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1. Introduction

Many physical processes (e.g. diffusion, heat flux, electrostatic field, perfect fluid flow, elastic motion
of solid bodies, groundwater flow, etc.) are modeled using boundary value problems for Laplace
equation [1–3]. The powerful tools for solving such problems are potential theory methods, especially
in the case of tired boundary surface or complex shape surface [4–6]. These methods are a convenient
for calculating desired solution in small domains [7, 8]. In number of cases, application of potential
theory methods requires solving Fredholm integral equation of the first kind. In particular, one of the
cases is solving Dirichlet problem in the space of functions with normal derivative jump on crossing
boundary surface using simple layer potential [9, 10]. When solving Neumann problem in the space
of functions with jump on crossing boundary surface using double layer potential, we also proceed to
integral equation of the first kind [11, 12]. The need to solve integral equations of the first kind also
arises when the sum of simple and double layer potentials is used to solve the double-sided Dirichlet
or Neumann problem [13] or double-sided Dirichlet–Neumann problem [14] in the space of functions
that, same as their normal derivatives, have jump on crossing boundary surface. Many systems of
integral equations for the simple and double layer potentials that are equivalent to mixed boundary
value problems for Laplace equation, also contain integral equations of the first kind [15, 16].

In general, researches of projection methods convergence mainly focus on solving integral equations
of the second kind [4,6,17]. Defining well-posed solvability conditions for integral equations of the first
kind that are equivalent to boundary value problems for Laplace’s equation in Hilbert spaces [18–20]
allows us to use projection methods for numerical solution of such equations, thus avoiding resource-
consuming regularization procedures [21–23]. For detailed review of numerical methods for solving
integral equations, please see [2–4, 6]. In [24, 25], convergence conditions are defined for the series of
projection methods for solving Fredholm integral equation of the first kind for simple layer potential
that is equivalent to three-dimensional Dirichlet problem for Laplace equation while approximating
desired potential density with complete systems of orthonormal functions. However, if boundary
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surface has a complex shape usage of such approximations poses considerable difficulties for practical
implementation of numerical methods [7]. In this case, finite elements of different types should be used
for approximation of desired potential densities [26,27]. Derived approximations, among other things,
allow us to create effective algorithms for singularities removal in kernels and desired integral equation
densities [28].

The purpose of the paper is to define convergence conditions of projection methods for approximate
solution of Fredholm integral equations of the first kind by the example of integral equation for the
simple layer potential that is equivalent to Dirichlet problem for Laplace equation using approximation
of desired potential density with systems of finite elements of different types and orders.

2. Approximations of Hilbert spaces and the basic convergence theorem

Consider the operator equation
Au = f, u ∈ U, f ∈ F, (1)

where U and F are the Hilbert spaces, A ∈ L(U,F ). To solve equation (1) we apply the projection
method

QNAPNu = QNf. (2)

In formula (2) PN and QN are projection operators from U and F onto closed finite dimensional
subspaces UN ∈ U and FN ∈ F accordingly. Define operators PN and QN in the following way.
Denote by rN the restriction operator from the space U to the finite dimensional subspace VN ⊂ R

N

and introduce in VN the extension operator pN as an isomorphism from VN onto subspace UN ∈ U .
The norm in VN is determined by the relation ‖uN‖VN

= ‖pNuN‖U , uN ∈ VN . Then PN = pNrN and
we can determine the triple (VN , pN , rN ) as approximation of the space U . Such approximation are
called convergent if

lim
N→∞

‖u− pNrNu‖U = 0.

Denote by sN the restriction operator from the space F to the finite dimensional subspace ΦN ⊂ R
N .

The extension operator qN from ΦN onto subspace FN = AUN ⊂ F introduce by the formula

qNfN = ApNuN , fN ∈ ΦN .

The norm in ΦN is determined by the relation ‖fN‖ΦN
= ‖qNfN‖F , fN ∈ ΦN . Then QN = qNsN

and we can determine the triple (ΦN , qN , sN ) as approximation of the space F . Thus, the solution of
problem (2) is reduced to solution of the system of linear algebraic equations

ANuN = fN , AN = sNApN , AN ∈ L(VN ,ΦN ), fN = sNf. (3)

Operators AN are called stable if there is independent of N constant µ > 0 such that for arbitrary
uN ∈ VN is performed inequality

µ ‖uN‖VN
6 ‖ANuN‖FN

. (4)

Let us the pairs of operators (rN , pN ) and (sN , qN ) are selected. Assume as an approximate solution
of equation (1) the function pNuN ∈ UN where uN is the solution of problem (3). Then we have the
next basic theorem of convergence [29].

