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In this paper the results of investigation of the spectrum and the propagation length of
SPP waves in the structures synthesized by the authors and the results of mathematical
modeling of these characteristics are presented. It is shown that taking into account the
simplest (interchange) interactions of metal layer electrons leads to considerable changes
in the behaviour of the spectrum of SPP waves and their propagation length.
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1. Introduction

Surface plasmon-polariton waves (SPP waves) (i.e., electron density undulation) exist in the vicinity
of the interface between a dielectric medium and a metal [1–3]. A free electron plasma provides the
electromagnetic field confinement near the metal–dielectric interface of metals, making the real part
of the metal dielectric permittivity negative in a wide range of frequencies up to the near-ultraviolet
domain.

State-of-art approaches to mathematical modeling of propagation of SPP waves are based on the
classical Drude theory [2, 3] which, as is known [4, 5], does not consider spatial dispersion of metal
dielectric permittivity ε(r, t) and effects caused by the interaction of electrons in a metal layer. Those
effects become especially significant (and in the same time complicated for modeling) in a low-scale
(nanoscale) metallic systems which are used in “dielectric–metal–dielectric” structures (DMD struc-
tures) synthesis [6, 7].

An attempt of investigation of an electronic correlations influence on SPP waves characteristics for
“dielectric–graphene–dielectric” structures was made in [8], where it was shown that the consideration
of electronic correlations for 2D-dimensional graphene layers leads to the change of ω(Q) spectrum
behaviour of SPP waves even in the case of a small (|Q| ≪ k−1

F ) wavevector. This confirms (domain
Q → 0 is the domain of the Drude model correctness) the necessity of mathematical modeling describing
SPP waves that would take into account anisotropy and electronic correlations effects.

In the paper there is considered the problem of mathematical modeling of SPP waves propagation
in a layered DMD structure synthesized by the authors (Pavlysh, Nevinskyi) in the case of modeling
the metal layer by two-dimensional electronic plasma [9]. It is shown that taking into account only the
exchange correlations leads to considerable changes in the spectrum ω(Q) as well as in the propagation
length of SPP wave.

2. Experiment

Onto the previously cleared glass (SiO2) substrate in a deep vacuum (10−8 Torr) there was deposited
a golden film of the controlled thickness 50nm. The obtained structure “dielectric–metal” was covered
with a polymer (layer thickness 1550nm) and was illuminated (for excitation of SPP wave) by a
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laser with a wavelength of 632.5nm and a pulse frequency of 250 fs. Schematic representation of the
experiment is shown in Fig. 1.

Fig. 1. Schematic representation of SPP excitation. Fig. 2. SPP propagation through the waveguide.

Fig. 3. The intensity of SPP propagation along the waveguide. The
solid curve corresponds to the experimental data, the dashed curve — to

the theoretical calculation of SPP attenuation.

Fig. 2 shows the image of
SPP wave displayed on LR mi-
croscope.

For 150nm width of the
waveguide, the length of SPP
propagation was 10µm and for
200nm — 20µm. Fig. 3 presents
the result of SPP wave measure-
ment depending on the distance
to the excitation point.

Such experiments allow us to
state that propagation length of
SPP wave is ∼ 20µm.

3. Mathematical model

For describing processes of SPP waves emergence and propagation on the surface of nanoscale film
covered with dielectrics on top and on bottom (“dielectric–metal–dielectric” structure), we will use
the model shown in Fig. 4; Ω = Ω1 ∪ Ω2 ∪ Ω3, where Ω1 = R

2 × (+δ,+∞), Ω2 = R
2 × [−δ,+δ],

Ω3 = R
2 × (−δ,−∞).

Fig. 4. Schematic represen-
tation of “dielectric–metal–di-

electric” structure.

As initial relationships for the construction of mathematical model,
we will use the system of Maxwell’s equations [4, 5]

rotH(r, t) =
∂D(r, t)

∂t
+ j(r, t), rotE(r, t) =

∂B(r, t)

∂t
,

divD(r, t) = ρ(r, t), divB(r, t) = 0,
(1)

where D(r, t) is electric flux density, E(r, t) is electric field, B(r, t)
is magnetic flux density, H(r, t) is magnetic field strength, ρ(r, t) is
electric charge density, j(r, t) is electric current density, (x, y, z) ∈ R

3,
t ∈ [0,∞) is time.

