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A two-dimensional mathematical model of carbon monoxide (CO) oxidation is investigated
for the Langmuir-Hinshelwood mechanism on the surface of a Platinum (Pt) catalyst. The
adsorbate-driven structural phase transition of catalytic surface is taken into account. The
stability analysis of the model solutions is carried out. It is shown that the spatio-temporal
periodic chemical oscillations of CO and oxygen (O) surface coverages and a fraction of the
surface in the non-reconstructed (1× 1)-structure occur. Conditions for Hopf and Turing
bifurcation to arise are investigated.
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1. Introduction

Spatio-temporal patterns arising from the complex interplay of the components of non-equilibrium
nonlinear systems are typical for many natural phenomena [1]. To gain a deeper understanding of
these systems researchers sought simpler laboratory systems that would allow one to study in detail
the mechanisms of spatio-temporal structures formation [2, 3]. One of these model systems is the
reaction of catalytic carbon monoxide (CO) oxidation on Pt(110) crystal surface [4]. This heterogeneous
reaction demonstrates various concepts in nonlinear dynamics ranging from the basic pattern formation
mechanisms [5] to chaos control with the global [6] and local [7] feedback.

The kinetics of carbon monoxide oxidation processes on a platinum (Pt) surface was studied in
a large number of works [8]. However, the experimental studies on the level of nanocatalytic pro-
cesses remain actual as well as theoretical ones, since the theoretical description of these nanocatalytic
processes is not yet sufficiently developed.

Obviously, it is impossible to build a model for a quantitative description of carbon monoxide
catalytic oxidation without understanding the mechanisms of this process. One of the mechanisms of
catalytic CO oxidation on the platinum catalyst surface is the Langmuir-Hinshelwood (LH) mechanism,
studied by Baxter and others [9].

In the (LH) mechanism the two reacting species CO and oxygen (O) have to adsorb on the cat-
alytic surface (onto places called active adsorption sites) before the reaction takes place. Then adsorbed
COads and Oads (subscript ‘ads’ denotes an adsorbed state) react under thermodynamically favourable
conditions. The product of reaction, carbon dioxide (CO2), desorbs from the catalytic surface imme-
diately.

Chemical reactions that may proceed during CO oxidation on the catalytic surface via (LH) mech-
anism are described with the following chemical equations:

O2 + 2∗ → 2Oads,
CO + ∗ ↔ COads, (1)

COads + Oads → CO2 + 2∗,

where ‘∗’ denotes an empty adsorption site on the catalytic surface.
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When modelling the reaction of CO oxidation within chemical kinetics equations we assume that
reaction takes place only on the catalyst surface. That is, the interactions can occur only between
particles adsorbed on the catalyst surface. In order for oxygen to absorb a molecule breaks up into
two atoms near the catalyst surface, and then each atom absorbs onto distinct empty site indepen-
dently [10]. The CO molecules adsorb onto surface and stay on it without breaking up into atoms. The
transformation of particles is possible only in the adsorbed layer. During adsorption the O2 molecules
rapidly dissociate into atoms. Oxygen desorption is very unlikely to occur in the range of temperatures
at which experiments are conducted and, therefore, desorption is neglected. Since diffusion coefficient
of adsorbed oxygen is 3–4 orders of magnitude smaller than CO diffusion coefficient [11], adsorbed
oxygen is considered to be immobile.

The processes of surface reconstruction of the catalyst atoms play a crucial role in heterogeneous
catalysis. The clean Pt(110) surface is reconstructed and has a (1× 2)-structure [12]. During reaction
oxygen and CO adsorb on the Pt surface. If CO coverage exceeds specific critical value the surface
reconstructs into (1 × 1) bulk structure [13]. When oxygen and CO react, carbon dioxide is formed,
and surface returns to its initial configuration. Such structural changes influence the rates of other
elementary processes, therefore, should be taken into account when developing a mathematical model
of reaction.