Theorem 1. Let us the operator A is an isomorphism from U into F . Then the sequence pNuN

converges to solution u of equation (1) if and only if the approximations (VN , pN , rN ) of the space U
are convergent and operators AN are stable. In addition, error estimation of the approximate solution
is given by the ratio

‖u− pNuN‖U 6 (1 + ‖A‖ /µ) ‖u− pNrNu‖U .

The choice of triples (VN , pN , rN ) and (ΦN , qN , sN ) defines one or another projection method of
solving the equation (1) (Galerkin, smallest squares, smallest mismatch, collocation, etc.).
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3. B-splines approximations

Let us S = [0, a]×[0, b] ⊂ R
2. Construct in the domain S a rectangular grid Sh with the steps h1 = a/n

and h2 = b/k, n, k = 1, 2, . . .. Introduce in the space Hm(S), m = 0, 1, 2, . . ., the system of B-splines
of m-th degree

{

Bij(ξ)
}n−1 k−1

i=−m j=−m
, n, k > m+ 1. (5)

Denote by UN
B the linear shell of system (5). Select restriction operator rNB : Hm(S) → V N

B ⊂ R
N

and extension operator pNB : V N
B → UN

B ⊂ Hm(S) in the form

(rNB v)i,j ≡ v
(i,j)
N =

∫

S
Bij(ξ)v(ξ) dSξ , i = −m(1)(n − 1), j = −m(1)(k − 1), (6)

rNB v = vNB ∈ V N
B , v ∈ Hm(S),

pNB v
N
B =

n−1
∑

i=−m

k−1
∑

j=−m

v
(i,j)
N Bij(ξ), N = (n+m)(k +m). (7)

The next result is in order [29].

Lemma 2. Approximations (V N
B , pNB , r

N
B ) of the space Hm(S) are convergent and for arbitrary v ∈

Hm(S) are performed the estimates

∥

∥v − pNB r
N
B v

∥

∥

Ht(S)
6 Chσ−t ‖v‖Hσ(S) , 0 6 t 6 σ 6 m, (8)

where constant C > 0 does not depend on v.

Denote by G a bounded open domain in R
3 with boundary Γ. Suppose that exists M open balls

Bl ⊂ R
3, Γ ⊂

M
⋃

l=1

Bl, Bl ∩ Γ = Γl 6= 0, l = 1,M,

such that for each ball Bl there is defined on B̄l m times differentiated real vector-function f (l)(x) =

(f
(l)
1 , f

(l)
2 , f

(l)
3 ) such that yl = f (l)(x) carries a mutually unambiguous mapping of the ball Bl onto

some open bounded set in R
3 where Γl is mapped on an open set Sl ⊂ R

2. In addition, the Jacobian

Jl =
∂(f

(l)
1 ,f

(l)
2 ,f

(l)
3 )

∂(x1,x2,x3)
is positive and continuous if x ∈ B̄l, l = 1,M . Then the surface Γ is called m-smooth

surface in R
3 [30].

We associate to the partition Γ = ∪M
l=1Γl the partition of one {ψl(x)}

M
l=1, x ∈ Γ, with the following

properties:

ψl(x) ∈ C
∞(Γl), supp{ψl} ⊂ Γl, 0 6 ψl(x) 6 1, l = 1,M,

M
∑

l=1

ψl(x) = 1,

and exists m times continuously differentiated mapping

τl : Γl → Sl = [0, al]× [0, bl], τ−1
l : Sl → Γl, l = 1,M.

Then for arbitrary function u(x) defined on Γ we can put into a mutually unambiguous correspon-
dance the set of defined in R

2 functions

{vl(ξ)}
M
l=1, vl(ξ) = u(τ−1

l (ξ)), ξ ∈ Sl,
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which have the compact support on Sl and

ul(x) = ψl(x)u(x), x ∈ Γ, u(x) ∈ Hm(Γ), if vl(ξ) ∈ Hm(Sl), l = 1,M,

and

‖u‖Hm(Γ) =

M
∑

l=1

‖vl‖Hm(Sl)
.

Construct in each domain Sl a rectangular grid Sh
l with the steps h

(l)
1 = al/nl and h

(l)
2 = bl/kl, and

define in each grid domain Sh
l a system of functions

{

B
(l)
ij (ξ)

}nl−1 kl−1

i=−m j=−m
, nl, kl > m+ 1, l = 1,M.

Assign to them the grid Γh = ∪M
l=1τ

−1
l (Sh

l ) on the surface Γ and system of functions

{

B̃k(x)
}NB

k=1
=

M
⋃

l=1

{

B
(l)
ij (τl(x))

}nl−1 kl−1

i=−m j=−m
, NB =

M
∑

l=1

(nl +m)(kl +m). (9)

Denote Γl1,l2 = Γl1 ∩ Γl2 , l1, l2 = 1,M , and suppose that the grid on surface Γ satisfies condition

supp
{

B
(l)
ij (τl(x))

}

6⊂ Γl,k, i = −m(1)(nl − 1), j = −m(1)(kl − 1), k 6= l, k, l = 1,M.

