and OI  that contain the numbers of vertices of the graph G  corresponding to the inputs 

and outputs nodes: 

  1 2, , , nl l l 
W

WI , il I ,  1,2,i n  W .  (1) 

  1 2, , , nl l l 
O

OI , kl I ,  1,2, ,k n  O . (2) 

It is obvious that we can address elements of WI  and OI  by their indexes: 

 , 1,2,i il i n   W
WI I ,  , 1,2,k kl k n   O

OI I . 



 5 

The sequences (1), (2) determine injections : W W XN  and : O O XN . Mapping WN  

determines the index (number) il 
WI  of the vertex 

il
X X , that corresponds to the number 

 1,2, ,i n  W  of the input iW W , and mapping ON  determines the index (number) kl  OI  of the 

vertex 
kl

X X  that corresponds to the number  1,2, ,k n  O  of the output kO O : 

   , 1,2, , ,i i il i i n l  W
W WI I=N ,    , 1,2, , ,k k kl k k n l  O

O OI I=N  (3) 

Hence the mapping WN  establishes correspondences between inputs WW  and vertices XX , 

whereas the mapping ON  establishes correspondences between outputs OO and vertices XX  

  , ,X W W X W W X=N ,    ,X O X O  O X, ON . (4) 

So, the mappings WN  and ON  determine the sets WX X  and OX X  that correspond to the 

sets of inputs W and outputs O respectively:  

    lX l   W W
W W X IN ,        lX l   O O

O X IN O . (5) 

Similar mappings can be introduced for other categories of the node elements. Commonly we will 

designate the sequence of the numbers of graph G  vertices, that correspond to the node elements KN  of 

the category K  as KI : 

  1 2, , ,
K

K
nl l l I , il I , 1,2, , , 1,2, ,Ki n K n   N . (6) 

The sequence (6) defines the mapping KN  that determines index (number) il I  of the vertex 

il
X X  corresponding to the index  1,2, , Ki n   of the node element K

iN N  of K  category:  

   , 1,2, , , 1,2, , ,K
K i Kl i i n K n l     NI I=N , (7) 

hence it determines correspondences between node elements K
iN N  of the configuration model G and 

vertices lX X  of graph G  

   , ,K
KX N N X N X=N , (8) 

When the mapping KN acts on the set KN  it separates the corresponding subset KX  in the set X : 

    K K K
K lX l   N X IN ,  (9) 

The collection  , 1,2, ,K K n N NN  constitutes the mapping N  that for each given node 

element K
iN  N G of a given category puts into correspondence a unique element lX G X :  

  ,iX N K N . (10) 

Each of the mappings KN , 1,2, ,K n  N  is an injection from the set KN  of node elements of the 

K -category into the set X  and a bijection between this category of node elements and corresponding to it 

subset of vertices KX : 

 ,
K K

K K K  N X N X X
N N

  (11) 

Hence for each , 1,2,K K n  NN  there exists an inverse mapping -1
KN . For each given vertex 

KX X . it determines a unique node elements KNN  of category K : 

  -1 , ,K K
i K l l iN X X N  X NN ,   -1

K K KN XN  (12) 
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To implement the mapping (12), it is necessary to find the index i  of the element in the sequence 

KI  the value of which equals l :  

 -1 : | K
K l i iX N l IN .  (13) 

That can be realized by the search algorithm that need time proportional to Kn .  

Whereas any two different subsets KX  and LX  do not intersect: 

 , 1,2, ,K L K L n L K     NX X , and all subsets KX   1,2,K n  N  in the aggregate form the 

whole set X  of vertices: 
1

n K

K
G


  N X X , the inverse mapping -1N  exists, that for any vertex 

lX G X  determines just one node elements K
iN N  of category K , such, that  K i lN XN : 

  -1 K
l iX N NN  (14) 

The mapping -1N  can be implemented algorithmically through search the sequence 

, 1,2, ,K K n  NI , that contains the element with value l , and subsequent determination of its index 

 1,2, , Ki N   in this sequence: 

      -1 : , | 1,2, , , 1,2, , , K
K il K i K n i n l     N I IN  (15) 

This algorithm is implemented by simple search, and it takes the time proportional to Kn nX . 

The mapping N , together with its inverse one -1N , establishes one-to-one correspondence between 

the set of node elements N G, structured by categories NC , and the set of vertices GX . Due to this, 

we can consider the set XC  of vertex categories   1,2, ,K K n   XC X  N , where  K K
KX N=N . 

