
 39

UDK 004.75

B. Bulakh
National Technical University of Ukraine “KPI”

ANALYSIS AND IMPLEMENTATION OF COMPUTING WORKFLOWS
FOR SERVICE-ORIENTED CAE/CAD SOFTWARE

© Bulakh В., 2012

This paper is devoted to the architectural aspects of integration of workflow management
into service-oriented CAE/CAD software capable to run computations on grid resources. The
analysis of possible solutions is based on the workflow execution time estimation. The multi-
level workflow concept is also described.

Key words: workflow, SOA, grid computing, simulation.

Розглянуто архітектурні аспекти інтеграції управління робочими процесами в
орієнтованій на сервіс CAE/CAD, здатній виконувати обчислення на мережевих
ресурсах. Аналіз можливих рішень відбувається на основі оцінки часу виконання
робочих процесів. Описано також багаторівневу концепцію робочого процесу.

Ключові слова: робочий процес, орієнтована на сервіс архітектура, мережеві
обчислення, моделювання.

Introduction
Development of novel architectural solutions for CAE/CAD systems which can utilize distributed

and grid computing and support workflow computations is an urgent problem as well as an analysis of the
efficiency of such solutions. Grid computing technology can help to overcome resource limitations for
compute-intensive tasks while workflow computation model enable automated execution of custom user
computing scenarios instead of fixed computing sequence hard-coded by developers. In order to select
optimal architectural decisions for CAD tools supporting workflows a set of metrics for workflow
solutions is needed to be provided.

Requirements for application architecture
Competitive CAE/CAD applications should maximally leverage from current IT achievements. The

application architecture of any software system is defined by a set of factors, among them are: capabilities
of the target hardware/software platform, applied software development technologies, specific work style
of end users etc. Wide spreading of multi-core CPUs and high-speed networks, as well as construction of
dedicated computing clusters make computing hardware more powerful and decrease networking delays
but even powerful single resource may not be sufficient to solve compute-intensive problems. Also the
diversity of incompatible OS makes it harder to deploy the software on different platforms. Distributed
application architectures and remote computing can help to solve the resource deficit problem as well as
provide shared access to unique resources. Cross-platform and standardized solutions play an important
role in development of complex systems composed from independent components. Web technologies
greatly contribute in spreading of collective work and knowledge exchange support solutions, virtual
workplace concept etc. which are common features of many applications now.

The analysis of these trends allows to generalize the requirements for modern CAE/CAD software,
among them are: 1) ability to overcome resource limitations during operation with object models of high
complexity by migrating the calculations to free remote resources, 2) simplified integration with third-
party software inside of software complexes for interdisciplinary research with the help of standardized
cross-platform protocols and interfaces, 3) network access to the virtual workplace supporting collective
work of engineers.

To satisfy the last requirement a client-server model could be applied. In particular case the interface
part can be developed in form of web application accessible from any modern web browser. At the same
time to satisfy the other requirements the specific architecture model should be chosen for computing

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

 40

subsystems. It is proposed in [1] to apply the service-oriented architecture (SOA) to satisfy these
requirements and the possible ways of integration of grid computing into this architecture were also
covered. SOA [2] as the possible solution has the additional advantage: it supports initially the dynamic
system configuring based on orchestration of the available services. This makes possible to apply service
orchestration for execution of complex computational workflows that can be edited directly by users.

Workflows for computer-aided design
As the fragments of the design process can be considered as workflows the architecture of

CAE/CAD tools should contain workflow management system (WfMS [3]) capable to invoke web services
in case of service-oriented software design (e.g. WS-BPEL engine).

The workflow)D,T,(A=w www here is considered as the union of:

1) the set AAw ⊆ of computing operations ia , N=i 1.. , from the certain superset of available

operations A (Aa,Aa iwi ∈∈∀);

2) the set of transitions TTw ⊆ from some superset of allowed transitions T , forming the order of

execution of workflow operations ()a,(a=T dsw where ws Aa ∈ is the predecessor operation, wd Aa ∈ is

the successor operation which means that the operation da can only be executed after sa);

3) the set of data channels DDw ⊆ from some superset of valid (compatible with respect to input

and ouput formats) data transfer channels D defining the sequence of data transfers in the workflow
()a,(a=D dsw where ws Aa ∈ is the data producer operation, wd Aa ∈ is the data consumer operation

which means that the output data of sa operation id fed directly to da).

The workflow belongs to the set of valid wokflow configurations Ww ∈ defining the specific
workflow model of the WfMS. Sometimes it is more convenient to consider a workflow only from
execution order aspect)T,(A=w wwT (called control flow) or only from the data transfer aspect

)D,(A=w wwD (called data flow).