Since supp{B̃i1(x)} 6= supp{B̃i2(x)} for i1 6= i2, the functions of system {B̃k(x)}
NB

k=1 are linearly
independent.

Denote by r̃NB

B the restriction operator from Hm(Γ) onto finite dimensional space V NB

B , and r̃Nl

B is
its restriction to Hm(Γl), that is,

r̃NB

B =
{

r̃Nl

B

}M

l=1
, r̃Nl

B ul(x) = rNl

B vl(ξ), Nl = (nl +m)(kl +m), (10)

where rNl

B is the similar to (6) restriction operator from Hm(Sl) onto finite dimensional space V Nl

B ,

l = 1,M , and V NB

B = V N1
B × V N2

B × . . .× V NM

B .

The extension operator p̃NB

B from V NB

B onto UNB

B ⊂ Hm(Γ) is introduced by the formula

(

p̃NB

B uNB

)

(x) =

NB
∑

i=1

uiB̃i(x), uNB
∈ V NB

B . (11)

From lemma2 follows that

lim
NB→∞

∥

∥

∥
u− p̃NB

B r̃NB

B u
∥

∥

∥

Hm(Γ)
=

M
∑

l=1

lim
Nl→∞

∥

∥

∥
vl − pNl

B rNl

B vl

∥

∥

∥

Hm(Sl)
= 0,

i.e. approximations (V NB

B , p̃NB

B , r̃NB

B ) of the space Hm(Γ) are convergent. Further, from estimates (8)
we obtain

∥

∥

∥
u− p̃NB

B r̃NB

B u
∥

∥

∥

2

Ht(Γ)
=

M
∑

l=1

∥

∥

∥
vl − pNl

B rNl

B vl

∥

∥

∥

2

Ht(Sl)
6 C2h2(σ−t)

M
∑

l=1

‖vl‖
2
Hσ(Sl)

= C2h2(σ−t) ‖u‖2Hσ(Γ) ,

0 6 t 6 σ 6 m+ 1, t 6 m,

where pNl

B is the similar to (7) extension operator from V Nl

B onto the spaces Hm(Sl), constant C > 0

does not depend on u, and h = max
16l6M

{h
(l)
1 h

(l)
2 }.
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Thus, it is proved

Lemma 3. Approximations (V NB

B , p̃NB

B , r̃NB

B ) of the space Hm(Γ) are convergent and for arbitrary
u ∈ Hm(Γ) are valid the estimates

∥

∥

∥
u− p̃NB

B r̃NB

B u
∥

∥

∥

Ht(Γ)
6 C hσ−t ‖u‖Hσ(Γ) , 0 6 t 6 σ 6 m, (12)

in which constant C > 0 does not depend on u.

4. Lagrangian approximations

Assign to each element of the grid Sh of domain S

Pij = [h1i, h1(i+ 1)]× [h2j, h2(j + 1)], i = 0(1)(n − 1), j = 0(1)(k − 1),

a smaller rectangular grid P ε
ij with the steps ε1 = h1/m and ε2 = h2/m. Denote Sh,ε = ∪i,jP

ε
ij and

associate with the set of nodes Sh,ε a system of piecewise polynomial functions

{

Lpt(ξ)
}mn mk

p=0 t=0
, (13)

satisfying conditions

Lpt(ξls) = δplδts, supp
{

Lpt(ξ)
}

= P̃pt, P̃pt =
{

⋃

i,j

Pij : ξpt ∈ Pij

}

, ξls ∈ P̃pt, (14)

where δpl is the Kronecker symbol.
Functions (13)–(14) form a system of Lagrangian finite elements of m-th degree in Hm(S). Denote

by UN1
L the linear shell of this system, N1 = (1 +mn)(1 +mk). It is obvious that the restriction of

system (13)–(14) onto an arbitrary rectangle Pij of the grid Sh is a basis in the space of polynomials
Pm(Pij) of degree not higher than m, defined on Pij . Then

UN
B ⊂ UN1

L . (15)

Choose the extension operator pN1
L : V N1

L → UN1
L ⊂ Hm(S), where V N1

L ⊂ R
N1 , in the form

pN1
L vN1

L =

mn
∑

i=0

mk
∑

j=0

v
(i,j)
N1

Lij(ξ), vN1
L =

(

v
(0,0)
N1

, v
(0,1)
N1

, . . . , v
(mn,mk)
N1

)

. (16)

Then, by virtue of the embedding (15), there exists a restriction operator rN1
L : Hm(S) → V N1

L such

that approximations (V N1
L , pN1

L , rN1
L ) of the space Hm(S) are convergent and valid the estimates

∥

∥

∥
v − pN1

L rN1
L v

∥

∥

∥

Ht(S)
6 C̃hσ−t ‖v‖Hσ(S) , 0 6 t 6 σ 6 m, (17)

in which constant C̃ > 0 does not depend on v.
Thus, it is proved

Lemma 4. There is a restriction operator rN1
L : Hm(S) → V N1

L such that approximations

(V N1
L , pN1

L , rN1
L ) of the space Hm(S) are convergent and valid the estimates (17).

