$$T_{o} = T_{1} - \frac{\Delta x \cdot \kappa_{1} + \Delta y \cdot y_{1}}{\Delta x^{2} + \Delta y^{2}} (T_{2} - T_{1}).$$

Принимая обозначения А. Н. Дейча, имеем

$$T_0 = T_1 + a_1 (T_2 - T_1). (5)$$

Обратимся к уравнениям (4). Подставляя в них $\Delta y/\Delta x$ вместо k, находим

$$y_m = \frac{\Delta x y_1 - \Delta y \cdot x_1}{\Delta x^2 + \Delta y^2}; \quad x_m = \frac{\Delta x y_1 - \Delta y \cdot x_1}{\Delta x^2 + \Delta y^2} \Delta y.$$

С обозначениями А. Н. Дейча $y_m = b_1 \Delta x$, $x_m = b_1 \Delta y$. Непосредственно из чертежа $Om = \delta + \varepsilon - \delta_0$, где

 $\varepsilon = \frac{3 \cdot 15^2}{32 \, \rho''} (T_2 - T_1)^2 \sin 2\delta$ — стрелка прогиба суточной парал-

лели. Если ϕ — угол, образованный следом звезды с осью абсцисс, то $(Om)'' = M \cdot x_m \sin \phi = -M y_m \cos \phi$. Принимая во внимание, что

$$\sin \varphi = \frac{\Delta y}{\sqrt{\Delta x^2 + \Delta y^2}}; \quad \cos \varphi + \frac{\Delta x}{\sqrt{\Delta x^2 + \Delta y^2}};$$

масштаб $M=rac{15\,(T_2-T_1)\cos\delta}{\sqrt{\Lambda\,x^2+\Delta\,y^2}},$ находим $(O\,m)''=b_1\,(T_2-T_1)\cdot 15\cos\delta$, а

$$\delta_0 = \delta + b_1 (T_2 - T_1) \cdot 15 \cos \delta + 1.02 \cdot 10^{-4} (T_2 - T_1)^2 \sin 2\delta.$$
 (6)

Формулы (5) и (6) решают поставленную задачу. Они тождественные формулам (3), если не считать отсутствия в (6) члена лб?

 $\Delta \delta_3 = rac{\Delta \delta_3^2}{
ho''} \ {
m tg} \ \delta$. Этот член учитывает несовпадение по склонению

оптического центра со следом звезды. Обычно его значение не превосходит нескольких сотых долей секунды и может не приниматься во внимание.

Вычисления долготы по 18 звездам способом Цингера с применением формул (5) и (6) привели к результату, который отклонился от точного значения на 0.006 с.

Таким образом, полученные формулы могут найти применешие для обработки фотографических наблюдений одной звезды. Они несложны и обеспечивают достаточную точность вычислений.

Список литературы: 1. Альбицкий В. А. и др. Курс астрофизики и звездной астрономии. — М.: Гостехиздат, 1951. 2. Кениг А. Фотографическая истрометрия. Методы астрономии / Пер. с англ. — М.: Мир, 1967. 3. Коваленко В. А., Колгунов В. М. Об опытных астрономических наблюдениях фотографическим способом. — Геодезия и картография, 1976, № 3.

Статья поступила 19 апреля 1980 г.

Я. М. КОСТЕЦКАЯ, Ю. И. ПИЛЬКЕВИЧ

СТАТИСТИЧЕСКОЕ ИССЛЕДОВАНИЕ ТОЧНОСТИ СЕТЕЙ ТРИЛАТЕРАЦИИ

Из теории имеющихся на производстве свето- и радиодальпомеров известно, что погрешности измеренных ими линий делятся на две группы. Одна группа — погрешности, не зависящие от длины линии S, а другая — погрешности, пропорциопальные ей. На основании этого квадрат средней квадратической погрешности измеренных линий принято представлять в виде [5]

$$m^2 = a^2 + (bS)^2, (1)$$

где m — средняя квадратическая погрешность измеренной лишин; a и bS — средние квадратические погрешности, отображающие суммарное действие погрешностей соответственно первой второй групп.