The mapping N  establishes one-to-one correspondence between the sets of categories NC  and XC . 

Correspondences between the line elements and the edges of configuration graph 

Any edge EE  of the graph G  can be specified by a pair of vertices 1 2,X X X  connected by the 

edge:  1 2,E X X . Numeration of the vertices convert the set X  into a sequence, hence, any edge EE  

can be specified by a pair of natural numbers  , iji j E E . We introduce a sequence of pairs of natural 

numbers:  

         1 1 2 2, , , , , , , , , ,n n k ki j i j i j i j i j   
E E

EJ I .  (16) 

The members iI  and jI  of any pair  ,i j  EJ  are numbers of corresponding vertices iX X  

and jX X . 

The sequence (16) introduces a numbering on the set of edges and establishes the correspondence E  

between the pairs  ,i j   EJ  and indexes  1,2, ,n   EJ   

  : ,i jE , (17) 

If the graph G  does not contain parallel edges, the mapping (20) is a one-to-one correspondence. In 

this case, the inverse mapping -1E  puts a unique index  J of the edge into correspondence to the pair 

 ,i j  EJ  for each pair: 

    -1 : , ,i j J i j |E E  (18) 



 7 

Mapping (17) can be implemented by access to element of the sequence EJ  on its index: 

 ,i j   EJ . Mapping (18) can be implemented algorithmically by search in the sequence EJ  the 

element with value  ,i j  and consequent determination of its index  . 

The sequence (16) specifies the set of edges E  as collections of two-indexed ijE  or one-indexed E  

elements and converts it into the sequence: 

   ,ijE i j   EE J ,   E E J  (19) 

When the graph G  contains parallel edges, the mapping (17) remains one-to-one correspondence, 

whereas mapping (18) can posses several values: 

         
-1

, ,: , , 1,2, , , , 1,2, ,
l

l i j i ji j l m J i j l m


    | EE  (20) 

where  ,i jm  stands for number of the edges linking the vertices i  and j .  

The mappings E  and -1E  specify correspondences between two- and one-indexed edges. When the 

graph G  does not contain parallel edges, we have:  

      -1| , , | ,k ij ijE E i j E E i j     E E . (21) 

To map the set of pipelines T  of the configuration model G with edges E  of the configuration 

graph G , for the each category , 1,2, ,K K n  TT  we introduce the sequence KJ  that contains the 

numbers  J of the edges corresponding to the pipelines of this category KT T : 

  1 2, , ,
K

K
m   J  , 1,2, ,i Ki m   J . (22) 

The sets of different sequences KJ  and LJ  do not intersect:  , , 1,2,K L K L n    TJ J , 

K L  and in the aggregate KJ ,  1,2,K n  T  form the set  the edge indexes J :  
1

n
K

K 


T

J J .  

The sequence KJ  specifies a mapping KP  that for any given index i  of a pipeline K
iT T  of the 

category K  puts the number  1,2, ,n  E  of the edge EE  into correspondence to this pipeline: 

 K i= P . Since any index  1,2, , Ki m   specifies a unique pipeline K
iT T , and the index  K i= P , 

 1,2, ,n  E  specifies a unique vertex EE , the mapping KP  determines the injection  

 : , ,K
K i iT E T E   T EP   (23) 

and specifies the subset K E E  corresponding to the set of pipelines KT  of category K : 

    K K K
K E  E T JP ,  1,2, ,K n  T  (24) 

The mappings KP ,  1,2, ,K n  E are bijections between the sets KT  and KE , hence the inverse 

mappings 1
K
P  exist: 

    1 K
K i i KE T T i

     P T P ,  1,2, ,K n  T  (25) 

The set  1,2, ,K K n   TP P  of the mappings KP  forms the mapping that for any given pipeline 

K
iT T ,  1,2, , Ki m   of category 1,2, ,K n  T  determines a unique edge EE :  ,iE T K  P .  

The sets KE  do not mutually intersect:  , 1,2, , ,K L K L n K L     TE E  and they form in 

the aggregate the set E  of all edges: 
1

n K

K
 T E E . Hence the inverse mapping -1P  exists. It determines, 
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for any given edge EE  of the configuration graph G  a unique pipeline K
iT T  of the category 

 1,2, ,K n  T  and number  1,2, Ki m   of the pipe in this category: 

         -1 , , K
i K i iE T K T E     JP P . (26) 

Algorithmic implementation of the mapping -1P  includes a search of the sequence KJ  which 

contains an element containing an element which equals   among the sequences 1J , 2J , …, nTJ . The 

number  -1
Ki  P of the found element   in the sequence KJ  is the number of the pipeline K

iT T  

corresponding to the edge E . 