This work is devoted to investigation of formation and stability of the surface spatio-temporal
structures arising in reaction-diffusion model of CO oxidation on a Pt(110) surface when two dimensions
are taken into account. The analysis of spatio-temporal instabilities is conducted by using methods of
linear stability theory and numerical simulation.

2. Description of mathematical model

We consider a model for catalytic CO oxidation that accounts for diffusion of molecules of CO on
Pt(110) surface. Assume that catalytic surface is flat with a given Cartesian coordinate system XOY.
The time evolution of CO and O coverages on the catalyst surface is determined by the following
kinetic equations [14, 15]:

∂u

∂t
=

adsorption
︷ ︸︸ ︷

puκusu (1− (u/usat)
q)−

desorption
︷ ︸︸ ︷

kdesu −

reaction
︷︸︸︷

kruv +

diffusion
︷ ︸︸ ︷

Dx

∂2u

∂x2
+Dy

∂2u

∂y2
(2)

∂v

∂t
=

adsorption
︷ ︸︸ ︷

pvκvsv (1− u/usat − v/vsat)
2−

reaction
︷︸︸︷

kruv , (3)

Here u and v denote CO and O surface coverages, respectively; pu, pv are the partial pressures
of species; κu, κv are the impingement rates; su, sv are the sticking coefficients; usat, vsat refer to
the maximal coverages namely the saturation coverages; kr, kdes are the rates of reaction and CO
desorption; Dx, Dy are CO diffusion coefficients in x and y directions, respectively. The factor q = 3
models the precursor-type kinetics [16] of CO adsorption since the inhibition of CO and O2 adsorption
is asymmetric and adsorbed CO blocks oxygen adsorption stronger.

The structural phase transition on Pt(110) surface is modelled by the following law [17,18]:

∂W

∂t
=

reconstruction
︷ ︸︸ ︷

kph (f(u)−W ), (4)

where variable W denotes the fraction of surface in the nonreconstructed structure (surface of type
(1× 1)), coefficient kph is a rate of structural phase transition and

f(u) =
1

1 + exp

(

u0 −
u

usat

δu

) (5)
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is a nondecreasing smooth function of the interval [0, 1]. Parameter u0 determines the threshold
value above which adsorbed CO molecules significantly influence the structure of the surface, and δu
determines the steepness of this threshold.

The sticking coefficient sv is modified in equation (3) and can be rewritten as a linear combination
of values for the (1× 1) and (1× 2) structures:

sv = s1×1
v W + s1×2

v (1−W ) , (6)

where s1×1
v , s1×2

v are the oxygen sticking coefficients in (1× 1) and (1× 2) phases, respectively.
The rates of reaction, desorption and phase transition are temperature dependent and are deter-

mined by the Arrhenius equations [19]:

kr [T ] = k0r exp (−Er/RT ) , (7)

kdes [T ] = k0des exp (−Edes/RT ) , (8)

kph [T ] = k0ph exp (−Eph/RT ) . (9)

Here k0r , k
0
des, k

0
ph are temperature-independent coefficients; Er, Edes, Eph are the activation energies;

R is the universal gas constant.
Equations (2)–(4) compose a mathematical model of carbon monoxide catalytic oxidation process.

3. Stability analysis of a system

Equations (2)–(4) are transformed into dimensionless form by substituting:

u = usatU, v = vsatV, (10)

x = l0x̃, y = l0ỹ, t = tct̃, (11)

where
tc = vsat/puκusu. (12)

Parameter l0 is chosen according to experimental data for the size of Pt-crystal l0 ∼ 10−3 sm [20].
In dimensionless form equations (2)–(4) compose a mathematical model of catalytic CO oxidation

on the Pt surface:







∂U

∂t̃
=

vsat
usat

(1− U q)− k̃desU − k̃rvsatUV + D̃x

(
∂2U

∂x̃2
+D0

∂2U

∂ỹ2

)

≡

≡ F (U, V ) + D̃x

(
∂2U

∂x̃2
+D0

∂2U

∂ỹ2

)

,

∂V

∂t̃
= p̃v

[
s1×1
v W + s1×2

v (1−W )
]
(1− U − V )2 − k̃rusatUV ≡ G(U, V,W ),

∂W

∂t̃
= k̃ph







[

1 + exp

(

u0 − U

δu

)]−1

−W






≡ H(U,W ).