We assume that interconnection between the vectors of strength H

and E and between B and D electric flux density vectors of electromagnetic field is non-local [4, 5],
namely

D(r, t) =

∫

Ω
dr′
∫

t

dt′ε(r, r′, t− t′)E(r′, t′),

B(r, t) = µ0µH(r, t), µ = 1,

(2)

µ0 is magnetic permeability of vacuum, ε(r, r′, t− t′) is the response function (relative permittivity).
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The dependence between current density j(r, t) and electric field vector E(r, t) is similar to (2)

j(r, t) =

∫

Ω
dr′
∫

t

dt′σ(r, r′, t− t′)E(r′, t′), (3)

σ(r, r′, t− t′) is dynamic conductivity.
We will search for a solution of the system (1) for so called TM-waves [2, 3], i.e. we assume that

H = (0,Hy, 0), E = (Ex, 0, Ez)

For TM-waves
∂Hy

∂y
≡ 0 [2, 3], therefore Hy = H(x, z, t). This means that for our model (2) (it is

easy to show) Ex = Ex(x, z, t), Ez = Ez(x, z, t), thus the electric field is uniform along OY .
Let us introduce into the model the assumptions about the structure of the functions ε(r, r′, t− t′)

and σ(r, r′, t− t′). We assume that in domains Ω1 and Ω3 (dielectrics)

εi(r, r
′, t− t′) ∼= ε0 εi(t− t′) δ(r − r′), i = 1, 3, (4)

where ε0 is the vacuum permittivity. This means that in the dielectric environment we will neglect the
spatial dispersion and will take into account only the frequency dispersion [4, 5]. Since in dielectrics
free carriers of charge are absent we will assume that in this domains σ(r, r′, t− t′) ≡ 0.

For describing the electromagnetic field behavior in the domain Ω2 (metal nanoscale film), the
functions ε(r, r′, t − t′) and σ(r, r′, t − t′) we will model by functions of 2D-electron liquid [8, 9],
namely, we will assume that

ε2(r, r
′, t− t′) ∼= ε0ε2(r|| − r′||, t− t′)δ(z − z′),

σ2(r, r
′, t− t′) ∼= σ0σ2(r|| − r′||, t− t′)δ(z − z′),

(5)

r|| is a component of the radius vector r that lies in XOY , i.e. r = (r||, z).
Under such assumptions we are neglecting the dispersion ε2 and σ2 along OZ, which is, generally

speaking, true for metal films with the thickness 2δ that satisfies the condition 2δkF ∼ 1 ÷ 10, where
kF = ( 3

4π )
2

3 rsa
−1
0 , rs is Gell-Mann-Brakner parameter, a0 is Bohr raduis [6, 7] and the influence of

fringe effects in the XOY plane (this is true when geometric dimensions of a metal film in XOY are
considerably larger than its thickness along OZ, 2δ(

√
S)−1 ≪ 1, where S is an area of the metal film

surface).
For the further analysis of the system of Maxwell’s equations it is convenient to write it down for

Fourier components of H , E, B, D vectors (all the characteristics of the model is homogeneous with
respect to time), by defining the Fourier transform with respect to time as [10]

f(t) =
1

2π

∫ ∞

−∞
f̃(ω)eiωtdω, f̃(ω) =

1

2π

∫ ∞

−∞
f(t)e−iωtdω, (6)

we have:

• domain Ω1:
rotH(r, ω) = iωε0ε̃1(ω)E(r, ω), (7)

• domain Ω3:
rotH(r, ω) = iωε0ε̃3(ω)E(r, ω), (8)

• domain Ω2:

rotH(r, ω) = iωε0

∫

Ω2

dr′||ε̃2(r|| − r′||, ω)E(r′||, ω, z)+σ0

∫

Ω2

dr′||σ̃2(r|| − r′||, ω)E(r′||, ω, z). (9)
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For the domain Ω2 (9) it is also convenient to define the Fourier transform with respect to r|| that
allows us to write (9) as follows:

rotH(r||, ω) =
iωε0

(2π)2

∫

Ω2

dqε̃2(q, ω)e
i(q,r′

||
)
E(q, ω, z) +

σ0

(2π)2

∫

Ω2

dqσ̃2(q, ω)e
i(q,r′

||
)
E(q, ω, z), (10)

where q = (qx, qy), dq = (dqx, dqy), (q, r||) ≡ qxx+ qyy.
For describing of SPP waves propagation we will search solutions of the system (7)–(10) in the form

of the following “ansatz”
Hy(x, ω, z) = Hy(z)e

iQx. (11)

