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The numerical-analytic technique for finding electric and magnetic components of 

electromagnetic field in a piecewise homogeneous conductive half-space is suggested. 

Electromagnetic field is excited by a horizontal contour with current harmonically changing in 

time. The problem is formulated and solved by means of the boundary element method. 
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Introduction 

Nowadays electromagnetic fields (EMF) harmonically varying with time that are generated by 

artificial sources and propagate within homogeneous and horizontal-stratified models of the Earth crust 

have been studying by means of well developed spectral analysis theory. It especially refers to a wide 

range of two dimensional magnetotelluric problems, when an external source is given as a homogeneous 

magnetic field or a plain wave. Also there are analytic solutions for EMF distribution problems at 

comparatively simple electrical conditions for foreign local inclusions having a canonical or similar to 

canonical form in the case of two or three dimensional horizontal-stratified models [1, 2]. Concerning 

inclusions having complex forms, which better represent a real geoelectric situation, lately numerical and 

analytical-numerical methods for mathematical modeling of EMF generated by artificial sources have wide 

been using. Most popular difference methods [3, 4] or finite element methods [5, 6] provide a good 

accuracy of results but need a digitization of whole space which the heterogeneous body occupies and what 

in turn need a usage of a bulk memory. A usage of boundary integral equations [7-9] and built on the base 

of them boundary element methods [10] allows one to discretize only  boundary surface of the body what 

in turn reduce an amount of memory during a realization of the algorithm and provide a good calculation 

accuracy at inner points. 

The paper proposes and implements an analytic-numerical approach based on indirect boundary 

element method for a solution of direct three dimensional problems of  electromagnetic field theory in the 

case of steady oscillations for a conductive piecewise homogeneous half-space. Full and quasi-stationary 

models are considered in the paper. An influence of inclusions with higher and lower conductivity (for oil 

and gas deposits) than within geophysical environment on a EMF distribution is studied. 

 

Problem definition 

Let’s consider a piecewise homogeneous half-space occupying the region 

   
21321

3 ,:,, xxxxxR , 03  x   in  a three-dimensional Cartesian 

coordinate system and including the body Ω2 that has a parallelepiped form and an ideal contact with a 

geoelectric environment 21 / . The geoelectric environment Ω1 and the body Ω2 are characterized 

by constant electrical conductivities σ1, σ2, magnetic conductivities μ1, μ2,, and dielectric conductivities ε1, 
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ε2 (figure 1). On the surface of half-space   0,,:,, 321321  xxxxxx  an electrical 

field (EF) is absent, and in a contour 1C  foreign currents act with an intensity defined as 

 ),(),,(),,(),( 321  xxxx 


, where τ – time variable,  321 ,, xxxx   – point in the space. At 

the initial moment of time there is null distribution of components of electric field strength ),( xE l
i  

(where i=1,2,3, l=1,2) within both geoelectric environment Ω1 and the body Ω2 and rates of their variations. 

Propagating an EMF within piecewise homogeneous half-space, in which within region Ω1 foreign 

currents are acting, is described by Maxwell equations:  

for a geoelectric environment ( Tx  1),( )    for an inclusion ( Tx  2),( ) 
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where  ),(),,(),,(),( 321  xHxHxHxH llll


,  ),(),,(),,(),( 321  xExExExE llll


 – a magnetic field 

strength vector  and an electric field strength vector in l , }0:{ T  respectively. 

For many electrodynamics problems it’s useful to separate Maxwell equations (1), i.e. to write 

separately equations for an electric field and a magnetic field. By means of vector differential operation 

properties we can obtain telegraphy equations system for components of EF ),(1 xE j (j=1,2,3) in 

environment Ω1 and ),(2 xE j  in environment Ω2: 
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supplemented with boundary 

,0),(1 xE j Tx ),( ,      (3) 

and initial conditions 

0
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and also with ideal electromagnetic contact conditions (continuity of tangential components of electric and 

magnetic fields and  a jump of normal components) on a border of the environment and the body: 
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where  Laplace operator, 2112  , l  – a border of the region l . 