The mapping P  specifies the one-to-one correspondence between the set of line elements T G, 

structured by the categories TC , and the set of the edges GE . It also specifies the set 

 1 2, , ,
n

  E
EC E E E  of edge categories which correspond to the categories of the pipelines TC , and 

establishes one-to-one correspondence: E TC C
P

 between them. 

Data structures of the topological model 

The configuration graph G  is completely determined by the sequence EJ . It can be represented in 

computer memory by the following structure:  

    : 1.. , : 1..G N i j N  array of record end recordE
E XJ . 

It needs memory capacity of the order  2O nE   

With the use of EJ , some other structures can be also calculated for numeric representation of the 

configuration graph G , in particular, adjacency matrix  GA  and incidence matrix  GB . 

We will restrict here by the case of non-oriented graph G  that does not contain parallel edges.  

Then entries ija  of adjacency matrix  GA  can be determined via the set of edges as it is in[5]: 

 
 

 

1 , :

0 , :

ij ji

ij

ij ij

i j E E
a

i j E E

    


 
   

E E

E E
 (27) 

To represent the matrix  GA  in computer memory, the 2D array can be used 

    : 1.. ,1.. 0..1G N Narray ofX XA   

It requires memory of the order  2O nX . 

This matrix can be easily calculated with the use of the structure EJ : 

 
   

   

1 , ,

0 , ,
ij

i j j i
a

i j j i

    
 

   

E E

E E

J J

J J
 (28) 

Calculations should be done for each pair  ,i j  EJ . That takes the time of the order  O nE . 

The incidence matrix  GB  is a n nX E -matrix   0,1 , ,ib i    B I J . Its i-th row 

 1,2, ,ib    J  specifies the set  iE  of edges incident to the vertex iX  [5]. To represent the matrix 

 GB  in computer memory, 2D array can be used [5]: 

   : 1.. ,1.. 0..1G n n  array ofX EB ,  
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It requires memory of the order  O n nX E . 

To built the matrix  GB  for non-oriented graph G  using the structure EJ , it is necessary to 

determine the set  iE  of the edges incident to this vertex for each vertex iX X . The set  iJ  of these 

edges’ indexes can be calculated with the use of the mapping -1E , and the set  iE  can be calculated as 

     i i
E E J . (29) 

With the use of the sets  iJ  or  iE  the elements ib   of the matrix  GB  can be calculated  

 

  
  

1 , |

0 , |

i

i
i

i i

b

i k i


     


 
    


I J

I J

,        

  
  

1 , |

0 , |

i

i
i

i i E

b

i k i E







     


 
    


I E

I E

 (30) 

To build the sets  iJ  i I  according to the formula (32), time of the order  O n nX E  is needed. 

Thus, time needed for calculation of the matrix  GB  by Formula (34) is of the order  2O n nX E .  

Conclusions 

A two-level model of GTS structure has been suggested. The model can be used under development 

of software intended for automation of management by GTS. The configuration model is the upper level of 

the GTS structure model. It represents the configuration of GTS as a collection of interconnected node and 

line elements that link the sets of inputs and outputs. Physical properties of the node and line elements are 

taken into consideration at this level. For this purpose, the sets of node and line elements both are 

structured according to their categories. Thus, the upper level of the model reflects the structural 

heterogeneity of GTS (presence of the node and line elements in its structure) and its physical 

inhomogeneity (the categories of node and line elements are taken into consideration). 

At the lower level, the model takes into account just dimensional heterogeneity of GTS. It is 

presented as a graph reflecting the topology of GTS as a collection of vertices and edges.  

The mappings establishing correspondences between the objects of models of different levels have 

been built. This enables to delimit the scopes of variables corresponding to the object of physical and 

topological models in the program environment. The variables of the upper level can be made visible just 

in interface modules of the program. The variables of the lower level can be made visible only in internal 

modules of the program. Due to that, users receive possibilities for editing of the configuration model: 

adding and removing objects of the physical model, applying independent numeration for the object of 

different categories, applying different geometric primitives and colors for their displaying, simple 

transformation of configuration etc. 

The objects of the model can be presented in a computer by means of simple data structures which 

do not require substantial storage capacity. The mappings which establish the correspondences between 

objects of different level can be implemented with the use of fast search algorithms. 
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