(13)

In system (13):
k̃des = kdestc, k̃r = krtc, k̃ph = kphtc,

p̃v =
pvκvtc
vsat

, D̃x =
Dxtc
l20

, D0 =
Dy

Dx

.

Explanation and parameter values used in numerical calculations are given in Tabl. 1 [14, 18]. The
partial pressures pu and pv and the temperature T play a role of control parameters of a model.
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Table 1. Parameters of mathematical model.

CO Partial pressure pu
Impingement rate κu 4.2×105 1/s Torr
Sticking coefficient su 1
Saturation coverage usat 1
Diffusion coefficient Dx 1.2×10−7 sm2/s

O2 Partial pressure pv
Impingement rate κv 7.8×105 1/s Torr
Sticking coefficient s1×1

v ; s1×2
v 0,6; 0,4

Saturation coverage vsat 0.8
Rates Reaction k0r 3×106 1/s

Er 10 kcal/mol
Desorption of CO k0des 2×1016 1/s

Edes 38 kcal/mol
Phase transition k0ph 2×10−2 1/s

Eph 7 kcal/mol
Other Temperature T

Gas constant R 0.001987 kcal/mol K
Model parameter of diffusion D0 0.1 − 1

Parameters of structural phase transition u0; δu 0.35; 0.05

System (13) is a system of three nonlinear partial differential equations. It can have spatio-
homogeneous steady-state solutions (U s, V s,W s) satisfying the system of algebraic equations:

F (U s, V s) = 0, G(U s, V s,W s) = 0, H(U s,W s) = 0. (14)

The number of real solutions of system (14) classifies it as mono or multistable.
We analyze the stability of homogeneous steady-state solutions of system (13). To do this we first

consider the corresponding system of kinetic equations when diffusion is absent. That is, the system
of the form: 





∂U

∂t̃
= F (U, V ),

∂V

∂t̃
= G(U, V,W ),

∂W

∂t̃
= H(U,W ).

(15)

We introduce small deviations from the steady states (U s, V s,W s):

U = U s + δU(t̃), V = V s + δV (t̃), W = W s + δW (t̃),

where δU(t̃), δV (t̃), δW (t̃) are time-dependent small perturbations. The linearised system (15) near
(U s, V s,W s) looks as follows:

d

dt̃

(
δU δV δW

)
T

= M ·
(
δU δV δW

)
T

, (16)

where

M =





F ′
U F ′

V 0
G′

U G′
V G′

W

H ′
U 0 H ′

W





(Us,V s,W s)

(17)

is the Jacobian matrix [21] for the system of functions (15), where all partial derivatives are calculated
at a stationary point (U s, V s,W s).
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We look for solutions (δU, δV, δW ) of the system (16) which are proportional to eλt̃, where λ are
the eigenvalues of a matrix (17). The calculation of eigenvalues λ reduces to solving the following cubic
equation:

λ3 − λ2 trM + λ(F ′
UG

′
V + F ′

UH
′
W +G′

V H
′
W − F ′

V G
′
U )− detM = 0, (18)

where trM and detM are the trace and the determinant of matrix M , respectively.
Solutions (U s, V s,W s) are stable when Re(λi) < 0, i = 1, 2, 3. According to the Routh-Hurwitz

criterion [21] the necessary and sufficient conditions for this are:







trM < 0,

detM < 0,

F ′
V G

′
U < F ′

UG
′
V + F ′

UH
′
W +G′

V H
′
W ,

detM > trM(F ′
UG

′
V + F ′

UH
′
W +G′

V H
′
W − F ′

V G
′
U ).

