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Abstract: The article draws attention to the fact that in 
addition to periodic empirical signals, whose model is a 
periodic function, there are signals that behave like periodic, 
but the period of their values repetition is no longer constant 
and changes in some way. An illustrative example is 
electrocardiograms (ECGs) obtained during or after an 
impact of some “exciter of calm”, for example, physical 
exertion, on the patient. How to study periodic signals 
with a variable period (PSVP)? The literature review 
shows that until recently there has been no scientifically 
substantiated answer to this question. Therefore, the 
problem of developing information technologies (IT) for 
doing research into PSVP is relevant both from 
theoretical and applied point of view. To solve the 
problem, we propose to use an approach, whose essence 
is the triad “model-algorithm-program”. Certain results 
in this direction have already been achieved in our 
previous works. Particularly, we give a definition of 
periodic functions with a variable period (PFVP), 
consider examples of trigonometric FVP (TFVP) and 
record their variable periods, develop a method for the 
formation of orthogonal TFVP system, and determine a 
scalar product for the functions of the system. In this 
paper, a Fourier series for PFVP is written, and formulas 
for finding its coefficients are obtained. As an example, 
a finite Fourier series is constructed for the analytically 
given PFVP, and it is shown that with number of 
coefficients increasing, the series approaches the 
function itself, which confirms the correctness of the 
theoretical results obtained. 

Taking into account that for the vast majority of 
empirical PFVP their variable period is unknown, the 
question of its evaluation is raised. For the case of an 
ECG, obtained after physical activity, evaluations of its 
variable frequency (VF) and variable period (VP) are 
derived. The evaluation of a VF turned out to have the 
form of exponential function, which is determined by 
three parameters. The IT developed for the study of 
PFVP provide the opportunity to explore real PSVP, in 

particular, ECGs with VP, and the obtained numerical 
values of the parameters can be used in diagnostic tasks 
and decision making support. 

Key words: variable period, electrocardiogram with a 
variable period, periodic functions with a variable period,  
system of trigonometric functions with a variable period,  
Fourier series of functions with a variable period. 

1. Introduction 
In the study of periodic functions, their period is 

traditionally considered to be constant. It is for this case 
that the theory of periodic functions, in particular, the 
theory of Fourier series has been developed, and the 
corresponding methods and algorithms for the analysis 
of such functions have been devised. At the same time, 
applied researches have to deal with empirical signals 
characterized by two features – they behave like 
periodic, i.e. there is a repeatability of their values, but 
the period of this repeatability changes in some way. An 
illustrative example of such signals is well-known ECGs 
obtained during or after physical exertion (or other 
“exciter of calm”) exposed to the patient. Under physical 
exertion, the heart rate increases to a certain value, i.e. 
the period decreases. After physical exertion, the heart 
rate, on the contrary, slows down, i.e. the period 
increases, approaching its “norm”. How to investigate 
the signals with a variable period? The literature review 
shows that at present only first but rather significant 
steps have been taken in this direction [1–5]. 

Referring to the above-mentioned works [1–5], 
as well as observing the basics of the theory of 
constructive functions [6, 7], one can assert that  the 
most suitable approach to study the PSVP is the one, 
whose essence consists in the triad “model-
algorithm-program”. At the first step, a model of the 
signal is substantiated, at the second one, an 
algorithm of the research into the model is 
developed, and the third stage is intended for 
creating algorithm implementation software. The 
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first two components of the triad – model 
substantiation and algorithm development – are main 
here. 

The purpose of the work is to develop an 
information technology for constructing a Fourier series 
for the periodic functions with a variable period. 

2. Periodic functions with a variable period 
Let us remember some of the results associated with 

the study of PSVP. First of all, this is a model for PSVP 
in the form of PFVP [1].  

Definition. A function ( ) Ixxf ∈, is called periodic 
with a variable period if there exists such a function 

( ) 0>xT  that, for arbitrary points x  and ( )xTx +  from 

the domain of definition I , the values of function ( )xf  

at these points are equal, i.e. ( ) ( )( )xTxfxf += . The 

function ( )xT  is called a variable period. 

