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ON THE MODEL AND OPERATIONAL APPROACHES
TO THE CONSTRUCTION OF THE EARTH’S RADIAL DENSITY

A. N. Marchenko
(State University “Lviv Polytechnic”, Lviv, Ukraine)

Abstract. Legendre-Laplace, Roche and Gauss confinuous radial density distributions representing the global trend
of piecewise density profile were used for the creation of simplest stabilizers and the construction of radial density
distribution. In addition, the operational approach was studied that leads to the traditional least squares collocation

method

Introduction

Recently, instead of the standard polynomial
representation of a piecewise radial density (PREM-
model (Dziewonski. and Anderson 1981), etc.) some
famous hypotheses for density distribution (see,
Bullen. 1975) were analyzed especially in view of
Clairaut and Williamson-Adams equations. The latter
leads to the study of the hvdrostatic/adiabatic Earth
and goes back to the Gaussian distribution of the
Earth’s radial density (Marchenko, 1999; Marchenko,
2000). In contrast to Laplace-Legendre and Roche’s
models, the created continuous Gauss’ radial profile is
in a good agreement with the piecewise PREM (see
Figure 1) with mean deviation = 0.1 g/cny’. This fact
leads to the idea to apply such simple trend of the
radial demsity as additional information for the
inversion of seismic data. Thus, the goal of this paper
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is the construction of appropnate stabilizers of
solution of the mentioned iil-posed inverse problem in
the frame of regularization approach.

According to {Bullen, 1975) the oldest solutions of
Clairaut’s equation for the radial density p is
Legandre - Laplace law

plx) = py 22,
s

y=const, )

where x = f¢/R is the dimensionless “radius-vector”

regarding to the mean Earth’s radius R=6371 km; p,=
const and may be considered here as the density at the
origin. The second one is Roche 's law

plx)=p, (l - Kxg): a+bx*,
ta=p. 50, bz o K<0). (2)
Omitting here Darwin’s law (1884) of density, we
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Figure 1. Legendre-Laplace. Roche, and Gauss continucus densities regarding the PREM-model
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note again that special consideration of Williamson-
Adams equation for the parameter @ (which connects
in standard way with seismic velocities V), and I, as

initial data @ = Q‘D(,’f] -~ V(f)f, _%F/(f)i,) leads to its

partial solution as Gauss’ imction

,o(x) = P, exp(— ﬁzxz) 5 fF=censt . (3)
where the power 2 is the lowest power for which wa
may get a non-zero value @ at the origin. Note also
that Taylor series expansion of (1) or (3) yields in
practice Roche’s model (2) if we disregard other
higher powers of x. As a result. we try to construct
below the corresponding stabilizers of solution for
every mentioned model, On the other hand, instead of
such model approach we shall consider the operational
approach in view of the stable solution of studying
inverse problem,

1. Linearization

In accordance with the traditional operational
approach of physical geodesy we shall start from the
"measurements as nonlinear functionals” (Moritz,
1980}. In such a formulation seismic observations will
depend on the Earth's density distribution, so that for
each seismic measurement /=@ we may write

! = Flp(x)]. (4)
Here pfx) denotes the Earth’s radial density
distribution (continuous or piecewise). Further we
shall assume that p(x) may be represented as the sura
of it certain “normal” or “trend” parl pyx) and (he
radial density anomaly:
plx) = p,(x)+ 4p(x). (5)
The function prx) belongs on the whole to some set of
the space La(xe[0.1]) of squarc integrable functions.
In such a formulation the functioval F will present a
mapping of L (xe[0,1}]) into the set of real numbers.
Since we may have some different kinds of
measurements, in the total we shall obtain the different
functionals F, which in the general case are nonlinear
ones. Because pfx) belongs to the infinitely
dimensional space L. and a number of measureroents
or functionals of pfx) alwavs finite, the inverse
problem has not a unique solution. As a rule, an
mstability of solution is accompanied 1o the absence
of unique solution that is caused, for example, by
properties of initial operator and errors of initial
information. In other words, this means in practice
that we have an improperly posed or ill-posed problem
of the determination of the Earth’s density.