(19)

If any of these conditions is violated the homogeneous steady-state solutions are unstable.
Conditions (19) determine the stability region of a system in the (pv, pu)-parameter plane (see

Fig. 1–2).
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Fig. 1. Stability diagram of the system (13) in the
pressure plane (pv, pu) for the temperature T = 540 K.

Fig. 2. Stability diagram of the system in the pressure
plane (pv, pu) without taking temperature dependence

into account.

Fig. 1–2 show that there are four regions in the pressure plane (pv, pu). In regions labeled I, II and
IV the system is stable. In regions I and IV the deviations from equilibrium decrease exponentially.
In region II the damped oscillations are observed. Region I is a region of high catalytic activity.
There are adsorbed CO and O on the catalyst surface so the oxidation reaction occurs with high
probability.Conversely, region IV is characterized by low catalytic activity since the catalyst surface
is mostly covered by adsorbed CO. Under such conditions there is a low probability that oxidation
reaction occurs. When leaving these regions one or more perturbations become unstable and the system
leaves its initial steady-state. On the stability diagram this region is labeled III.

Fig. 2 shows that taking into account that rates of reaction, desorption and phase transition are
dependent on temperature T changes the stability region of the system, namely, narrows considerably
the region II where the damped oscillations are observed.

Oscillations of CO and O surface coverages and the fraction of surface in the nonreconstructed
(1× 1)-structure as well as the corresponding phase diagram of the system are depicted in Fig. 3–5.
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Fig. 3. Oscillations of CO and O surface coverages and the fraction of surface in the nonreconstructed (1× 1)-
structure without taking temperature-dependence into account for partial pressures pu = 3.6×10−5 Torr, pv =

10.0×10−5 Torr and a certain value of y-coordinate: ỹ = 0.5.

We consider the possibility for the Hopf bifurcation [22] to appear in model (13). It is a local
dynamic instability which causes the stationary point to loose stability, and a limit cycle (the auto-
oscillations) arises in the system. In this case all eigenvalues of the Jacobian matrix of the linearized
system have negative real parts except for a pair of imaginary conjugate nonzero eigenvalues.

In our case the necessary and sufficient conditions for the Hopf bifurcation to occur are as follows:







trM < 0,

detM < 0,

detM = trM(F ′
UG

′
V + F ′

UH
′
W +G′

V H
′
W − F ′

V G
′
U ).

(20)

The auto-oscillations of CO and O surface coverages and the fraction of surface in the nonrecon-
structed (1×1)-structure as well as the corresponding phase diagram of the system are shown in Fig. 6.
It can be seen that the phase trajectory spirals into the closed curve – the limit cycle. The average
coverage of adsorbates and the fraction of (1× 1)-surface undergo periodic oscillations resulting from
the Hopf bifurcation [23]. Such type of instability generates time-periodic patterns, i.e. waves. On the
stability diagram of a system (see Fig. 1–2) the region where periodic chemical oscillations are observed
is indicated by the dashed lines.

Now we consider the question about stability of model (13) when the diffusion processes are taken
into account. The stability of homogeneous steady-state solutions of (14) can be analyzed by using a
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Fig. 4. Oscillations of CO and O surface coverages and the fraction of surface in the nonreconstructed (1× 1)-
structure without taking temperature-dependence into account for partial pressures pu = 4.2×10−5 Torr, pv =

13.5×10−5 Torr and a certain value of y-coordinate: ỹ = 0.5.

linearized system. We introduce small deviations from the steady states (U s, V s,W s):

U = U s + δU(x̃, ỹ, t̃), V = V s + δV (x̃, ỹ, t̃), W = W s + δW (x̃, ỹ, t̃),

where δU(x̃, ỹ, t̃), δV (x̃, ỹ, t̃), δW (x̃, ỹ, t̃) are small perturbations dependent on coordinates and time.
The linearised system (13) near (U s, V s,W s) looks as follows:

∂

∂t̃

(
δU δV δW

)
T

= M ·
(
δU δV δW

)
T

+ D̃x

(
∂2

∂x̃2
+D0

∂2

∂ỹ2

)
(
δU 0 0

)
T

, (21)

where M is the Jacobian matrix determined by (17). We look for solutions (δU, δV, δW ) which are
proportional to eλt̃+i(k1x̃+k2ỹ), where λ are the eigenvalues for the temporal growth and k = (k1; k2)
are wavenumbers (the spatial eigenvalues).