Assume that surface Γ satisfy the conditions of p. 3. Construct in each domain Sl the rectangular

grid Sh
l with the steps h

(l)
1 = al/nl and h

(l)
2 = bl/kl and set on each element P l

ij of the grid Sh
l a smaller

grid with the steps ε
(l)
1 = h

(l)
1 /m and ε

(l)
2 = h

(l)
2 /m, l = 1,M . Define analogously to (13), (14) in each
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grid domain Sh,ε
l = ∪i,jP

l,ε
ij the system of Lagrangian finite elements

{

L
(l)
ij (ξ

(l))
}nlm klm

i=0 j=0
, ξ(l) ∈ Sl, l = 1,M.

Assign to the family Sh,ε
l the grid Γh,ε = ∪M

l=1τ
−1
l (Sh,ε

l ) on the surface Γ, where τ−1
l (P l,ε

ij ) are

the elements of the grid Γh,ε, l = 1,M . Denote by Tl the set of nodes of the grid Sh,ε
l , l = 1,M ,

T = ∪M
l=1Tl. We number all elements of the set T with the cross-cutting index t = 1,K , K =

∑M
l=1Kl,

Kl = (1+nlm)(1+klm), and put in correspondence to each node xp of the grid Γh,ε the set of elements

P ∗
p =

{

P l,ε
ij ⊂

M
⋃

l=1

Sh,ε
l : xp ∈ τ−1

l (P l,ε
ij )

}

,

element
P̃p =

{

⋃

i,j

τ−1
l (P l,ε

ij ), P l,ε
ij ∈ P ∗

p , l = 1,M
}

,

the set of indexes
T ∗
p =

{

t ∈ T : τ−1
l (P l,ε

ij ) = xp, ξ
(l)
t ∈ P h,ε

l l = 1,M
}

,

and function

L̃p(x) =
∑

t∈T ∗

p

Ll
t(τl(x)), x ∈ Γl, supp

{

L̃p(x)
}

= P̃p, L
(l)
t (ξ(l)) ∈

{

L
(l)
ij (ξ

(l))
}nlm klm

i=0 j=0
.

Denote by r̃NL

L the restriction operator from Hm(Γ) into the finite dimensional space V NL

L and by r̃Nl

L

— its restriction to Hm(Γl), i.e.

r̃NL

L = {r̃Nl

L }Ml=1, r̃Nl

L ul(x) = rKl

L vl(ξ), (18)

where rKl

L is the restriction operator from Hm(Sl) into the corresponding finite dimensional space V Kl

L ,
l = 1,M , and NL is the number of nodes in the grid Γh,ε.

The extraction operator p̃NL

L from V NL

L into the linear shell UNL

L of the system {L̃p(x)}
NL

p=1, U
NL

L ⊂
Hm(Γ), introduce by formula

(

p̃NL

L uNL

L

)

(x) =

NL
∑

i=1

u
(i)
N L̃i(x), uNL

L ∈ V NL

L . (19)

From Lemma4 follows that

lim
NL→∞

∥

∥

∥
u− p̃NL

L r̃NL

L u
∥

∥

∥

Hm(Γ)
=

M
∑

l=1

lim
Nl→∞

∥

∥

∥
vl − pNl

L rNl

L vl

∥

∥

∥

Hm(Sl)
= 0,

i.e. approximations (V NL

L , p̃NL

L , r̃NL

L ) of the space Hm(Γ) are convergent. Further from estimate (17)
we obtain

∥

∥

∥
u− p̃NL

L r̃NL

L u
∥

∥

∥

2

Ht(Γ)
=

M
∑

l=1

∥

∥

∥
vl − pNl

L rNl

L vl

∥

∥

∥

2

Ht(Sl)
6 C̃2h2(σ−t)

M
∑

l=1

‖vl‖
2
Hσ(Sl)

= C̃2h2(σ−t) ‖u‖2Hσ(Γ) ,

0 6 t 6 σ 6 m,

where pNl

L is a similar to (16) extension operator from V Nl

L into Hm(Sl), constant C̃ > 0 does not

depend on u and h = max
16l6M

{h
(l)
1 h

(l)
2 }.
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Thus, it is proved

Lemma 5. There is a restriction operator r̃NL

L : Hm(Γ) → V NL

L such that approximations

(V NL

L , p̃NL

L , r̃NL

L ) of the space Hm(Γ) are convergent and valid the estimates

∥

∥

∥
u− p̃NL

L r̃NL

L u
∥

∥

∥

Ht(Γ)
6 C̃hσ−t ‖u‖Hσ(Γ) , 0 6 t 6 σ 6 m, (20)

in which constant C̃ > 0 does not depend on u.

