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ON THE DETERMINATION OF THE REGULARIZATION PARAMETER
IN THE VARIATIONAL PROBLEM OF DATA PROCESSING

0. A. Abrikosov
(State University “Lviv Polytechnic”)

Abstract. Three different principles were considered for the determination of the regularization parameter in the
variational problem of data processing These principles are based exclusively on properties of the covariance mat-
rixes and they are treated as analogies of traditional principles of misclosure, quasisolution and smoothing func-
tional, respectively It 1s remarkable, that the classical case of the least squares collocation (with the regularization
parameler equal to 1) was obtained as one of the rools of the equation corresponding to the misclosure principle.

Introduction

Let us consider the famous solution of well-known
variational problem of data processing. The equations
of observations without a systematic part (Moritz,
1980) are

l=s+n. (D
where 1 is the observatien vector, s is the signal vector,
which is characterized by the covariance matrix C
and n is the noise vector, which is characterized by the
covariance matrix C,_ . By using the standard
variational principle (Moritz, 1980)

©,;=pn'Cn+as"Cs=min . ()
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with the non-negative weighting coefficients o and f3,
we can obtain estimations for signal and noise in the
following form:

.§ = C,\'Y (C.S'.\ + ‘YCI?;'J) ; l I ) (';}
n=yC,(C, +yC,) 'l (4)

where
e L (5)
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In view of (3) and (4), we can rewrite (2) as
(O n' Cln+ YSTC;JS =min. (6)

The functional (6) is nothing else but Tikhonov's
smoothing functional (Tikhonov and Arsenin, 1986) in
which the quadratic form s"C;'s is the stabilizer and
v is the regularization parameter. It is obvious, that the
case y=1 leads to the traditional least squares collocati-
on solution. Therefore, we can treat least squares col-
location as the particle case of Tikhonov’s regulariza-
tion (Neyman, 1979). Nevertheless, our goal consists
of the determination of the regularization parameter y
in the frame of the variational problem (6),

1. Misclosure principle

Traditional approach to the determination of y is based
on misclosure principle (Tikhonov and Arsenin, 1986:
Neyman, 1979; Morozov, 1987) which in the terms of
(3) and (4) may be written as

=38 =[] =e,. ™
where the value e, characterizes a-priori magnitude of
the misclosure (Morozov, 1987} and the norms is usu-
al Euclidean vector norm (Horn and Johnson, 1986).
However, we should keep in mind that in the model
(1) the noise vector n is characterized by the a prior
covariance matrix C,m whereas the estimation (4) of
the misclosure is characterized by the a posteriori co-
variance matrix

Cﬂﬁ = ’J"‘rzC.'T?’? (C-ﬁ.\ + ‘YCHH‘) i (C\.T + CIH?) X

(Cat¥Cu) €,
which may be derived in elementary way by applying
the famous covariance propagation e (Moritz, 1980)
to the estimation (4). Now il would be natural to
consider the next interesting case

C,, - C..l=[ac
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for the further determination of v. Here the norm is
Euclidean matrix norm (Horn and Johnson, 1986):

(8)

‘ =min (9)
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|A[ = Trace(A”A) = Trace(AAT)  (10)

and A is a real matrix of general kind.
After some obvious transformations, the residual

matrix AC,, may be represented in the form
AC,, =C,(C,, +~vC,) ' x
[—}!ZCM T2y . +Cm]x (11)
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Because the covariance matrixes C, and C, are

"

positive defined (Moritz, 1980), we can see that
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extremal properties of the matrix AC , are defined
only by the term

DH(Y = '_YEC + 2":.’(?”” i+ C)‘.\: ' (12)
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As a result, the requirement

ID, ()]

= min (13)

may be considered as an equivalent of the requirement
(9) and treated as covariance matrix anmalogy of
misclosure principle (7).