Поэтому представляет интерес изучение влияния характера погрешностей, измеренных дальномерами сторон на точность сетей трилатерации. В настоящей статье приведены результаты исследований этого вопроса, выполненных методом имитационного моделирования на небольших макетах сетей трилатерации.

Процесс исследования заключался в моделировании погрешностей измеренных сторон, искажении ими сторон идеального макета, строгом уравнивании сети, определении истинных погрешностей уравненных сторон макета и их средних квадратических погрешностей, а также в вычислении истинных сдвигов пунктов макета, вызванных погрешностями уравненных сторон. При моделировании принимали, что суммы погрешностей первой и второй групп — независимые случайные величины, распределенные нормально. Каждую из суммарных погрешностей моделировали отдельно. При этом считали, что стандарт первой суммарной погрешности a=1 см, а второй $bS=1\cdot 10^{-6}S$ см, $m^2=[1^2+(1\cdot 10^{-6}S)^2]$ см. (2)

Такие значения стандартов приняты для упрощения вычислений. Отметим, что они не ограничивают интерпретационных позможностей полученных результатов, так как сумма двух случайных нормально распределенных величин является тоже случайной величиной с таким же распределением, а изменение стандарта погрешностей в N раз, вызовет изменение каждой погрешности при моделировании в N раз.

Уравнивание сетей выполняли на ЭВМ M-222 с учетом всех позникающих в сети условных уравнений. Истинную погрешность Δ уравненной стороны определяли, суммируя введенную и нее погрешность и поправку, полученную из уравнивания. По

нстинным погрешностям уравненных сторон вычисляли их среднюю квадратическую погрешность

$$m_{y} = \sqrt{\frac{p \Delta \Delta}{n}}, \qquad (3)$$

где n — число сторон в макете; p — вес стороны, принимаемый обратно пропорциональным квадрату средней квалратической погрешности измеренной стороны.

Исследовано четыре макета сети, представляющей собой строенный ряд из 34 идеальных треугольников (рисунок):

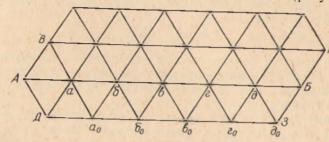


Схема макетов сети.

первый макет — свободная сеть из равносторонних треугольников со. сторонами длиной 12 км;

второй макет — эта же сеть, но пункты A, B, B и Γ считали исходными:

третий макет — свободная сеть из равнобедренных треугольников со связующими углами, равными 80°, и длиной основания 12 км;

четвертый макет — сеть третьего макета, но пункты A, B, B и Γ считали исходными.

Все макеты построены из треугольников, форма которых близка к наивыгоднейшей [4, 7]. Макеты выбраны так, чтобы получить представление о распределении погрешностей положения пунктов в свободных и в жестких сетях трилатерации оптимального построения.

При исследованиях считали исходные пункты безошибочными. Вес стороны, равной 12 км, принимали равным единице. Подставляя это значение стороны S в формулу (2), получаем, что средняя квадратическая погрешность единицы веса $m=\sqrt{1^2+1,2^2}=1,6$ см.

Уравнивание первого и третьего макетов выполняли за условия центральных систем, а второго и четвертого — за условия центральных систем, координат и дирекционных углов.

По истинным погрешностям уравненных сторон вычисляли продольные и поперечные сдвиги пунктов диагонали AB, расположенной в середине сети, и пунктов диагонали $\mathcal{A}3$, находящейся на краю сети. Значения сдвигов пунктов диагоналей AB

п ДЗ определяли относительно левого крайнего пункта диагопали, т. е. относительно пунктов А и Д. Полученные таким образом сдвиги являются случайными величинами. Чтобы найти
средние квадратические сдвиги, необходимо выполнить многократные опыты, т. е. по описанной выше методике k раз выполнить исследования каждого макета сети и по k реализаций
сдвигов определить их средние квадратические значения, точпость которых зависит от повторности опыта. Каждый макет
сети исследован 20 раз. При этом, как показывают расчеты,

Таблица 1 Характеристика точности уравненных сторон, см

Погрешность	Макет сети						
	первый	второй	третий	четвертый			
mmax mmin mcp mcp	1,65 1,19 1,40 0,88	1,69 1,15 1,39 0,87	1,59 1,25 1,42 0,89	1,57 1,18 1,37 0,86			

выполненные в работе [6], средние квадратические сдвиги получаются с относительной погрешностью, не превышающей 30%.