If we carry out observations in the quite long term after an electric field excitation, physical 

quantities can be assumed to harmonically vary in time with a circular frequency , and it means we deal 

with a steady oscillations problem. Assuming that 
 il

j
l
j exExE ),(

~
),( , 
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,),(~),(  i
jj exx  our analysis will simplify, because time variable will be excluded with 

problem (2)-(5): 
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Here ),,(
~

),(
~

),(
~ 21  xEixExE l

j
l
j

l
j  ),(~),(~),(~ 21  xixx jjj  – complex amplitudes of 

components of an electric field strength vector and strange current sources. 

Technique of building the solution. Integral representation of the solution 

For building the solution of the problem (6)-(8) the indirect boundary element method was used. 

According to this method the border between the environment Ω1 and the body Ω2 is decomposed into V 

arias (boundary elements)
12
v , such that 

12
112 v

V
v   ,  1212

wv  when wv  . In each boundary 

element 
12
v  we set fictitious current sources ),(),(),( 21  xixx l

jv
l
jv

l
jv , (j = 1,2,3). So we will 

obtain new equations system: 
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where v  – a characteristic function of boundary element v . 

Using a special fundamental solution of the Helmholtz equation ),,(1  xh , which automatically 

satisfies a boundary condition (7) and a fundamental solution ),,(2  x  for an inclusion, we can write 

an integral representation of solution for problems (9),(7),(8) according to components ),(
~1 xE j and 

),(
~2 xE j : 
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and also obtained on its base an integral representation of derivatives of its components with respect to 

coordinates lx : 
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In order to simplify the algorithm let’s approximate unknown functions ),(1  xl
jv , ),(2  xl

jv  by 

constants 1l
jvd , 2l

jvd . This constants can be found from a system of linear equations built on the base of 

equations (10), (11) requiring a satisfaction of ideal electromagnetic contact conditions in a collocation 

sense. 

After the system of  linear equations is resolved with respect to 1l
jvd , 2l

jvd , we can calculate values of 

an electric field vector by means of formulae (10)  at every points 
px  of space: 
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Real and imagine parts ),(
~ 1 pl

j xH , ),(
~ 2 pl

j xH  of components of a magnetic field vector can be 

calculated by formulae: 
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Here for different k  we use different pairs of indexes s and j, for k=1 – s=3, j=2, for k=2 – s=1, j=3, 

for k=3 – s=2, j=1. 
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Quasi-stationary model 

In the case of a quasi-stationary model, equations of system (6) obtain new form: 
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And expressions for fundamental solutions will simplify respectively: 
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here it was taken into account that 2/l , lllA  . 

Numerical implementation 

Task 1. For numerical experiments we considered an inclusion having an parallelepiped form with 

parameters px=100, py=100, pz=30 and lying at a depth of h0. An external source generating EMF was a 

square frame with side h=100, and lying at a depth of h3=-0.001. Dependency on electric current was 

described by a function )(),(~ xCx jj  , where )(xC j – projections of an unit vector being collinear to a 

tangent to a contour C at point Cx . In this particular case integrals from equations (10), (11) had a form: 
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Each side of the parallelepiped was divided into 27 boundary elements (fig. 1). 

 

Fig. 1. Geoelectrical model of half-space with an inclusion 

The fig. 2 describes dependency vertical components of ),,0,0( 3

1

3 hH obtaining at a center of the 

frame on a angular frequency for full and quasi-stationary models in the case of oil (σ2=0,25σ1, 

μ2=0.99994μ1, ε2=2ε1, series 3, 6), gas (σ2=0.1σ1, μ2=1.00008μ1, ε2=ε1, series 4, 7) and conductive (σ2=5σ1, 

μ2=μ1, ε2=30ε1, series 1, 5) inclusions, lying at a depth of h0=40. Also a distribution for homogeneous half-

space for full model is described σ1=1Sm/m, μ1=4π10
-7

G/m, ε1=15ε0,  ε0=1/36 π 10
-9

 F/m (series 2). As we 

can see for high-resistively inclusions values  );,0,0( 3

1

3 hH  in whole frequency range are lesser than for 

homogeneous half-space, and for conductive inclusions – greater. 