Then the problem of stability analysis reduces to solving the following equation:

det





F ′
U − λ− D̃x(k

2
1 +D0k

2
2) F ′

V 0
G′

U G′
V − λ G′

W

H ′
U 0 H ′

W − λ





(Us,V s,W s)

= 0, (22)

where all partial derivatives are calculated at a stationary point (U s, V s,W s). To find the eigenvalues
λ, k1, k2 we obtain from (22):
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Fig. 5. Damped oscillations of CO and O surface coverages and the fraction of surface in the nonreconstructed
(1× 1)-structure for a temperature T = 540 K, partial pressures pu = 3.1×10−5 Torr, pv = 9.75×10−5 Torr and

a certain value of y-coordinate: ỹ = 0.5.

λ3 + λ2
(

D̃x(k
2
1 +D0k

2
2)− trM

)

+ λ
(

F ′
UG

′
V + F ′

UH
′
W +G′

V H
′
W − F ′

V G
′
U − D̃x(k

2
1 +D0k

2
2)(G

′
V +H ′

W )
)

+ D̃x(k
2
1 +D0k

2
2)G

′
V H

′
W − detM = 0. (23)

We investigate the necessary and sufficient conditions for the Turing bifurcation [24], an instability
caused by diffusion processes, to arise. Note that we need a stable steady state in case when there
are no spatial effects, i.e. Reλ(k) < 0 when k1, k2 = 0, which corresponds to conditions (19) found
above. Second, we require Reλ(k) > 0 when k1, k2 6= 0, i.e. such that the steady state is unstable if
the spatial disturbances (e.g. the diffusion) are present.

Let us find necessary and sufficient conditions for the cubic equation (23) to have at least one
positive root. We estimate an upper bound on the number of positive real roots of equation (23) when
k1, k2 6= 0 by using Descartes’ rule of signs [21] and obtain:

a0 = 1 > 0,

a1 = D̃x(k
2
1 +D0k

2
2)− trM ,

a2 = F ′
UG

′
V + F ′

UH
′
W +G′

V H
′
W − F ′

V G
′
U − D̃x(k

2
1 +D0k

2
2)(G

′
V +H ′

W ),

a3 = D̃x(k
2
1 +D0k

2
2)G

′
V H

′
W − detM .

(24)
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Fig. 6. Auto-oscillations of CO and O surface coverages and the fraction of surface in the nonreconstructed
(1× 1)-structure for a temperature T = 540 K, partial pressures pu = 3.2×10−5 Torr, pv = 9.75×10−5 Torr and

a certain value of y-coordinate: ỹ = 0.5.

Taking into account conditions (19) on the trace and the determinant of matrix M (for the case
without diffusion), and that the partial derivatives for the given model parameters are:

G′
V = −2p̃v

[
s1×1
v W + s1×2

v (1−W )
]
(1− U − V )− k̃rusatU < 0, H ′

W = −k̃ph < 0, (25)

we find that there are no sign changes in the sequence of coefficients (ai, i = 0, 3) when k1, k2 6= 0.
Therefore the equation (23) has no positive roots.