The variable period ( )xT  must satisfy certain 
conditions [3–5], in particular, be continuously 
differentiated, and its derivative must be ( ) 1−>′ xT . 

An example of the variable period ( )xT  is shown in 

Fig. 1. At point 1x , the period of the function ( )xf  is 

equal to ( )1xT , so the value of the function at points 1x  

and ( )11 xTx +  are equal: ( ) ( )( )111 xTxfxf += . At 

point 2x , the period is equal to ( )2xT , with the values of 

the period ( )xT  at points 1x  and 2x  being different: 

( ) ( )21 xTxT > . 

 

Fig. 1. The variable period ( )xT ,  
its values at  points 1x  and 2x , and their corresponding  

points ( )11 xTx +  at which the values  
of the function ( )xf  are repeated. 

It is known that for a periodic function ( )xg  with a 

constant period T , an equality 
( ) ( ) ( )TxgTxgxg −=+=  is satisfied For the function 

( )xf  with the variable period ( )xT , the analogical 

equality ( ) ( )( ) ( )( )xTxfxTxfxf −=+= , in 

general, is not satisfied. Therefore, for the case when 
the argument x  decreases, the variable period of 

repeatability of the function ( )xf  is denoted ( )xT − . 

Herewith, if ( ) 0>− − xTx , i.e. the argument belongs 

to the domain of definition I , then 

( ) ( )( )xTxfxf −−= . Between ( )xT  and ( )xT −  there 
is a relationship [4,5], which is expressed by the 

following formulas: ( ) ( )( )xTxTxT += − , 

( ) ( )( )xTxTxT −− −= . 

3. Examples of analytic PFVP and their variable 
periods  

The simplest functions with a variable period are 

trigonometric functions 0,0,cos,sin >> ααα xxx . 
Fig. 2 shows the periodic function with a variable period 

( ) 5
3

1 sin xxf =  (graph 1), and function ( ) xxf sin2 =  
(graph 2) for comparison. From the Fig. 2 we can see 
that with the argument x  growing, the graph of 

( ) 5
3

1 sin xxf =  stretches, i.e. its period increases. For 

the function xsin there are more than eleven periodic 
oscillations on the interval [ ]70,0 , while for the function 

5
3

sin x  on the same interval there are solely two 
oscillations. 

 

Fig. 2. Function ( ) 5
3

1 sin xxf =  (graph 1),  

( ) xxf sin2 =  (graph 2). 

It is shown [4, 5] that for the sinusoidal 
functions with a variable period 

0,cos,sin >ααα xx , their variable periods are 
determined by the formulas below: 

 
( ) ( )
( ) ( ) ( )

1

1 1

2 , 0,

2 , 2 .

α α
α

− α α α
α

= − + + π ≥

= − − π ≥ π

T x x x x

T t x x x
 (1) 

Note that when there is no misunderstanding, the 

indexα included in the expressions ( )xTα  and ( )xT −
α  

can be omitted. Taking into account (1), the variable 
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periods of 0,sin 5
3

≥xx  are expressed by the following 
formulas:  

( ) 3
5

5
3

2 





 ++−= πxxxT , 0≥x , 

( ) 3
5

5
3

2 





 −−=− πxxxT , ( ) 21.3942 3

5
≈≥ πx . 

Graphs of these periods are depicted in Fig. 3. 
For comparison purposes, π2=T  for xsin  is also 
given.  

The graph of ( )xT  confirms the behavior of the 

function 5
3

sin x  – with the values of the argument x  
increasing, the period ( )xT  increases also. For example, 

at the point 0=x , ( ) 21.394380 ≈T , for 30=x ,  

( ) 51.1229130 ≈T . Fig. 3 also shows that the period 

( )xT −  decreases with the decrease of the argument. 
It is not difficult to see that when 1>α , graphs of 

the functions 0,cos,sin >xxx αα , with the argument 
x  growing, are compressed, therefore their period 

( ) ( ) αα π
1

2++−= xxxT , 0≥x  is a decreasing  
function. 