The main idea of service-oriented workflows is that web service operations are representing }{ ia ,

and WfMS is responsible for their invocations in the correct order specified by wT as well as for their

supply with data according to wD . This approach is already applied for distributed computing for different
applications but its application for CAD tasks still remains not studied well.

Workflow solutions evaluation
The analysis of concrete solutions related to the WfMS integration to the CAD system architecture

should be based on some defined criteria. It is possible to mention many metrics that can be applied for
comparative analysis of distributed software (internal cohesion, external coupling) as well as workflows
and WfMS (cyclomatic complexity, decomposition level, granularity, operation composability etc.). But it
should be noted that optimal criteria of such solutions substantially differs at the system developer's point
of view (interested in simplicity of software development and deployment through modularity,
distributivity and reuse) and at the end user's point of view (interested in simpler interaction with software,
extension of its functional capabilities, and high performance). In this paper the quantitative time metrics
was chosen as the basis of workflow analysis.

Workflow execution time estimation for workflows of arbitrary configuration is possible, for
example, with the help of simulation techniques. But it is also possible to obtain some analytic estimates
for the primitive workflow configurations like sequence seqw and parallel flow parw to compare different
variants of workflow implementation:

)a,(aτ+)t(a=))a,,a,(at(w +iiD
N

=ii
N

=iNseq 10121 … (1)

))a,(aτ+)t(a+)a,(a(τ=))a,,a,(at(w +NiDiiD
N

=iNpar 10axm
121 … (2)

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

 41

where)t(ai is the execution time of the ith operation,)a,s(a)a,d(a=)a,(aτ iiiiiiD 111 −−− is the time for

data transfer between 1−ia and ia ,)a,d(a ii 1− is the volume of data being transferred from 1−ia to ia

operation, and)a,s(a ii 1− is the speed of data transmission channel (network bandwidth between the nodes

where opertaions 1−ia and ia are running). It is also assumed that data should also be delivered to the first

operation ()a,d(a 10) and fetched from the last one ()a,d(a +NN 1). As soon as the most of the real-world
workflow examples can be fully or partially represented as the hierarchical composition of sequence and
parallel execution flows (e.g.,)a),a),a,(a(ww,(aw seqparseq 54321 at fig.1) so this estimation approach has
more than only theoretical value.

Fig. 1. Workflow example as the combination

of sequential and concurrent branches

Aside from direct estimation of workflow execution duration it can be convenient to evaluate the part
of overall time spent for useful calculations +t related to the overall execution time t :

)a,(aτ+)t(a

)(at
=

)t(w

)(at
=))a,,a,(a(wK

+iiD
N

=ii
N

=i

i
N

=i

seq

i
N

=i
Nseqt

101

+

1

+

1
21

+ … (3)

))a,(aτ+)t(a+)a,(a(τ

)(at
=))a,,a,(a(wK

+NiDiiD
N

=i

i
N

=i
Npart

101

+

1
21

+ … (4)

The opposite quantity characterize the part of overhead for data transfer, queue delays and other side
actions or being idle while workflow execution:
 (w)K=(w)K tt

+1− (5)

The estimation of workflow operation execution time t(a) is a key part of the overall workflow
execution time estimation. Prediction of the operation execution time is a non-trivial procedure that should
consider a set of factors often stochastic or those hard to formalize:
 (a)t+δ(a)+τ(a)+(a)t+(a)t=t(a)

kji OkIjQi
 (6)

where
iQt stands for waiting time of computation request in ith queue of queue system (e.g. this can be

scheduler or LRMS queues for grid jobs). The stochastic quantity that generally depends on the current
load of the target resources and internal scheduling algorithms;

kj OI tt , stand for the time needed to parse

input data and compose output data for jth (kth) level protocol (e.g. HTTP(S) and SOAP for web services).
Depend on the overall data size, the size of useful data load, data format of the protocol and the way data is
stored (encoding, encryption), resource performance; τ stand for pure time for useful computations.
Depends on the algorithms implemented in program (e.g. time complexity), data volumes to process,
resource performance; δ describes delays connected with the supporting procedures (program loading,
initialization, establishing network connection, interacting with file system and other OS or middleware
(M/W) resources etc.).

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

 42

Workflow execution levels
Among the WfMS components there are two main kinds of entities [3]: worklfow operations and

their execution manager. The manager is responsible for execution of operations in prescribed order. This
component is only available for the centralized approach to workflow execution as opposed to
decentralized scenario when operations are responsible for invocations of each other by themselves.