5. Galerkin method

Let us denote G′ = R
3\Ḡ and introduce in G and G′ the Sobolev spaces [30]

Hm(G) = {v ∈ L2(G) : ∂
αv ∈ L2(G), |α| 6 m},

Wm(G′) = {v ∈ D′(G′) : (1 + r2)(|α|−1)2∂αv ∈ L2(G
′), |α| 6 m},

where m > 0, and r =
(
∑3

i=1 x
2
i

)1/2
, x = (x1, x2, x3) ∈ R

3.
Consider the next boundary value problem: to find function

v ∈ Hm+1
Γ,∆=0 =

{

v ∈ Hm+1(G)
⋃

Wm+1(G′) : v|Γint
= v|Γext

, ∆v(x) = 0, x ∈ G,G′
}

(21)

satisfying condition
v|Γ = f, f ∈ Hm+1/2(Γ). (22)

In [9] was proved the next

Theorem 6. Problem (21)–(22) has one and only one solution. We will search a solution of the
problem (21)–(22) in the form of simple layer potential

v(x) =
1

4π

∫

Γ

u(y)

|x− y|
dΓy, x ∈ G,G′.

The unknown potential density is determined from the equation

(Au)(x) ≡
1

4π

∫

Γ

u(y)

|x− y|
dΓy = f(x), x ∈ Γ. (23)

The next result is in order [9].

Theorem 7. Operator A is an isomorphism of Hs(Γ) onto Hs+1(Γ), s > −1/2. From the last
statement and the Banach theorem follows the validity of inequalities

αs ‖u‖Hs(Γ) 6 ‖Au‖Hs+1(Γ) 6 βs ‖u‖Hs(Γ) , (24)

in which constants αs and βs, 0 < αs 6 βs, does not depend on u ∈ Hs(Γ).

Suppose that for approximation of unknown potential density u ∈ Hm(Γ) uses the system of B-
splines of the form (9), and UNB

is its linear shell. We choose the operators r̃NB
: Hm(Γ) → VNB

and p̃NB
: VNB

→ UNB
in the form (10) and (11) respectively and determine the restriction operator

sNB
: Hm+1(Γ) → ΦNB

in the form sNB
= r̃NB

. In this case, the system

AG
NB

uNB
= fNB

, AG
NB

= r̃NB
Ap̃NB

, fNB
= rNB

f,

implements Galerkin method of solving the equation (23). From Lax-Milgram lemma [31] follows that
matrix AG

NB
is nondegenerate and, accordingly, the definition of operator qNB

in the form qNB
fNB

=
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Ap̃NB
uNB

is correct. Taking into account the left side of inequalities (24), the bijectivity of mapping
p̃NB

: VNB
→ UNB

, the expressions for the norms in the spaces VNB
and ΦNB

in the case U = Hm(Γ),
F = Hm+1(Γ), and equality QNB

APNB
u = APNB

u, we obtain the following inequalities

αm ‖uNB
‖VNB

6
∥

∥AG
NB

uNB

∥

∥

ΦNB

(25)

for arbitrary uNB
∈ VNB

and αm does not depend on uNB
.

Then from the inequalities (24) and (25), Lemma3 and Theorem 1 we obtain the validity of following
statement.

Theorem 8. For arbitrary f ∈ Hm+1(Γ), m = 0, 1, . . . , the approximate solution uBNB
of equation

(23) obtained by the Galerkin method under approximation of unknown potential density by the system
of functions constructed on the basis of B-splines of m-th degree converges to its exact solution, and
there is an estimate

∥

∥u− uBNB

∥

∥

Ht(Γ)
6
C(1 + βt/αt)

ασ
hσ−t ‖f‖Hσ+1(Γ) , 0 6 t 6 σ 6 m, (26)

where h is the maximum area of the grid element on Γ.

Similarly, from the inequalities (24) and (25), Lemma5 and Theorem1, we obtain the validity of
following statement.