 

Fig. 3. Variable periods for the function 0,sin 5
3

≥xx : 

( )
3

5
5

3
2 








++−= πxxxT , (graph 1); ( )

3
5

5
3

2 







−−=− πxxxT , 

( ) 21.3942 3
5

≈≥ πx  (graph 2). For comparison purposes, the 

period π2=T  for the function xsin  is also given (graph 3). 

4. Orthogonal system of trigonometric functions 
with a variable period 

Like the system of trigonometric functions 
L.2.1,cos,sin =nnxnx , that are orthogonal on an 

arbitrary segment of length π2 , there arises a natural 
question on the existence of orthogonal systems of 
trigonometric FVP. Some results on this issue were 
obtained in [2, 4]. In general, the following theorem is 
fulfilled. 

Theorem. The system of trigonometric functions 

 L,2.1,0,0,cos,sin =>≥ nxnxnx ααα , (2) 

with the variable period ( ) ( ) αα π
1

2++−= xxxT , 

0≥x  is orthogonal with the weight function 

( ) 1−= ααρ xx  in the space ( )( )xTxxL +,2
ρ , the norm of 

each function of system (2) being equal to π . 

We emphasize that for the space ( )( )xTxxL +,2
ρ , 

the length of the orthogonality interval ( )[ ]xTxx +,  is 
no longer constant, but varies according to the value of 
the period ( )xT  at the point x . The orthogonality itself 
means that the scalar product of different functions of 
system (2) is equal to zero, and identical ones is equal to 
π , for example 

 

( )
( )

( )
( )

1

1 2

sin ,sin

sin sin 0, ,

sin ,sin

sin , 1,2,

+
−

+
−

=

= ≠

=

= =

∫

∫ L

T

T

mx nx

x mx nx dx m n

mx mx

x mx dx m

α α

τ τ
α α α

τ

α α

τ τ
α α

τ

α

α π

 (3) 

The generalization of trigonometric FVP (TFVP) 

0,cos,sin >xxx αα  is the functions ( ),sin xg  

( )xgcos , Ix∈ , at the same time, the function 

( ) Ixxg ∈, must satisfy certain conditions [5], in 
particular, be continuous, piecewise differentiated, 
strictly increasing or decreasing, the domain of its 
definition is a certain interval [ ]baI ,= , and the 

variation satisfies the condition π2>b
aV . The variable 

period of functions ( ) ( )xgxg cos,sin  is denoted 

( ) IxxTg ∈, . Using the basic functions 

( ) ( )xgxg cos,sin , we create a new system of 
trigonometric functions, which is the generalization of 
system (2): 

( ) ( )xngxng cos,sin , L,2.1, =∈ nIx . (4) 
This system is orthogonal on the interval 

( ), gx x T x I + ∈   with the weight function ( )xg ′ . 

It is important to note that a partial case of 
system (4) is the Chebyshev polynomial. Let us 
consider a shortened version of system (4), 
specifically a system consisting solely of cos -
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functions: ( )xngcos , L,2.1, =∈ nIx , and choose 

( ) xxg arccos= , [ ]1,1−=I . As a result, we obtain a 

system ( ) L,2,1,arccoscos =nxn , which is 

orthogonal on the interval [ ]1,1−=I  with the 

weight function ( ) ( ) 2arccos 1 1g x x x′′ = = − − . 

The resulting TFVP system is a well-known system 
of Chebyshev polynomials of the first kind 

( ) ( ) L,2,1,arccoscos == nxnxTn . 

5. Approximation algorithm 
The presence of orthogonal systems of trigonometric 

FVP makes it possible to raise the question of the 
development of information technologies for doing 
research into PFVP. If we appeal to the 
recommendations of the constructive theory of functions 
[6, 7], then the direction of research, which is based on 
the “algorithm of approximation” is effective, 
especially for the applied use. Its essence is reduced to 
the replacement of the investigated function Ff ∈ , 

where F  is the set of functions approximated (in our 
case, the set of PFVP), by another function Φ∈ϕ , 

where Φ  is the set of approximating functions. The 
approximating function ϕ  must satisfy certain 
requirements, in particular, be “close” to the 
approximation function f , reproduce its basic 
properties, contain sufficiently complete information 
about f , be comfortable in use. The Fourier series are 
preferably chosen as a set of approximating functions. 