Точность положения пунктов строенного ряда трилатерации из равносторонних треугольников изучена в работах [2, 3]. Для весов продольных и поперечных сдвигов выведены формулы. Поэтому на первом макете имелась возможность проверить правильность принятой методики исследований. Полученные результаты сведены в табл. 1 и 2.

В табл. 1 приведены для каждого макета максимальная и минимальная средние квадратические погрешности уравнениых сторон, а также среднее значение из 20 средних квадратических погрешностей. Эти данные свидетельствуют, что точность уравшенных сторон во всех макетах практически одинакова, т. е. не зависит от наличия жестких пунктов и в среднем ее можно характеризовать при принятой нами точности измерений средней квадратической погрешностью 1,4 см. Точность уравненных сторон только на 12,5% выше точности измеренных сторон. Этот результат хорошо согласуется со средней квадратической погрешностью уравненного элемента сети, определенного по формуле Ансермета [1]. Используя ее, получаем для свободных макетов $m_y = 1,45$ см и для жестких $m_y = 1.41$ см.

В табл. 2 приведены средние квадратические продольные и поперечные сдвиги оцениваемых пунктов. В числителях ланы продольные сдвиги, а в знаменателях — поперечные. В колонке первого макета в скобках приведены сдвиги, рассчитанные по формулам из работ [2, 3]. Хорошая согласованность теоретических и эмпирических средних квадратических сдвигов говорит о правильности выполненных исследований. Кроме этих резуль-

татов, в табл. 2 даны частные от деления значений сдвигов на среднюю квадратическую погрешность измеренной стороны, наз-

нанные «нормированными сдвигами».

Анализируя данные табл. 2, видим, что, во-первых, изменение связующих углов 60... 80° не влияет практически на точность положения пунктов, а, во-вторых, наличие исходных пунктов вызывает существенные изменения в значениях сдвигов. Од-

Таблица 2 Средние квадратические продольные и поперечные сдвиги

1	Макет										
П ункт	первый		второй		третии		четвертый				
	сдвиги, см	норм. сдвиги	сдвиги,	норм. сдвиги	сдвиги, См	норм.	сдвиги,	норм. с двиг			
7/2	1,56 (1,78)	0,98	1,48	0,92	1,40	0,88	1,25	0.78			
	2,09 (2,14)	1,31	1,87	1,17	1,87	1,17	1,89	1,18			
б	1,91 (1,99)	1,19	1,89	1,18	1,85	1,16	1,80	1,12			
	4,40 (4,11)	2,75	2,48	1,55	3,58	2,24	2,71	1,69			
В	2,03 (2,17)	1,27	1,71	1,07	1,61	1,01	1,79	1,12			
	6,61 (6,34)	4.13	2,36	1,48	7,00	4,38	2,11	1,32			
2	2,25 (2,32)	1,41	1,82	1.14	1.83	1,14	1,63	1,02			
	8,51 (8,70)	5,32	2,11	1.32	9,39	5,87	2,25	1,41			
0	2,46 (2,50)	1,54	1,51	0,94	2,06	1,29	1,40	0,88			
	10,42 (11,17)	6,51	2,27	1.42	11,80	7,38	2,91	1,82			
Б	2,82 (2,79)	1,76		14/1/1	2,06	1,66		111			
	13,44 (13,74)	8,40	_	_	15,13	9,45	-	-			
a ₀	1,45 (1,60)	0,91	1,39	0,87	1,41	0,88	1,36	0,85			
	2,73 (2,40)	1,71	2,73	1,71	3,13	1,96	2,55	1,59			
б ₀	2,40 (2,09)	1,50	2,47	1,54	2,38	1,49	2,35	1,48			
	5,51 (4,11)	3,44	6,27	3,92	6,58	4,11	5,31	3.32			
80	2,37 (2,48)	1,48	2,57	1,61	2,42	1,51	2,40	1,50			
	7,41 (6,34)	4,63	8,98	5,61	8,96	5,60	6,63	4,14			
20	3,03 (2,82)	1,89	3,03	1,89	3,17	1,98	2,90	1,81			
	10,39 (8,70)	6,49	12,84	8,02	13,66	8,54	8,24	5,15			
3	3,58 (3,12)	2,24	3,44	2,15	3,64	2,28	3,23	2,02			
	14,60 (11,17)	9,12	16,81	10,51	17,06	10,66	15,73	9,83			
								1000			