However, it is possible that the roots of a polynomial are a pair of conjugate complex numbers
with a positive real part. Then the steady state is unstable. Let us verify the necessary and sufficient
conditions that all roots of a polynomial have negative real parts by using the Routh-Hurwitz criterion.
At least one root of a polynomial (23) has a positive real part if and only if at least one of its Hurwitz
determinants [21] is non-positive. In our case:

∆0 = a0 = 1,

∆1 = a1 = D̃x(k
2
1 +D0k

2
2)− trM ,

∆2 = −D̃2
x(k

2
1 +D0k

2
2)

2(G′
V +H ′

W )

+ D̃x(k
2
1 +D0k

2
2)
[
2F ′

UG
′
V + 2F ′

UH
′
W + 2G′

V H
′
W − F ′

V G
′
U + (G′

V )
2 + (H ′

W )2
]

− trM
(
F ′
UG

′
V + F ′

UH
′
W +G′

V H
′
W − F ′

V G
′
U

)
+ detM ,

∆3 = a3∆2.

Mathematical Modeling and Computing, Vol. 4, No. 1, pp. 96–106 (2017)



Carbon monoxide oxidation on the Pt-catalyst: modelling and stability 105

Since all coefficients (24) are positive the only determinant with possible non-positive value is ∆2.
But taking the conditions (19) into account it is seen that for the given model parameters ∆2 > 0
(k1, k2 6= 0).

Thus, the homogeneous steady-state solutions of (14) are stable for arbitrary k1, k2 6= 0. This means
that the conditions for Turing bifurcation to occur are not satisfied for the given model parameters.
That is, the system (13) is stable when diffusion effects are present if it was linearly stable in the case
without diffusion (for k1, k2 = 0).

4. Conclusions

In this paper a two-dimensional mathematical model of carbon monoxide oxidation for the Langmuir-
Hinshelwood mechanism is developed. The stability analysis of the model is conducted. By using
linear stability analysis it is shown that for the given model parameters the system can lose stability
only as the result of local bifurcation (the Hopf bifurcation). The conditions for instabilities caused by
diffusion effects (the Turing bifurcation) to arise are not satisfied.

The spatio-temporal periodic chemical oscillations of CO and O surface coverages and the fraction
of surface in the nonreconstructed (1× 1)-structure are obtained by means of numerical simulation.

[1] Sadeghi P., Dunphy K., PuncktC., Rotermund H. H. Inversion of pattern anisotropy during CO oxidation
on Pt(110) correlated with appearance of subsurface oxygen. J. Phys. Chem. C. 116 (7), 4686–4691
(2012).

[2] Zaikin A. N., Zhabotinsky A. M. Concentration wave propagation in two-dimensional liquid-phase self-
oscillating system. Nature. 225, 535–537 (1970).

[3] Rotermund H. H., Engel W., Kordesch M., Ertl G. Imaging of spatio-temporal pattern evolution during
carbon monoxide oxidation on platinum. Nature. 343, 355–357 (1990).

[4] Jakubith S., Rotermund H. H., Engel W., von Oertzen A., Ertl G. Spatiotemporal concentration patterns in
a surface reaction: Propagating and standing waves, rotating spirals, and turbulence. Phys. Rev. Lett.
65, 3013–3016 (1990).

[5] Nettesheim S., von Oertzen A., Rotermund H. H., Ertl G. Reaction diffusion patterns in the catalytic CO
oxidation on Pt(110): Front propagation and spiral waves. J. Chem. Phys. 98, 9977–9985 (1993).

[6] Kim M., Bertram M., Pollmann M., von Oertzen A., Mikhailov A. S., Rotermund H. H., Ertl G. Controlling
chemical turbulence by global delayed feedback: Pattern formation in catalytic CO oxidation on Pt(110).
Science. 292, 1357–1360 (2001).

[7] Wolff J., Papathanasiou A. G., Kevrekidis I. G., Rotermund H. H., Ertl G. Spatiotemporal addressing of sur-
face activity. Science. 294, 134–137 (2001).

[8] Slin’ko M. M., Jaeger N. I. Oscillating Heterogeneous Catalytic Systems (Studies in Surface Science and
Catalysis). Eds. Amsterdam: Elsevier; Vol. 86 (1994).