Minimum of the norm (13) holds for those values
of v which fulfil to the equation

(1-y)x

Al TP - (]4)
[— V.| +2v|C

52 +He. . C. )l: 0,
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where the “scalar product” of symmetric positive
defined matrixes C;, and C,, is introduced by
analogy with the norm (10):

(€ C.) = Trce(C,.C

¥5 2

) = Trace(C,,C,,).(15)
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From (14), we get immediately first remarkable
root of this algebraic equation

y=1. (16)
It does not depend on covariance matrixes C,; and

C,, and corresponds to traditional least squares

collocation solution of the system (1). Therefore, we
come to the important conclusion: in view of (9), the
least squares collocation solution satisfies to the
covariance matrix misclosure principle. Note herc that
the value (16) provides zero value of the first order
derivative of the matrix (12) with respect to y:

A
b, () =21-7)C,,. (17)
oy

From the square equation
2 i1t i 2 - ~
. ﬂf( Hcmri 7, 2Y;!C mr|% + ( 537 (-’

=0, (18)
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that follows from (14) for y #1. we can find second

appropriate toot
iC &5 F Cx‘TJ‘J )

yose g o lagua st e (18)
IC.l”

This also provides minimum of the norm (13) and
realizes the solution of (6) under the misclosure
principle.
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2. Quasisolution principle

Another principle, which can be used for the
determination of the regularization parameter, 15 so-
called quasisolution principle (Morozov, 1987). It may
be writlen in the terms of the estimation (3) as

8] = e, . (19)
where the value e, is connected with an a-prion
information about the size of the domain which
consists of the solution. In our case such information
is provided by the a-priori covariance matrix of the
signal vector s together with the a-posteriori
covariance matrix of the estimation (3):

L, =G0, 10,00, +C, )
(C.!'.\ + '}!C JN‘I) ! C.i‘é‘
which is obtained by applying the covariance

propagation rule (Moritz, 1980) to (3). On this ground,
we are considering again the next special case

(20)

‘iCm &g 5 li =[AC,, | = mm 1)

where the residual matrix AC_ may be represented
in the form

AC AN = C M (C hiy + J}(C nn )_'1 x
l*c,, +2rC, - €, x (22)

(C.!-s i YC nn)ul C.s-s :
It is evident, that extremal properties of the matrix
(22) are defined only by the term

D (y)= '\{ECW + 2’]((: s Cs,‘_ . (23)
Therefore, the requirement
D, (v} = min (24)

may be considered as an equivalent of the requirement
(21) and treated as covariance matrix analogy of qua-
sisolution principle (19).
Minimum of the norm (24) holds for those values
of v which fulfil to the third-order equation
r’|c

i

‘3 + 35“2 (Cx.s' 2 Crm) 35
= (C,s'.s 3 Cmr )]_ HC!T

This equation may be solved by iterations on the
ground of recurrence formula

| (25)
Y[ZJ!C.‘-.\

| =o.

s |l )
PICuI +3(C..C.0) +2C |

— (26)
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with the starting value y=0. Because in (25) and (26)
all matrixes are positive defined, we can see that the
equation (25) has only ome positive rool, which
belongs to the interval

Oy (27)

3. Smoothing functional principle

Third principle, which can be wused for the
determination of the regularization parameter, is so-
called smoothing functional principle (Morozov,
1987), which is provided by joint application of the
misclosure and quasisolution principles.

So, once again, we will study the next minimum

D, ol

In the terms of norms (13) and (24) we come to the
third-order equation

L4 3y? [(C 3 ,C = J+
l: +lC ((_ o ;;n)}+ 2

(c_\..s.,c,,,, )=, =o.

+[D, ()| = min . (28)

it
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It may be shown, (hat this equation has only one

positive root and may be solved by iterations with the

starting value y=0. Iterations may be realized by the

Newton recurrence formula

Y= Lm" : (30)
21,01

in which

L =47 |C, | +

3'-{2[({3,,.,\,(.‘,?,,)—\[(:,,,,;2]+ (31)
HCS “: - (C,s'.x :Cnn) s

3y° (C“,CM ;;c”_:“-zb s
I, = (C,..C)+[Cl

4. Numerical testing

Numerical examination of the above considered
approaches to the determination of the regularization
parameter was carried ont on the basis of processing
of 2200 modeled gravity anomalies, distributed over

Meoaesis

Austria area. In this modeling, gravity anomalies were
computed by means of EGMY6 (Rapp and Nerem,
1995) gravity model starting from the degree 181 up
to degree 360. Such field was considered as the
residual anomaly field and was processed by means of
the formula (3) with adopted the vadance of the noise
0.01 mGal® whereas the variance of the residual
gravity anomalies was about 210 mGal®. Results of the
comparison of predicted signals with the modeled
gravity anomalies are presented in the Table 1.