[eonesis

Clearly that the direct using (5) may be
complicated in practice. It is possible to show that in
the frame of our assumptions one of the simplest way
is the consideration this inverse problem with respect
to the mean density D¢x) because the function D) is
continuous. In any case such possibility is the subject
of separate paper and we recall here that traditional
way of a sclution of nenlinear problems consists of it
linearization by Taylor’s theorem and further direct
solution of linear problem. Such approach is the base
for methods of data processing (that connects with
possible great number of measurements). Obviously, a
nonlinear problem can be split into linearization and
solutian of system of linear equations. Thus, we come
to the standard iterative nature of that: a solution of
any nonlinear problem may be treated as the
differential improvement of a set of suitable
parameters in the frame of linear problem.

Therefore we start from the linearization of
nonlincar  functionals by  mtroducing  the
approximation px) to the radial density ofx) and
rewrite (3) as

Ap(x) = plx)- p,(x). (©)
where the difference (6) is considered to be small m
(3} as some anomalous density. We assume also that
averaging of (6) for the studying domain is equal to
ZB10 |

All above-mentioned models (1), (2), and (3) have
only p=2 parameters that we reflected below by the 2-
dimensional column vector X of these parameters of
“trend models” and the corresponding column vector
4X of their corrections. So, the following expression
is valid for (4):

J’(x) = F'[X +4X, p, (x) + Ap(x)], (7

Next, Taylor’s expansion of (7) gives
.*.’=F[Xﬂ,p,]+AIAX+I,ﬁp, (8)
by neglecting the second and higher order terms. Here
A 1s the column vector that consists of the ordinary
partial derivatives 4, (k=1, 2) of F[X 0 p,] with
respect o the component X, of the vector X; the

approximate values X, and pfx) are taken instead of
the values X and prx):

A = _éf'_[(;ﬂ_pr,l , )
k

The term (A’ AX) is the scalar product; LAp expresses
the operator L acting on the anomalous density dpfx).
Then the result of linearization represents the next
simple difference

Al(x)= FIX, p(e))- F[Xo.0,(0)] . (10)
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where F[X, p(x)] is the observation; F[X,. p, (x)]
is it approximate value; A/ is the . ohservation minus

computation”. The linearized system (without errors
of observations) can be written now as

Al = Al AX + I 4p, |
e |

A, = A, AX + L, Ap, | (11
!

A, =A AX+ L, 4dp. |
where ¢ denotes the number of observations. On the
whole our function pyx) may be differed from one of
the continuous distributions (1)-(3). For this reason we
shall admit to consider instead of pyfx) a more
complicated function then (1)-(3) for that the
traditional old denotation py(x) is keeping.

2. Least squares collocation

Now we rewrile the system {11) of linear equations,
which was found by the linearization

MN=AdX+Bdp+n . (12)

Here AX is the p-vector (p=2 for one of continuous
models) that consists of the corrections AX, to
parameters of initial model; 4l is the g-vector that
consists of the components (10). The matrix A of
partial derivatives has the dimension (g x p) and B is
the operator, which can be formed from ¢ functionals
L,. Thus, we put

Af,} [A]r FLi

LAl | |AT 1 .

m—;2} A={"?| B=|"" (13)
(4] . 1A L, |

assuming that A has a full rank (p<g). The g-vector n
teflects here the influence of measuring errors
{.noise™); the vector AX and the anomalous density
Ap should be determined from various kinds of
measurements in (12). Thus, to our own surprise we
have got a basic model (12) for the determination of
the parameters AX and 4p in the frame of least
squares collocation method.