нако намного уменьшаются только сдвиги пунктов, расположенных в том же ряду треугольников, что и исходные пункты. Сдвиги пунктов, находящихся на краю сети, под действием жестких пунктов практически не меняются. При этом наблюдается даже тенденция к увеличению их сдвигов в жесткой сети по сравнению со свободной.

Результаты исследований, полученные на первом и втором макетах, применимы для анализа точности сетей трилатерации с любыми длинами сторон, измеренных любыми дальномерами. Для этого нужно «нормированные сдвиги» умножить на среднюю квадратическую погрешность измеренной стороны.

«Нормированные сдвиги» третьего и четвертого макетов, строго говоря, можно использовать только в тех случаях, когда bS/a=1,2. Например, для светодальномера «Кварц» эти результаты применимы в сети трилатерации, состоящей из равнобедренных треугольников с длиной основания 6 км, поскольку в этом случае $2\cdot 10^{-6}\cdot 600\ 000/1=1,2$. При 1< bS/a<1,5 они дают возможность выполнить приближенный анализ сдвигов.

Список литературы: 1. Бурмистров Б. А. Основы способа наименьших квадратов. — М.: Госгеолтехиздат, 1963. 2. Костецкая Я. М. Исследование закономерностей наконления погрешностей положения пунктов в силошных сетях трилатерации. — Геодезия, картография и аэрофотосъемка, 1974, вып. 19. 3. Костецкая Я. М. Поперечный сдвиг пунктов в сетях трилатерации. — Геодезия, картография и аэрофотосъемка, 1978, вып. 28. 4. Монин И. Ф. О выгоднейшей форме треугольника в трилатерации. — Геодезия, картография и аэрофотосъемка, 1979, вып. 29. 5. Проворов К. Л., Носков Ф. П. Радиогеодезия. — М.: Недра, 1973. 6. Телеганов Н. А. О статистическом исследовании влияния ошибок исходных данных на моделях триангуляционных сетей. — Тр. МИИГАиК, Геодезия, 1973, т. 30. 7. Фукс Ф. А. Влияние формы треугольника на точность сетей трилатерации. — Тр. МИИГАиК, 1971, вып. 58.

Статья поступила 17 марта 1980 г.

УДК 528.35

'Я. М. КОСТЕЦКАЯ

О ВОЗМОЖНОСТИ ПОВЫШЕНИЯ ТОЧНОСТИ СЕТЕЙ ТРИЛАТЕРАЦИИ

Один из основных показателей, характеризующих качество плановой геодезической сети — точность положения ее пунктов, о которой дают хорошее представление средние квадратические продольные и поперечные сдвиги. В сетях трилатерации о точности положения пунктов можно судить на основании поперечных сдвигов, так как они всегда в несколько раз больше продольных:

Исследования [2, 3, 5] показали, что поперечные сдвиги пунктов сети трилатерации определяются в основном двумя факторами: точностью измерения сторон сети и количеством сторон, отделяющих оцениваемый пункт от исходного. В геодезическом производстве в настоящее время широко используют светодальномеры 2СМ-2, СМ-3, ЕОК-2000 и другие, в которых точность измерений практически не зависит от длины линии [4, 6]. Поэтому при создании этими дальномерами сети трилатерации более выгодно строить ее из длинных сторон,