Local level of execution means performing computations on the local user’s machine with its limited
computing power. It can be taken for simplicity that 0=(a)ti , 10 >j,=(a)t=(a)t

jj OI (no intermediate

protocols and data representations usually needed), 0→δ(a) (no considerable delays while interacting
wih local OS),)a,(aτ +iiD 1 depends on data exchange organization: via RAM or file system.

Resource level of computations means the dedicated high performance resource (computer cluster as
an example) with its own computing control system named local resource management system (LRMS)
consisting of a scheduler and resource manager. LRMS represents computer cluster as the single abstract
resource where computations can be launched on any free node from its pool. But in case of full load of all
nodes computing task may wait in the queue for an unpredictable time.

At this level the following should be considered additionally: stochastic wait time in LRMS queue
(a)t LRMSQ)(, additional overhead for data transfer to resource and back through the network with speed

)a,(as +iiR 1 , as well as for internal data transfers between nodes with speed)a,(as +iiN 1 and overhead

LRMSδ for interaction with LRMS.
Grid computing technology as the way of organizing the shared access to remote resources is not

only the trade-off solution for dedicated resource maintenance expenses, but also provides the reserved
reliability in case of breakdowns of some resources. Grid level is an additional abstraction level for a set of
computer clusters and other types of resources representing them as the single virtual supercomputer with
access granted according to the user's membership in the virtual organization allowed to utilize those
aggregated resources. The price for such uniform user access to resource pool is an additional grid
middleware (M/W) layer organizing the interaction with grid resources (e.g. submitting grid computing job
via the grid scheduler).

At this level the following should be considered additionally: stochastic waiting time in grid
scheduler queue (a)t GQ)(, as well as an additional overhead for possible internal data transfers between

resources via the netrowk at speed)a,(as +iiG j 1 and overhead Gδ connected with M/W operation.

Service level means execution of web services. They can serve as the universal public platform-
independent standardized interface for workflow operations execution, hiding the internal details of their
implementation and execution parameters, exact location of program code thus serving well as remote
access wrappers for local, cluster or grid computations.

At this level the following should be considered additionally: data transfer overhead through the
network at speed)a,(as +iiS 1 (in case of centralized orchestration there is additional data transfer toward

and back from the orchestrator at the speed)a,(as iO 0) as well as significant SOAP messages parsing

overhead)(at iSOAPI)(and)(at iSOAPO)(for input and output respectively.

Workflow management implementation options
Before proceeding to the practical feasibility analysis of different approached to SOA WfMS

implementation let's define typical test environment parameters (based on practical experience). For simplicity
let's assume that s = 100 Mbit/s for any network transfer, Gδ = 1 min (all delays related to M/W including
target resource discovery and grid informational system refresh interval, also all delays connected to LRMS

LRMSδ are included for convenience), P+iiSOAPOSOAPI s)a,d(att 1)()(== where Ps = 100 MB/s is an
average speed of SOAP message parsing.

1. Level of workflow decomposition. Many of widely used local WfMS [3] allow creation of
workflows composed from fine-grained operations, in some sense they are similar to visual programming

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

 43

tools. This approach provide maximum flexibility but requires necessary qualification of end user. In such
systems any real-world task would be represented as the workflow with a lot of atomic operations and high
complexity thus leading to considerable overheads and due to numerous data transfers so overall execution
time t(w) would increase dramatically and often unacceptably.

Let’s consider typical task of N -sized SLAE solving with LU decomposition method. If we
construct computation procedure as the workflow consisting from only primitive arithmetic operations
(like in block diagram of the algorithm) then the number of invocations can be estimated as)O(N 3 . When

compared to monolithic program it gives near 3N additional delays for data transfers. In case of workflow
implementation at service level even with neglectfully small data volumes being transferred each time
network and service invocation delays will be near)δ(ai = 10..100 ms (and)τ(a)δ(a ii) thus giving

approximately 107…108 additional seconds of execution for relatively small matrices of 310=N .
If we implement only coarse-grained stages of LU-factorization (1a) and backward substitution

(2a) as operations then the transfer overhead for data size 2
21 kN=)a,d(a (where k is the size of each

number in SOAP envelope, approx. 10 bytes) will be ≈)(at+)(at+)a,(aτ SOAPISOAPOD 2)(1)(21 1 sec,
quite affordable for end user. And it is also remains possible to utilize LU – factorization service
separately.

These time estimations will double for centralized execution (when data is not transferred directly
but via the controller like BPEL orchestrator server for web service level).