It is obviuos that in this case

E(r, ω) = E(x, ω, z) = E(ω, z)eiQx. (12)

Since for such “ansatz”
E(q, ω, z) = (2π)2E(ω, z)δ(Q − qx)δ(−qy),

(δ(. . .) is the Dirac delta function [10]), then the system of equations (7)–(10) takes the form

rotH(Q,ω, z) = iωε0ε̃2(ω)E(Q,ω, z), j = 1, 3, (13)

rotH(Q,ω, z) = iωε0ε̃2(Q,ω)E(Q,ω, z) + σ̃(Q,ω)E(Q,ω, z). (14)

Complementing the system (13), (14) with the Helmholtz equations [5] for H(ω, z) (which are easy
to obtain for such a layered structure) we have a mathematical model of SPP waves propagation:

• domain Ω1:
d2Hy(ω, z)

dz2
−
(

Q2 − ε̃1(ω)
ω2

c2

)

Hy(ω, z) = 0,

Ex(ω, z) = − i

ωε0ε̃1(ω)

∂Hy(ω, z)

∂z
,

Ez(ω, z) =
Q

ωε0ε̃1(ω)
Hy(ω, z);

(15)

• domain Ω3:
d2Hy(ω, z)

dz2
−
(

Q2 − ε̃3(ω)
ω2

c2

)

Hy(ω, z) = 0,

Ex(ω, z) = − i

ωε0ε̃3(ω)

∂Hy(ω, z)

∂z
,

Ez(ω, z) =
Q

ωε0ε̃3(ω)
Hy(ω, z);

(16)

• domain Ω2:
d2Hy(ω, z)

dz2
−
(

Q2 − γ(Q,ω, 0)
ω2

c2

)

Hy(ω, z) = 0,

−∂Hy(ω, z)

∂z
= Ex(ω, z)

(

iωε0ε̃2(Q,ω, 0) − σ0σ̃2(Q,ω, 0)
)

,

Hy(ω, z) = Ez(ω, z)
(

iωε0ε̃2(Q,ω, 0) − σ0σ̃2(Q,ω, 0)
)

.

(17)

The system of equations (15)–(17) should be solved using the corresponding electrodynamic joining
conditions at the boundary of environments: continuity of the corresponding components of H and D
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vectors. For the considered in this paper an ultrathin metal film 2δkF ∼ 1÷ 10, we obtain that:

H(1)
y (ω, z) = A1e

−λz , E(1)
x (ω, z) =

λ

ωε0ε̃1(ω)
A1e

−λz, E(1)
z (ω, z) =

Q

ωε0ε̃1(ω)
A1e

−λz,

λ =

√

Q2 +
ω2

c2
ε̃1(ω),

(18)

H(3)
y (ω, z) = A1e

ξz, E(3)
x (ω, z) =

λ

ωε0ε̃3(ω)
B3e

ξz, E(3)
z (ω, z) =

Q

ωε0ε̃3(ω)
B3e

ξz,

ξ =

√

Q2 +
ω2

c2
ε̃3(ω),

(19)

c2 = ε0µ0.

The constants A1 and B3 we will obtain from the joining conditions of the solutions (18), (19)
at the boundary z = 0, taking into account that at this boundary there exists the surface current
jx = σ0σ(Q,ω)Ẽx(Q,ω, 0), where Ẽx is electric field in the plane z = 0. From this condition it follows
that

H(1)
y (ω,+0)−H(3)

y (ω,−0) = jx,

ε0ε̃1(ω)E
(1)
y (ω,+0) = ε0ε̃3(ω)E

(3)
y (ω,−0) = ρx,

E(1)
z (ω,+0) = E(3)

z (ω,−0).

(20)

Non-zero solution of the equation system (20) exists only if the following condition is fulfilled

ε̃1(ω)

λ
+

ε̃3(ω)

ξ
= − 1

ωε0
σ(Q,ω), (21)

which is dispersion relation for finding ω(Q) of SPP wave in this model. Notice that the dispersion
equation (21) coincides with the dispersion equation of the SPP wave spectrum obtained in [8] for the
case of “dielectric–graphene–dielectric” model.