Theorem 9. For arbitrary f ∈ Hm+1(Γ), m = 0, 1, . . . , the approximate solution uLNL
of equation

(23) obtained by the Galerkin method under approximation of unknown potential density by the system
of functions constructed on the basis of Lagrangian finite elements of m-th degree converges to its exact
solution, and there is an estimate

∥

∥u− uLNL

∥

∥

Ht(Γ)
6
C̃(1 + βt/αt)

ασ
hσ−t ‖f‖Hσ+1(Γ) , 0 6 t 6 σ 6 m, (27)

where h is the maximum area of the grid element on Γ.

6. Collocation method

To simplify the presentation, we assume that for approximation of unknown potential density u ∈
Hm(Γ), m > 0, of equation (23) a system of linearly independent functions {ϕi}

∞
i=1 is chosen, UN is a

linear shell of the system {ϕi}
N
i=1, rN : Hm(Γ) → VN , pN : VN → UN are the similar to described in p.

2 restriction and extraction operators. Denote by XN the set of pairwise different points belonging to
the surface Γ

XN = {xj}
N
j=1, xj ∈ Γ, j = 1, N,

and introduce in Hm+1(Γ) restriction operator sN : Hm+1(Γ) → ΦN by formula

(sNf)j = f(ỹj) (28)

in which

ỹj ∈
{

ỹ ∈ δ(yj) : |f(ỹ)| = min
y∈δ(yj )

|f(y)| , yj ∈ XN

}

, δ(yj) = {y ∈ Γ: |y − yj| < δ}, (29)

in particular ρ(y∗, δ(yj)) > 0 for arbitrary y∗ ∈ XN , y∗ 6= yj, j = 1, N .
If f ∈ C(Γ), then operator sN can be defined as usual

(sNf)j = f(yj), yj ∈ XN , (30)
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i.e. ỹj = yj, j = 1, N . It is easy to see that, with this choice of operator sN , a system of linear algebraic
equations

Ac
NuN = sNf, Ac

N = sNApN , uN ∈ VN , (31)

implements the collocation method of solving the equation (23). The setXN is called a set of collocation
points.

Denote YN = {ỹj}
N
j=1 and consider the system of functions

rj(x) =
1

|x− ỹj|
, ỹj ∈ YN , j = 1, N.

From the choice of the set XN and conditions (29) follow that the functions of system {rj(x)}
N
j=1 are

linearly independent [32].
Define in L∞(Γ) the family of linear continuous functionals

lj(ϕ) =

∫

Γ
ϕ(x)rj(x)dΓx, ϕ ∈ L∞(Γ), j = 1, N.

Denote by Ker(lj) the zero subspace of functional lj in L∞(Γ)

Ker(lj) = {ϕ ∈ L∞(Γ): lj(ϕ) = 0}

and suppose that KN = ∩N
j=1Ker(lj). The degeneracy of matrix Ac

N is equivalent to the linear

dependence of its rows or columns, that is, the existence of such sets αN = {αi}
N
i=1 ∈ R

N or βN =
{βj}

N
j=1 ∈ R

N ,
∑N

i=1 α
2
i > 0,

∑N
j=1 β

2
j > 0, that

∫

Γ

(

N
∑

i=1

αiϕi(x)
)

rj(x)dΓx = 0, j = 1, N, (32)

or
∫

Γ
ϕi(x)

(

N
∑

j=1

βirj(x)
)

dΓx = 0, i = 1, N. (33)

Implementation of equations (32), (33) is only possible if KN ∩UN 6= 0. From this follows sufficient
conditions for the invertibility of matrix Ac

N , which we formulate in the next statement.

Lemma 10. Let us the system of linearly independent functions {ϕi}
N
i=1 is chosen for the approxi-

mate solution of equality (23) and determined the set of collocation points XN (and, consequently, the
set KN is defined). Then, if

KN ∩ UN = 0, (34)

then the matrix Ac
N of the system of collocation equations (31) is non-degenerate for arbitrary N .

A similar result is obtained if the restriction operator sN is chosen in the form

(sNf)j =
1

mes δ(yj)

∫

δ(yj)
f(y)dΓy (35)

and

rj(x) =
1

mes δ(yj)

∫

δ(yj )

dΓy

|x− y|
, j = 1, N.

It is obvious that under conditions of Lemma10 the operator Ac
N , where sN is defined according

to (27)–(28) or (33), or in the case of f ∈ C(Γ) according to (30), is stable in sense (4).
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Consider a discrete analog of condition (34). Let us the quadrature formula

∫

Γ
ϕ(x)ri(x)dΓx ≈

N
∑

j=1

Ajϕ(xj)ri(xj), xj ∈ Γ, xj 6= xi, if j 6= i, (36)

is used to calculate the integrals

∫

Γ
ϕ(x)ri(x)dΓx, ϕ(x) ∈ UN , i = 1, N,

which is exact for integrals
∫

Γ
ϕ(x)ψ(x)dΓx, ϕ(x), ψ(x) ∈ UN .