As a result, the operational approach to the
considered inverse problem leads to well-known
solution of the system (12}, which may be represented
formally in the traditional form

AX = [A'[-(Cn #C) A}l AT(C,+C, )AL (14)

8p=C,(C, +C,,) ' (M-A8X), (5
and that are obtained in (Moritz, 1980) for solution of
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basic problems of physical geodesy under the least-
squares principle with the condition (12):

STCA._‘._Is+nTCM'En =min . (16)
Here the following notations are adopted: we use in
(14), (15) two “signal” vectors

s=Ap t=BAp , amn
and the next covariance and cross-covariance matrixes

C,, =cov(s,s), C, =cov(s,t),
€, =caultry s €0 (18)

where the last covariance matrix represents the
mathematical expectation of “noise” n and reflects
influence of measuring errors. Thus we come (o the
least-squares collocation solution {14), (15) of the
system (12) as the corresponding variational problem
(16). As well-known this solution admits a certain
statistical treatment.

Note also that collocation method can be
considered as a special version of Tikhonov's
reguiarization of a solution of improperly posed
problems (Tikhonov and Arsenin, 1974). For this
reason, we shall treat collocation as a siable linear
estimation that was developed in the frame of the
operational approach. As a matter of fact, & real
achievement of stable solutions is possible only by
involving seme additional information about the
Earth's density distribution. The latter is reflected by
the equations (14), (13), where such additional
information represented in the generalized form by the
covariance function and covariance matrix Cy of the
anomalous density. Other covariance matrixes C,, and
Cy can be constructed by means of the covariance
propagation rule (Moritz, 1980). Now we note that the
determination only the Earth’s density trend part in the
considered way (14) reguires also the necessity of the
above covariance matrixes, just for the siable linear
estimation of this part. Naturally that such solution
{14) (and (13)) leads to additional difficulties, if these
covariance function of the anomalous density and
covariance matrixes must be constructed. For this
reason, we shall consider some another approach to
the determination of AX or corrections-vector in one
of the imitial models in the frame of the standard
regularization method.

3. Application of the regularization method

Now we start from the traditional correction of the
parameters in (1), (2), and (3) in the frame of the well-
known linearized model

Al= AAX + v | (19)



or in practice the system of linear equations in the
traditional least-squares adjustment by parameters
with standard vector v, which is reflected an influence
of measuring errors and accuracy of the
approximation. The model (12) may be treated as the
generalization of the standard version (19). It is
obvious that the first terms of (12) or (19) can be
considered in the g-dimensional Euclidean space R®
The second term of (12) includes the anomalous
density 4p and can be treated as an element of the
Hilbert space L.

For this reason we return to the solution of the
traditional system (19) and recollect again that an
inverse problem is called by the properly posed
according to Hadamar if it solution satisfies to the
following requirements:

»  existence:
*  unigueness,
o stability.

It is well-known that the system (19) has a unique
solution in the following form
AX=(ATCA)'ATCial, Qo)
if the matrix A has a full rank (p<g). The expression
(20) 1s the solution of the normal system of linear
equations that coincides with the main or normal
pseudosolution, Thus we come to the conclusion that
first two conditions of the properly posed problem are
satisfied for (20), if parameterization of density
distribution is chosen. The third requirement connects

i practice with continuity of the solution AX on the
~nitial data® Al Such dependence is not always
continuous. Hence the third requirement may be
violated (Tikhonov and Arsenin, 1974) and the
corresponding problem transforms to the improperly
posed  problem. There are many examples
(Marchenko, 1999; Marchenko, 2000, etc.) where the
construction of normal solutions for the Earth’s
piecewise radial profiles (1), (2), and (3) leads just to
the unstable results if all (two) parameters of models
for every shell are determined. Note also that this
problem was solved by means of the determination
only one parameter for every shell with the application
of some additional conditions, If the basic covariance
function of the anomalous density is absent, we can
expect that such a situation should be better if instead
of the least squares condition (16) some another
similar principle will be applied (Tikhonov and
Arsenin, 1974), for instance, in the {ollowing
traditional form

v'C, 'v+ 9 = in | (21)

nn
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where 2 is the so-called stabilizer of solution, which
represents on the whole non-negative functional; A is
the parameter of regularization. There exist some
basic approaches for A determination. For the problem
of the radial density determination one of the simplest
methods was build recently by (Abrikosov, 2000) and
further we shall consider such a situation when this
parameter 4 is chosen,