This artificial example illustrate some important conclusions: 1) composition of workflows with high
level of operations decomposition provide more freedom for engineer but requires him to have
programmer skills; 2) execution of workflows with a lot of operations and/or intensively repeated loops
should be localized when possible; 3) being highly composable the basic primitive operations on numeric
and text data can be included into WfMS as services for supporting usage (e.g. to connect coarse-grained
operations when it cannot affect (w)K t

+ significantly).
2. Workflow with queued operations. Not only in case when workflow is composed from remote

components (like web services) but also when its operations can be queued (for resource and grid levels
this can sometimes lead to unpredictably long delays) the level of decomposition should be such that
minimize the sequential data transfers. Thus resource limitations overcoming leads to severe restrictions on
workflow configuration. But even in such case there can be additional benefits.

1) Eq. (2) implies that execution time does not generally depend on the number of parallel branches.
This allows to reach time acceleration compared to local level execution even in case of significant
overhead τ(a)t(a)=(a)t −− . Such acceleration can be possible if)t(w>)t(w L

par
R
par (where R index is

for remote execution, L is for local) or:
)t(a<))a,(aτ+)t(a+)a,(a(τ L

i
N

=i+N
R
iD

R
i

R
iD

N

=i
axm
110axm

1
 (7)

which can happen in case of local resources deficit. In case of N equivalent operations N=i|a=ai 1..
(e.g. for tasks where input data can be easily distributed) remote execution will benefit if:

)τ(a<)τ(a+)δ(a+)(at+)(at+)(at+)a,(aτ+)a,(aτ LR
i

R
i

R
iQq

R
iOk

R
iIj+N

R
iD

R
iD

N

=i qkj

10axm
1

 (8)

For example, in case of grid execution with GC available cores same as N<CL local ones then
(considering grid scheduler queue and ignoring input and output data preprocessing) grid execution is
preferable if:

 τ(a)
C
N<τ(a))+(a)(δ

C
N+)a(a,τ+a),(aτ

L
G

G
+NDD 10

 (9)

2) The absence of guaranteed time acceleration can be compensated with possibility of parallel
execution of alternative branches solving the same task with different methods which can increase overall
reliability (probability of positive outcome).

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

 44

3) Remote computing can also benefit in providing the opportunity of access to the unique software
resource which is impossible to integrate in system directly (due to lack of source codes or license etc.).

3. Multi-level workflows. In order to cope with local resource limitations it can be reasonable to
implement the multi-level workflow model when coarse-grained operations at the service level initiate and
possibly control the computations at local, resource or grid level. This trade-off solution will give the
opportunity to overcome resource restrictions and avoid intensive overheads while retaining the certain
level of flexibility for workflow composition by the end user (fig.2).

Fig. 2. Multi-level workflow concept

This multi-level approach was successfully used to integrate existing tools into an interdisciplinary
modeling software during development of the Web / Grid ALLTED [1] simulation complex under the
project "Interdisciplinary complex of optimal mathematical modeling in grid environment with the
automatic composition and solving of equations of corresponding mathematical models".

Conclusion
In this paper the application of workflow methodology for execution of complex user customizable

computing scenarios in service-oriented CAE/CAD software was studied. Service-oriented architecture
has following benefits for engineering tools:

• loose-coupled services with standardized open interfaces simplify independent development,
distributed deployment of functionality as well as integration of third-party tools;

• remotely deployed services can provide access to grid computing resources to eliminate local
computing resource deficit for compute-intensive tasks;

• SOA allows dynamic coupling of services (orchestration) that can be used to organize workflows
of computations according to user scenarios.

General approach to time estimation of workflows organized at different architecture levels was
covered. The other side of SOA flexibility is communication overhead between remote services so
recommendations on minimization of this penalty were provided. Multi-level workflow concept combining
advantages of local, grid and service-level execution was also described.

1. Zgurovsky M. WebALLTED: Interdisciplinary Simulator Based on Grid Services / Zgurovsky M.,

Petrenko A., Ladogubets V., Finogenov O., Bulakh B. // East-West Design & Test Symposium: 10-th IEEE
East-West Design & Test Symposium «EWDTS’2012», 14-17 September 2012, Kharkov, Ukraine: proc. –
Kharkov, 2012. – P. 126–129. 2. Erl T. Service-Oriented Architecture: Concepts, Technology & Design. –
New York: Prentice Hall / PearsonPTR. – 2005. – 792 p. 3. Workflows for e-Science. Scientific Workflows
for Grids / I.J. Taylor, E. Deelman, D.B. Gannon, M. Shields (Eds.). – Springer. – 2007. – 530 p.

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