Consider the system of functions

ψi(x) =

N
∑

k=1

α
(i)
k ϕk(x), (37)

the coefficients α
(i)
k , k, i = 1, N , of which we define from N systems of linear algebraic equations

N
∑

k=1

α
(i)
k ϕk(xj) = ri(xj), i, j = 1, N. (38)

Define the conditions under which the functions ψi(x), i = 1, N , are linearly independent. From
(37) we obtain that

N
∑

i=1

ciψi(x) =
N
∑

k=1

(

N
∑

i=1

ciα
(i)
k

)

ϕk(x) = 0

if and only if
N
∑

i=1

ciα
(i)
k = 0, k = 1, N. (39)

Let us the set of colocation points XN = {yj}
N
j=1 ⊂ Γ is chosen in such a way that

0 < |xi − yi| < ε, d < |xi − yj| , i, j = 1, N, j 6= i, 0 < ε <
d

N − 1
,

where {xj}
N
j=1 are the nodes of quadrature formula (36). Then

ri(xi) >

N
∑

i=1,i 6=j

ri(xj),

matrix RN = {ri(xj)}
N
i,j=1 due to Hadamard condition is nondegenerate and from (38) we obtain that

vectors αk = {α
(j)
k }Nj=1, k = 1, N , are linearly independent. Hence, equality (39) holds if and only if

ci = 0, i = 1, N , i.e. the functions of system {ψi(x)}
N
i=1 are linearly independent.

Now, if the quadrature formula of form (36) is used to calculate the integrals in coefficients of
matrix Ac

N , instead of the system of collocation equations (31), we actually solve a system with matrix

Ã
c
N =

{

∫

Γ
ϕi(x)ψj(x)dΓx

}N

i,j=1
,
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where functions ψi(x), i = 1, N , are defined by formulas (37) and (38). The last matrix can be
degenerate if and only if there exists a nonzero element ϕ(x) =

∑N
i=1 aiϕi(x) ∈ UN , orthogonal to all

ψi(x), i = 1, N , which is impossible, since the system {ψi(x)}
N
i=1 forms a basis in the space UN .

Let us the system of B-splines of the form (9) is used to approximate the unknown potential
density u ∈ Hm(Γ) and UNB

is its linear shell. We choose the operators r̃NB
: Hm(Γ) → VNB

and
p̃NB

: VNB
→ UNB

in the form (18) and (19) respectively and determine the restriction operator
sNB

: Hm+1(Γ) → ΦNB
in the form (28), (29). In this case, the system

Ac
NB

uNB
= fNB

, Ac
NB

= r̃NB
Ap̃NB

, fNB
= rNB

f,

implements the collocation method for solution of equation (23). From Lax-Milgram lemma [31]
follows that under conditions (34) matrix Ac

NB
is non-degenerate and, accordingly, the definition of

operator qNB
in the form qNB

fNB
= Ap̃NB

uNB
is correct. Given the left side of inequalities (24), the

biectivity of mapping p̃NB
: VNB

→ UNB
, the expressions for norms in the spaces VNB

and ΦNB
in

the case U = Hm(Γ), F = Hm+1(Γ) and equality QNB
APNB

u = APNB
u, we obtain the validity of

inequalities (25) for arbitrary uNB
∈ VNB

, in which αm does not depend on uNB
.

Then from the inequalities (24) and (25), Lemmas 3, 10, and Theorem1 we obtain the validity of
following statement.

Theorem 11. For arbitrary f ∈ Hm+1(Γ), m = 0, 1, . . . , the approximate solution uBNB
of equation

(23) obtained by collocation method under approximation of unknown potential density by a system
of functions constructed on the basis of B-splines of m-th degree and the choice of collocation points
that satisfies the condition (34) converges to its exact solution, and there is an estimate

∥

∥u− uBNB

∥

∥

Ht(Γ)
6
C(1 + βt/αt)

ασ
hσ−t ‖f‖Hσ+1(Γ) , 0 6 t 6 σ 6 m, (40)

where h is the maximum area of the grid element on Γ.

Similarly, from the inequalities (24) and (25), Lemmas 5, 10, and Theorem1 we obtain the validity
of following statement.

Theorem 12. For arbitrary f ∈ Hm+1(Γ), m = 0, 1, . . . , the approximate solution uLNL
of equa-

tion (23) obtained by collocation method under approximation of unknown potential density by a
system of functions constructed on the basis of Lagrangian finite elements of m-th degree and the
choice of collocation points that satisfies the condition (34) converges to its exact solution, and there
is an estimate

∥

∥u− uLNL

∥

∥

Ht(Γ)
6
C̃(1 + βt/αt)

ασ
hσ−t ‖f‖Hσ+1(Γ) , 0 6 t 6 σ 6 m, (41)

where h is the maximum area of the grid element on Γ.