6. Fourier series of PFVP 
As for the construction of a Fourier series for PFVP, 

let us also draw attention to the following issues. A 
variable period of the function for which a Fourier series 
is constructed and a variable period of the corresponding 
trigonometric system of functions must coincide. Let 

( ) 0, ≥xxf  be the function with the variable 

period ( ) ( ) αα π
1

2++−= xxxT , 0≥x . To construct its 
Fourier series, we use the TFVP 

system L,2.1,0,cos,sin => nnxnx ααα , whose 
variable period has the same analytical expression as the 
function period. Let us write the Fourier series 

( ) 0
1

2 cos sink k
k

f x a a kx b kx
∞

α α

=
≈ + +∑  for the 

function ( )xf . 
Taking into account scalar products (3), the Fourier 

coefficients of this series are determined by the 
formulas: 

 

( )
( )

( )
( )

( )
( )

1
0

1

1

,

cos ,

sin .

T

T

k

T

k

a x f x dx

a x f x kx dx

b x f x kx dx

+
−

+
−

+
−

=

=

=

∫

∫

∫

τ τ
α

τ

τ τ
α α

τ

τ τ
α α

τ

α
π

α
π

α
π

 (5) 

The point 0≥τ  as the lower boundary of the 
integration interval is chosen arbitrarily. At this point, 

the variable period ( ) ( ) αα πτττ
1

2++−=T , therefore 
the segment of integration is the orthogonality interval 

( )[ ]=+ τττ T, ( )
1

, 2
 

+ 
  

α ατ τ π . Bessel's inequality has 

the form 

2

1

22
2
0 )(1
2

xfbaa n

k
kk π

≤++ ∑
=

,  (6) 

where ( ) ( )
( )

∫
+

−==
xTx

x
dxxfxfff 21, αα . 

Let us consider an example of calculating the 
coefficients and constructing a Fourier function 
for ( ) ( ) 0,sin ≥= xxsignxf α , with the variable period 

( ) ( ) αα π
1

2++−= xxxT  when 3 / 5α = , and, for 
comparison purposes, carry out similar calculations for 
the same function when 1=α , i.e. for the well-known 
from mathematical analysis function 

( ) ( )xsignxf sin= , which describes periodic 
oscillations of rectangular form with the constant period 

π2=T . Let us also check Bessel’s inequality for these 
functions. 

Example. ( ) 3
5

5
3

2 





 ++−= πxxxT 0≥x  is the 

variable period for ( ) 





= 5

3
sin xsignxf , 0≥x   

(Fig. 4). To calculate the Fourier coefficients, it is necessary 
that the integration be performed according to formulas (5) 

on the interval ( )[ ]τττ T+, =

















 +

3
5

2, 5
3

πττ . Let its 

left point be 20=τ  for this interval. At this point
 

( ) 45.694572202020
3

5
5

3
≈






 ++−= πT , therefore  

the integration interval is the interval 
( )[ ] [ ]69457.65,202020,20 ≈+ T . 

111



Mykola Pryimak, Yaroslav Vasylenko, Lesia Dmytrotsa, Mariya Oliynyk 

 

The resulting first five coefficients are given in 
Table 1. For comparison purposes, Table 2 represents the 
Fourier coefficients of the function ( ) ( )xsignxf sin=  
calculated according to the same formulas (5), but 
with 1=α . 

 

Fig. 4. Graph of the function 







= 5

3
sin xsignf(x) . 

The comparison of the Fourier coefficients for the 

functions ( ) 





= 5

3
sin xsignxf  and ( ) ( )xsignxf sin=  

shows their "practical" coincidence. Some inconsistencies 
can be explained by errors in calculations. 