Table 1. Results (mGal) of gravity anomaly prediction

Formula for the regularization parameter

ae) [ a8 [ @6 [ (30
Min. -0.030 -0.485 -0.023 -0.023
Max. 0.031 0.501 0.021 0.021
Mean 0.000 0.000 (.000 0.000
Std. dev. 0.003 0.035 2.002 0.002
v | 144 (3,499 (0.499

As we can see, all approaches led to centered
estimations of the signal, Moreover, value of standard
deviation of residuals is dependent on the value of the
regularization parameter. The last, in fact, provides a
level of the signal smoothing, Although the relatively
great minimal and maximal residuvals take place at the
border of the data area in the case of application of the
misclosure principle with formula (18), we abtain the
standard deviation value essentially smaller than a
priori given value of errors (0.1 mGal).

Conclusions

As a result, we have realized three different principles
for the determination of the regularization parameter
inn the variational problem of data processing. These
principles are based exclusively on properties of the
covariance matrixes and they are treated as analogies
of traditional principles of misclosure, quasisolution
and smoothing functional, respectively. It is remarkab-
le, that the classical case of the least squares colloca-
tion (with the regularization parameter equal 1o 1) was
obtained as one of the roots of the equation corres-
ponding to the misclosure principle. All considered
principles were tested numerically and led to appro-
priate results of gravity anomaly prediction.
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0. Abpuxocos
[TPO BURHAUEHHS [TAPAMETPY PETYJISIPM3ALLT V BAPIATTIMETH 3A TAUTI ObPOBKU JTAHWX
Peztome
PosrasHyTi TpU pisHI NPHHIMIH BU3HAYEHH MAPAMETPY peryspusanii y Bapiawiinii saaaq oOpobin nanmx. 1li
TPHHIMIH TPYHYEOTLCA JIMIIE HA BIACTHBOCTAX KOBAPIAILHHUX MapHUb ¥ TPAKTYHOTHCS SIK AHANOT TPaAMLIAHIX
NPMHIAITB HEB 3K, KBAZIPO3B A3KY Ta 3TXALKYIOMOTe (yukuiodany. Kruacuuuuii BHNAJOK CEpeiHbOi Ksaapa-
THYHOI KOTOKALii (3 mAPAMETpoM pepyuipusauil, pisruM 1) OyB oaepiKaHHii K OJMH 3 KOPEHIB PIBHAHHA, WO
BIOTIOBiAA€ TIPHHIMITY HCB A3KH.

0. ABpuxocos
OB OFIPEJIEJIEHWM IMAPAMETPA PET'VIISPU3ALIMH B BAPHAITMOHHOM 3AJAUE
OBPABOTKH JAHHBIX
Pestome
PaccMOTpEHBl TPH PU3IMYHLIX TIPHHIMIIA ONPEICNCHEA TNAPAMETPA PEryApH3auMd B BAPMALMOMHOH 3aj1a4e
00paBOTKM JAHHBIX, DTH NPUHIHNLI OCHOBAHBI TOJBKO HA CBOMCTBAX KOBAPHALMOHHBIN MATPHI M TPAKTYIOTCA Kak
AHAJNOTHH TPAAHIMOHUBIX NMPUHLMIIOB HEBA3KH, KBAZHPELICHHA M CIMKMBArOmEro (yuximounana. Knaccruieckmi
cnyail cpeaHEH KBaapaTHUECKOil KoMmoKauuy (C MapaMerpoM peryTIpH3alfy, PaBHeM 1} noryyed Kak oOMH U3
KOPHCH VPABHEHISI. COOTBCTCTBYIOLIETO NPHHILANTY HEBA3KH,