Next, the stabilizers for each shell separately
will be applied as the following quadratic functionals

Xret

Q= J'A,.::(x)2 d . (22)

i

Kiel 14 \2
Q, = J :!‘AIO(K)Z + (i——i(—xlj de . (23)
2 L

which correspond to the squared norms of Soboley
spaces qu =L, and Hle respectively. Here x, and
x,-; represent two boundary of one shell, It is evident
that for the whole Earth as one shell x;=0 and x=1. Tt
is evident that these stabilizers 3, and €, are different
for conditions of smoothuess and the approximation of
derivatives and functions within every shell.

As well-known the solution of the variational
problem (21) has the next unique form

— i A | g
AX, = [ATCn;A + aF} ATCpal, (@4
where the matrix F is nothing else but some stabilizer

quasidiagonal matrix (shell by shell) with dominated
main diagonal, which reflects the including of the
stabilization regarding to (20); 4X, is the estimation
of corrections into parameters by means of iterations
in the frame of such regularization technique. Since
the formula (24) reflects only one step of iterative
estimation, the constiuction of the matrix F should be
considered as limited case at the neighborhood of zero
corrections to the parameters corresponding (1) or (2)
or (3) separately. In other words we shall consider
(24) as the same standard algorithm for every step.

Thus we come o three possible stabilizers for
every studying model and start here from simplest
Roche’s law. In this case the difference between initial
and improving density models can be written as

Ap(x) = Aa+ abx? (25)

where the coefficients de and 45 should be
determined in the frame of (24) for one iteration.
Substitution (25) into (22) and (23) after integration
leads immedsately to the following stabilizer matrixes
respectively
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O. Mapuenxo
TIPO MOJEJIBHMI TA OIMEPALUMHMH ITIXO0 JI0 MOBY IOBU
PATIAJIBHOI T'YCTHUHHM 3EMJI
Pesiome
Henepepsui pazianpHi posnoaita Jlexanapa-Jlannaca, Powa i Mayca, #Ki 0TWCYIOTE TI00ATRHHE TPEHA KYCKOBO-
HENEPEPBHOTO Npoding rycruny, 6y BHKOPHMCTAHL A1 No6yI0BH Ha#npocTinmx cTabimizaTopib Ta BH3HAYMEHHSA
pamianeHoi rycrusn, KpiM nporo 6ys posrsiHyTHH ONEpaLifHME MXIA, AKMI TIPHBOAMTL IO METOLY CEpPeAHbOi
KBAAPATHIHOT KOJIOKAL],

A. Mapuenko
O MOJIEJIbHOM M OTIEPALIMOHHOM TTOAXOME K ITOCTPOEHUIO
PAJTUAJIBHOM TLTIOTHOCTY 3EMJTM
Pesrome

Henpepsisusie paguaneisie pacnpeienchus flesxanapa-Jlapaaca, Poma u aycca, ommewBatomiie ri1o6ansHeii
TPCH,-'_I K}fCO‘H—IO-HE‘,l‘l‘pCp]:'lBHOI‘O pElCT[pB,ElCJ‘ICHﬁSI ILUIOTHOCTH, OBLTH HCMOJB30BAHBI Fanisl| HUCTpGGH.‘HH HpOCTﬁﬂLﬂI{X
craﬁnm{sa"mpos H ONMpCOciIcHHA pa,uma_usnoi’{ TIIIOTHOCTH 3CM.-'[H. OTHE.‘II:HDS p‘dCCMDTpE?HHG 3810394 B p:éL\{Ka_x
OIEPAITHOHROT O IMoaxoIa HpHBOﬂHT K HBGGXO.HHL-IOCTH HCITONB30BAHHS METONA C]JE-}I[.HEﬁ KBBAP&TH‘IGCKOTFI
KOJINOERAHY,