Table 1 
Fourier coefficients of a function with variable period 

Function with variable period 

( )5
7( ) sinf x sign x=  

Orthogonality interval [ ]65.69457,20  
Coefficient 

number 

10,0, =kak
 10,1, =kbk  

0 0.00005  
1 0.00004 1.27324 
2 0.00005 0 
3 -0.00001 0.42441 
4 0.00003 0 
5 -0.00001 0.25465 

 1.9797632
2

9

1

22
2
0 =++ ∑

=k
kk baa  

 ( ) 21 2
=xfπ

 

Table 2 
Fourier coefficients of a function  

with constant period 
Function with constant period 

( )xsignf(x) sin=  

Orthogonality interval [ ] [ ]6.28319,02,0 =π  
Coefficient 

number 

10,0, =kak  10,0, =kak  

0 0  
1 0 1.27324 
2 0 0 
3 0 0.42441 
4 0 0 
5 0 0.25465 

 1.97974
2

9

1

22
2
0 =++ ∑

=k
kk ba

a  

 ( ) 21 2
=xfπ

 

Using the obtained Fourier coefficients, we construct 
finite Fourier series of these functions. Fig. 5 shows a 
graph of the finite Fourier series of 







= 5

3
sin xsignf(x)  (solid line) and a graph of the 

function itself (dotted line). Comparing these graphs, we 
can argue that with 20=n  the finite Fourier series 

∑
=

++
n

k
kk kxbkxaa

1

5
3

5
30 sincos

2
 

is “good” to reproduce the form of the function itself. 
Similar conclusions can also be drawn while comparing 
the finite Fourier series both for the 
function ( )xsignf(x) sin= , whose graph is shown in 
Fig. 6 (solid line), and for the function 

( )xsignf(x) sin=  (dotted line). 
The Tables also present the calculation results for 

the formulas included in Bessel’s inequality (6). The 
comparison shows that the calculation results for these 
functions also practically coincide. This suggests that the 
Fourier series of PFVP constructed in the work is 
sufficiently close to the function itself. 
 

 

Fig. 5. Function [ ]100,0,sin 5
3

∈







= xxsignf(x) , (dotted line) 

and its Fourier series (first forty terms, solid line). 

 
Fig. 6. Function ( ) [ ]20,0,sin ∈= xxsignf(x) , (dotted line) and 

its Fourier series (first forty terms, solid line). 

The information technologies developed for the 
construction of the Fourier series for PFVP will form the 
basis for the research both into analytically given 
functions and into empirical ones, primarily 
electrocardiograms with a variable period. 
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7. The heart rhythm variability 
In the applied research into the PFVP, 

knowledge of the VP is rather an exception than 
regularity, therefore we often deal with the task of 
finding its evaluation. A similar situation is observed 
for periodic functions and for periodic random 
processes with a constant period. But if the tasks and 
methods of evaluating the constant period were 
considered in a large number of works, as indicated, 
for example, in [8], the issue of evaluating the 
variable period remains unstudied. 

We can indicate two important directions for 
using the variable period evaluation. The availability 
of an evaluation allows us to consider the problems 
of constructing Fourier series of the PFVP, using the 
evaluation of the variable period instead of its exact 
value. In addition to the construction of the Fourier 
series, the evaluation of the variable period will have 
an important significance for the problems of its 
direct use, primarily in cardiology, in the study of 
the cardiac rhythm variability. According to [9], the 
heart rhythm variability (HRV) is unevenness in the 
frequency of heart contractions caused by the 
influence of various regulatory processes in the 
human body. 

The question of variability is considered in many 
works of medical and statistical direction. There are 
several methods for evaluating the heart rhythm 
variability. Statistical methods form an important 
group.  The basis of these studies is the methods for 
analyzing the sequence of RR −  cardiogram 
intervals, i.e. the intervals between adjacent heart 
contractions. The literature review shows that the 
methods of statistical analysis are based on the 
assumption (hypothesis) that the specified sequence 
is stationary. Scientifically grounded methods of 
studying variability for cases where the sequence of 

RR −  intervals is different from the stationary one 
are practically lacking. And only the study of PFVP, 
as well as solving the problem of evaluatingthe 
variable period open the possibility of developing a 
theory and methods for studying the variability of 
the heart rhythm in nonstationary regimes, i.e. in the 
cases  of impact of some “exciter of calm”, for 
example, physical exertion, on the human body.  