4. Solution of dispersion equation

To solve the equation (21), a two-dimensional dynamic conductivity of an electron liquid σ(Q,ω)
should be set. In the paper, solutions of (21) for two well-known in literature models of σ(Q,ω) are
investigated:

• the Drude model [2]:

σ0σ(Q,ω) =
e2εF

π~2
i

ω + iτ−1
; (22)

• the RPA model [9]:

σ(Q,ω) = −iωχ(Q,ω), χ(Q,ω) = χ1(Q,ω) + iχ2(Q,ω), (23)

χ1 = G

(

Q

kF
− C_

(

( Q

2kF
− ω

QvF

)2
− 1

)
1

2

− C+

(

( Q

2kF
+

ω

QvF

)2
− 1

)
1

2

)

,

χ2 = G

(

D_

(

1−
( Q

2kF
− ω

QvF

)2
)

1

2

−D+

(

1−
( Q

2kF
+

ω

QvF

)2
)

1

2

)

,

G =
Ne2

ε0mq2v2F
, vF =

~kF

m
, (24)
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C± =

(

Q
2kF

± ω
QvF

)

∣

∣

∣

Q
2kF

+ ω
QvF

∣

∣

∣

, D± = 0 for
∣

∣

∣

Q

2kF
+

ω

QvF

∣

∣

∣
> 1,

C± = 0, D± = 1 for
∣

∣

∣

Q

2kF
+

ω

QvF

∣

∣

∣
< 1.

In the given expressions (22)–(24) for dynamic conductivity kF is the Fermi momentum, εF =
~2k2

F

2m
is the Fermi energy, vF is the Fermi velocity, ~ is reduced Plank constant, m, e are the mass and the
charge of electron respectively (see [11]), τ−1 is the reverse dumping time [8], τ = 1.3 · 10−13 [3].

Numerical analysis of the equation was carried out using “MATLAB” for layered structure
“polyethylene–gold–SiO2” with parameters:

ε1(ω) = ε̃1(+∞) = 2.3, ε3(ω) = ε̃3(−∞) = 4, kFa0 =
( 3

4π

)
2

3

rs, rs = 2.9. (25)

The results of numerical calculation of ω = ω(Q) are presented in Figs. 5–7.

Q

k

Q

k

Fig. 5. Graphics of dispersion ω(Q) for the Drude model (dashed curves) and for the RPA model (solid curves).

Q

k

Im( ( )w Q)

k

Im( ( )w Q)

k

Q

k

Fig. 6. Imaginary part Im(ω(Q)) of disperse relation
solution for the Drude model.

Fig. 7. Imaginary part Im(ω(Q)) of disperse relation
solution for the RPA model.
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As we can see in Fig. 5, the difference between the Drude and the RPA models becomes considerable
when the wavevector Q in the domain is |Q|

kF
∼ 0.05. This means that for describing ε(r, t) and σ(r, t)

other models should be used instead of the Drude model. A similar result was obtained for “dielectric–
graphene–dielectric” structures [8].

Figs. 6, 7 present the dependence of the imaginary part of wavevector Im(Q)
kF

on Q
kF

. This char-

acteristic can be interpreted as inverse propagation length of SPP (L−1
SPP ). For the Drude model

LSPP ∼ 0.2µm and for the RPA model LSPP ∼ 0.003µm. Decreasing of propagation length for
the RPA model is understandable because this model takes into account the plasmon scattering effects
connected with interchange interactions (Landau damping) [8]. The propagation length LSPP ∼ 20µm
is obtained experimentally due to a laser illumination.

5. Conclusions

Being obtained as a result of mathematical modeling the dependences of the spectrum ω(Q) and the
propagation length LSPP of the plasmon-polariton wave show that for theoretical investigation of these
characteristics we should take into account both interaction effects of electrons in a metal layer and
anisotropy effects of a metal film in DMD structures. This will be a subject of the future researches.
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SPP-хвилi в структурах «дiелетрик–метал–дiелектрик»: вплив
обмiнних кореляцiй

КостробiйП., Павлиш В., НевiнськийД., ПольовийВ.

Нацiональний унiверситет «Львiвська полiтехнiка»

вул. С. Бандери, 12, 79013, Львiв, Україна

Подано результати дослiдження спектра та довжини поширення SPP-хвиль в синте-
зованих авторами структурах та результати математичного моделювання цих харак-
теристик. Показано, що врахування найпростiших (обмiнних) взаємодiй електронiв
металевого прошарку приводить до значних змiн у поведiнцi спектра SPP-хвиль та
довжини їхнього поширення.
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