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Summary. Two possibilities are considered for the determination of the regularization parameter on the basis of the

misclosure principle.

Introduction

In the paper (Abrikosov, 1999) three different princip-
les were applied for the determination of the regu-
larization parameter in the variational problem of data
processing. The equations of observations without a
systematic part (Moritz, 1980) were considered as

I=s+n, (N

where | is the observation vector, s is the signal vector,
which is characterized by the covariance matrix C .
and n is the noise vector, which is characterized by the
covariance matrix C,_,. By using the standard
variational principle (Moritz, 1980):
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@, =n"C,n+ys' C s=min, @)
with the positive weighting coefficient v:
0<y<o0 3)

the estimations for signal and noise were obtained in
the following form:

§(y)=C_(C, +7C,)"L, 4)
(y) =yC,,(C,, +vC,)"'1. (5)

By applying the next principle
IC,,,, =0 (’Y)“ =|AC,, (y)]| =min, (6)

where C, () is the a posteriori covariance matix of

the estimation (3), two possible values for the
regularization parameter were obtained. These arc

=1, M

which corresponds to traditional least squares
collocation solution of the system (1), and

y=1+ 1+——-~—C"""’C'2‘” . 8)
o

which realizes the solution of (1) under the misclosure
principle.

In the present paper our goal consists of conside-
ration of some additional possibilities for the
determination of the regularization parameter y on the
basis of the misclosure principle.

Basic relationships

By introducing the notation

Q(Y):C.ﬂ +Tcme’ (9)

we can rewrite the estimations (4) and (5) as
sN=C, Q' (1, (10)
i(y) =vC, Q" (NI (11)

The covariance matrixes of these estimations are
C.N=C.Q"MAMQ' MC,, (12)
¢, =7C, Q" MAVQ' (C,,. (13)

and the covariance matrixes of errors are

14

E,(1)=C, -2C.Q0" (NC,
+C, Q' (NANQ'(C,
E.m=C,-2C,Q'WC,, (5
+'C, Q"' (MADHQ™ (NC,,

Supposing that all matrixes in the right hand sides of
above expressions have a foll rank, we can transform
(14 and (15) to

E,n=E,1n=C.Q 1K )Q"(C,,. (16)

(14)

Regularization parameter from the matrix C,m (1)

Let us suppose that a value of the regularization
parameter fulfills the equality

C,(1=C,, . a7

ni

By substitution (12) into (17) we get
v*C,.Q 7 (MAMQ' (nC,, =C,,, (18)

and after obviouws transformations we come to the
equation
¥(y-2)C, =C,. (19)

This expressions is nothing else but the system of
linear equations regarding the unknown

x=y(y-2). (20)

Classical least squares sclution of this system leads to
the value

- trace(C,_C, )

= ) a1
trace(C,,C,,)
and, in view of inequalities (3), we get immediately
y=1+ f1+ 2CC) (22)
trace(C_C, )

As we can see, this expression coicides exactly with
the expression obtained in (Abrikosov, 1999) on the
basis of the misclosure principle.

Regularization parameter from the matrix E ()

Now let us suppose that a value of the regularization
parameter fulfills the equality

E.(n=C,. 23)

By substitution (16) into (23) we get



C.Q'MAYHQ'C,, =C,,, @4
and after obvious transformations we come (o the
equation

¥(y-2)C, =7°C,,. (25)

Excluding the trivial root y=0, we can rewrite (25) in
the form

(y-2)C, =vC,,, (26)
and treate it as a system of linear equations
C.r=C 27
regarding the unknown
x= E : (28)
¥

Classical least squares solution of the system (27)
leads to the value

trace(C_C
x= —(_._.-":E_.._.:E._)_ ; 29)
trace(C,,C,,)
and we can see that in the considered case
2trace(C C
( 5 :.7) (30)

E trace(C,,C,,) —trace(C,,C,,)

Discussion

Thus, we have obtained two expressions for the
computation of the regularization parameter in
accordance with misclocure prenciple. The value (22)
ninimizes the Euclidean norm of the difference
between a priori and a posteriori covariance matrix of
the noise vector (Abrikosov, 1999), whereas the value
(30} minimizes the Euclidean norm of the difference
between a priori covarianbce matrix of the noise and a
posteriori covariance matrix of errors of the signal
vector estimation. In other words, the value (30) leads
to the agreement of the accuracy estimation of the
signal with the magnitude of errors in initial data. As a
result, this value also may be treated as a possible
realization of the misclosure principle.

For better understanding of the behaviours of the
discussed values of the regularization parameter, it
have a sense to consider the simplest case

C_=cl. (31)

k2]

C. =dl, (32)

HE

I'eopesia

where I is a unit matrix, ¢ is the variance of the signal,
and 4 is the variance of the measured data errors. With
(31), (32) the expressions (22) and (30) may be
rewritten. respectively, as

y=1+1+2z, (33)

2z
ity (34)
z—1
where
zZ —E (35
7 3:

In other words, both values are the functions of the
relation ¢/d only in this simplest case. As we can see,
the function (33) increases with the increasing of the
relation ¢/d and has only singularity at infinity,
whereas the function (34) decreases with the
increasing of this relation, has the singularity for d=c,
and takes negative values if d>c. The discussed
functions are shown on the Figure 1.
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Fig. 1. Propagation of the functions (33} and (34)
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O.A. Abpukocos
[TPO OBUUCJIEHHSA TAPAMETPY PE[VIISIPU3 AL
Pesiome
PO3IIAHYTI ORI MOMCUTHBOCTI BH3HAYCHHS MAPAMETPY PEryIAPH3ALI] HA OCHOBI NMPUHLMITY HEB' A3KH.

O.A. AGpuKoCOB
O BBIHHCITEHWUH ITAPAMETPA PEIVIISIPH3ALIMHA
Pesrome
PaccMoTpeHs! 1Be BOIMOKHOCTH ONPEIEISHNS MAPAMETPA PETYIAPH3AIMM HA OCHOBE MPHHIHIA HEBA3KH,