7. Error estimation of approximate solution of the Dirichlet problem for the Laplace
equation

Denote by uN (x) the approximate solution of equation (23), obtained by means of considered above
Galerkin or collocation methods, N = NB in the case of approximation by B-splines and N = NL in
the case of Lagrangian approximations. Denote

vN (x) =
1

4π

∫

Γ

uN (y)

|x− y|
dΓy, x ∈ G,G′,
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and estimate the modulus of value

∂α

∂xα
(v(x) − vN (x)) =

1

4π

∫

Γ
(u(y) − uN (y))

∂α

∂xα
1

|x− y|
dΓy, x ∈ G,G′, α = 0, 1, . . . .

Let us
x ∈ R

3\{x̃ ∈ R
3 : |x̃− y| < δ, y ∈ Γ}. (42)

Using Holder inequality, we obtain

∣

∣

∣

∣

∂α

∂xα
(v(x)− vN (x))

∣

∣

∣

∣

6 ‖u− uN‖L2(Γ)

√

∫

Γ

∂α

∂xα
1

|x− y|
dΓy, x ∈ G,G′,

or, taking into account (42),

∣

∣

∣

∣

∂α

∂xα
(v(x)− vN (x))

∣

∣

∣

∣

6
mesΓ

δα+1
‖u− uN‖L2(Γ)

, x ∈ G,G′, α = 0, 1, . . . . (43)

Then from inequalities (24), (43) and Theorems 8–12 follow the validity of the next statement.

Theorem 13. For arbitrary f ∈ Hm+1(Γ), m = 0, 1, . . . , an approximate solution of the problem
(21), (22) obtained by Galerkin or collocation methods under approximation of unknown potential
density by systems of functions constructed on the basis of B-splines or Lagrangian finite elements of
the m-th degree, converges to its exact solution, and there is an estimate

∣

∣

∣

∣

∂α

∂xα
(v(x) − vN (x))

∣

∣

∣

∣

6
C∗(1 + β0/α0)h

m

αmδα+1
‖f‖Hm+1(Γ) , x ∈ G,G′, α = 0, 1, . . . .

8. Conclusions

The paper describes the conditions and evaluations of convergence of Galerkin and collocation methods
for solution of Fredholm integral equation of the first kind for the simple layer potential in case of closed
boundary surface in a three-dimensional space. Approximation of potential density was performed
using B-splines and Lagrangian finite elements of various orders on rectangular grids constructed in
the desired function definition domain. Estimations were obtained for the error of approximate solution
of Dirichlet problem for Laplace equation that is equivalent to the integral equation for the simple layer
potential. The approach proposed can be used to define convergence of other projection methods (the
smallest squares, smallest mismatch etc.) for solving potential theory integral equations that are
equivalent to the boundary value problems for equations of mathematical physics and other types
of finite elements of various orders, constructed on both rectangular and triangular grids in desired
potential density definition domain.
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Mathématique. 7 (R-3), 105–129 (1973).

[10] Polishchuk A. D. Simple and double layer potentials in the Hilbert spaces. Proceedings of 8th International
Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory, DIPED-
2003. 94–97 (2003).

[11] Giroure J. Formulation variationnelle par equations integrales de problemes aux limites extérieurs. Rap-
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Скiнченно-елементнi апроксимацiї у проекцiйних методах
розв’язання деяких iнтегральних рiвнянь Фредгольма першого

роду

Полiщук О.

Iнститут прикладних проблем механiки i математики iм. Я. С. Пiдстригача,

Нацiональна академiя наук України,

вул. Наукова, 3-б, 79060, Львiв, Україна

Дослiджено апроксимацiйнi властивостi В-сплайнiв та лагранжевих кiнцевих елемен-
тiв у гiльбертових просторах функцiй, визначених на поверхнях у тривимiрному про-
сторi. Встановлено умови збiжностi методiв Гальоркiна та колокацiї розв’язання iн-
тегрального рiвняння Фредгольма першого роду для потенцiалу простого шару, еквi-
валентного задачi Дiрiхле для рiвняння Лапласа в R

3. Визначено оцiнку похибки
наближеного розв’язку цiєї задачi, отриманого за допомогою методiв теорiї потенцiа-
лу.

Ключовi слова: потенцiал, iнтегральне рiвняння, коректна розв’язнiсть, лагран-

жева апроксимацiя, В-сплайн, метод Гальоркiна, метод колокацiї, збiжнiсть.
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