[9] Baxter R. J., Hu P. Insight into why the Langmuir-Hinshelwood mechanism is generally preferred. J. Chem.
Phys. 116 (11), 4379–4381 (2002).

[10] WilfM., Dawson P. T. The adsorption and desorption of oxygen on the Pt(110) surface; a thermal desorp-
tion and LEED/AES study. Surf. Sci. 65, 399–418 (1977).

[11] Gomer R. Diffusion of adsorbates on metal surfaces. Rep. Prog. Phys. 53 (7), 917–1002 (1990).

[12] Kellogg G. L. Direct observations of the (1 × 2) surface reconstruction on the Pt(110) plane. Phys. Rev.
Lett. 55, 2168–2171 (1985).

[13] Gritsch T., Coulman D., Behm R. J., Ertl G. Mechanism of the CO-induced (1 × 2) − (1 × 1) structural
transformation of Pt(110). Phys. Rev. Lett. 63, 1086–1089 (1989).

[14] Krischer K., Eiswirth M., Ertl G. Oscillatory CO oxidation on Pt(110): Modeling of temporal self-
organization. J. Chem. Phys. 96, 9161–9172 (1992).

[15] Bär M., Eiswirth M., Rotermund H. H., Ertl G. Solitary-wave phenomena in an excitable surface-reaction.
Phys. Rev. Lett. 69 (6), 945–948 (1992).

Mathematical Modeling and Computing, Vol. 4, No. 1, pp. 96–106 (2017)



106 Ryzha I., MatseliukhM.

[16] Gasser R. P. H., Smith E. B. A surface mobility parameter for chemisorption. Chem. Phys. Lett. 1 (10),
457–458 (1967).

[17] Bertram M., Mikhailov A. S. Pattern formation on the edge of chaos: Mathematical modeling of CO oxi-
dation on a Pt(110) surface under global delayed feedback. Phys. Rev. E. 67, 036207:1–11 (2003).

[18] Bzovska I. S., Mryglod I. M. Chemical oscillations in catalytic CO oxidation reaction. Condens. Matter
Phys. 13 (3), 34801:1–5 (2010).

[19] Connors K. A. Chemical Kinetics: The Study of Reaction Rates in Solution. New York, VCH Publishers
(1990).

[20] Suchorski Y. Private comunication.

[21] Korn G. A., Korn T. M. Mathematical handbook for scientists and engineers. Courier Corporation (2000).

[22] Kuznetsov Y. Elements of applied bifurcation theory. New York, Springer (1995).

[23] Bzovska I. S., Mryglod I. M. Surface patterns in catalytic carbon monoxide oxidation reaction. Ukr. Phys.
J. 61 (2), 134–142 (2016).

[24] Hoyle R. Pattern Formation. New York, Cambridge University Press (2006).

Оксидацiя чадного газу на поверхнi Pt-каталiзатора:
моделювання i стiйкiсть

Рижа I., Мацелюх М.

Нацiональний унiверситет “Львiвська полiтехнiка”

вул. С. Бандери, 12, 79013, Львiв, Україна

Дослiджено двовимiрну математичну модель оксидацiї чадного газу (СО) для механi-
зму Лангмюра–Гiншелвуда на поверхнi платинового каталiзатора (Pt) з урахуванням
перебудови поверхнi каталiзатора пiд впливом процесiв адсорбцiї-десорбцiї. Проана-
лiзовано стiйкiсть розв’язкiв моделi. Виявлено просторово-часовi перiодичнi хiмiчнi
коливання покриттiв СО, кисню (О) та частки поверхнi неперебудованої структури
(1× 1). Дослiджено умови виникнення бiфуркацiй Хопфа та Тюрiнга.

Ключовi слова: каталiтична реакцiя окислення, реакцiйно-дифузiйна модель, бi-

фуркацiя Хопфа, бiфуркацiя Тюрiнга.
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