 6 

 
Fig. 2. Influence EM parameters of the inclusion on a vertical component of MF vector 

As it’s known during an interpretation of results theoretical curves have an important meaning that 

characterize an amplitude 
1

f
 and a phase 

f

  of apparent resistance, where 
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022011 ,,, ffff  – real and complex components of a MF 

vector, index “0” indicate values in homogenous space with  a resistance 11 /1  . 

Fig. 3, 4 describe a dependence of theoretical curves 1
f

, 
f

  on 01 h built on the base a 

vertical component of MF at the center of the frame. for a full model. 

 
Fig. 3. Dependency amplitude curves on wave lengths 

 

 
Fig. 4. Dependency phase curves on wave lengths 

 

We also considered a dependency values 1
f

 and 
f

 , built on the base of vertical component 

of MF, on the depth of lying the conductive inclusion (σ2=5σ1, μ2=μ1, ε2=30ε1,) – h0=40 (series 1), h0=80 

(series 2) і h0=100 (series 3) for frequency rang from 1 kHertz to 100 kHertz. (fig. 5, 6). 
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Fig 5. Dependence phase curves on the depth of 

lying and wave lengths  

 
Fig. 6. Dependence amplitude curves on the depth 

of lying and wave lengths 

 

The case of homogeneous object with any curvilinear boundary 

The problem of finding components of EMF for steady oscillations is described by following 

equations:  

                      ,),,(~),(
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and boundary conditions: 

 xxExE jzj ),,(
~
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.     (14) 

A system of linear equations for finding unknown fictitious sources is built on the base of boundary 

conditions (14). 

Task 2. An introduced approach was also applied to modeling steady oscillations within a three 

dimensional homogenous object with electromagnetic characteristics conductive (series 1) and oil (series 2) 

deposits which has an elliptic form with axis a=3, b=2, c=1. A border of object was divided into 27 

boundary elements. We also analyzed an influence of a foreign source on components EMF within the 

object. We considered second-type boundary conditions ( 0),(
~

),(
~

21  xExE , 

2/)1/(000005.0),(
~

33  cxxE ). 

The fig. 7 shows a dependency of a tangent component of MF on an angular frequency   (in a 

frequency range from 1 to 20 kHertz) at the center of the body. The fig 8.  describes a dependency of a 

normal component EF distributed on 3Ox  axis at the segment [-1, 1]. 

 

Fig 7. A dependency of a tangent component of MF on an angular frequency   
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Рис. 8. A dependency of a normal component EF on coordinates. 

Conclusions 

From the standpoint of an iterative process, a direct problem of inductive sounding is very important 

and key and this problem should be optimized. It is important to note that an interpretation of data, 

concerning to horizontal-homogeneous environments, by means of apparent parameters one-dimensional 

models is settled yet. Nowadays it is sensible to use three-dimensional models. As it’s known, an inverse 

problem is solved on the base of analysis of sensibility of a direct problem to changes of geoparameters. So 

algorithm of a direct problem in this case is very useful. 

It’s also reasonable to consider a stratified model with an inclusion of various forms because it’s 

important for inductive impulsive electrical prospecting. But otherwise for processing bulky data at the 

process of solving an direct geoelectric problem, we need to find interpretating formulas on the base 

amplitude and phase curves of an apparent resistance. 

The results of introduced mathematical modeling shows a reasonable of usage of inductive impulse 

electro prospecting methods of frequency sounding for detection of high-conductive and high-resistive 

inclusions.   
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