8. Evaluation of VP and cardiac rhythm 
variability after physical activity 

Consider an example of VP evaluation of an 
electrocardiogram (ECG), obtained after an impact of 
physical exertion, on the patient. and determination of 
diagnostic parameters of variability. At the first stage of 

the experiment, the patient was subjected to physical 
activity (twenty deep squats). Immediately after 
squatting the RR −  intervals were selected, i.e. the 
values of its VP ( )tT  at the time points 

nktk ,,2,1, L= : kkk ttT −= +1 , where kt  – the 

moment of the appearance of the k -th R -teeth of the 
ECG. On the basis of the values of the VP kT , the 

values of the variable frequency (VF) 1k kTν =  were 

calculated. Each tenth value kT  and kν   is shown in 
Fig. 7, graphs 1b and 2b. The analysis of the dynamics of 
the change in kT  and kν  shows that it is initially 

expedient to carry out the approximation of the VF kν , 

since for values kν  exponential dependence of the form 

( ) ( )∞∈+= − ,0, tbeat tαν  is characteristic. 

Using the values kν  and mathematical package 

[10], the coefficients a , b  and the parameter α  were 
calculated using the least squares method: 176,1=a , 

995,0=b , 014,0=α . Graphs of VF 

( ) tbeat αν −+= = 014.0995.0176 −×+ e  and VP 

( ) ( )0.0141 1.176 0.995T t e−= + ×  are shown in Fig. 7 

(graphs 1a and 2a, respectively). 
Note that from the standpoint of cardiological 

analysis, the parameter a  means the heart rate (heart 
contractions), that occurs in some time after its 
stabilization (resting heart rate ), the parameter b  
indicates the magnitude of the increase in the heart rate 
in comparison with the frequency in the resting state, the 
parameter α  characterizes the "speed" of pulse 
stabilization. 

 
Fig. 7. Experimental values of the VF kν  and the VF function 

( )tν  (graphs 1a and 1b), the value of the VP kT  and the 

function of the VP ( )tT  (graphs 2a and 2b). 

In addition to the parameter α  that is a 
characteristic of the speed of pulse stabilization, the 
duration of the stabilization, i.e. the interval from the 
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moment 1t , when the counting of the RR −  intervals 

kT  began, until the moment t̂ , when the pulse has 
stabilized, is informative in the diagnostic tasks. The 
value t̂  can be found as such a moment on the 
numerical axis ( )∞,0 , when the difference 

0)ˆ( >=− εν at . At the same time for tt ˆ< , the 

difference εν >− at)( , for tt ˆ> , the difference 

εν <− at)( . The value ε  is chosen based on practical 
considerations and advisory advice from cardiologists.  

9. Evaluation of post-exercise cardiac rhythm 
arrhythmia 

According to many literary sources of medical 
nature, an important indicator of cardiac rhythm 
variability is arrhythmia, that is, the mean square 
deviation of the values of the sequence of RR −  
intervals from the evaluation of their mathematical 
expectation. When calculating the value of arrhythmia, 
the sequence of RR −  intervals is considered stationary 
[9]. In our case, i.e. after the impact of physical exertion 
on the human body, the sequence of RR −  intervals is 
significantly different from the stationary one, so the 
method for the determination of arrhythmia described 
above is not appropriate. 

To evaluate the post-exercise cardiac arrhythmias, we 
propose the aboveused algorithm, which takes into 
account the deviations of the RR −  intervals, that is, 
the values nkTk ,...,2,1, =  from VP 

( ) ( )( ) 1 1 atT t v t a be−= = + . By the amount of 

arrhythmias for the case described, it is natural to use the 
value 

( )( ) ∑∑
=

−
=










+
−=−=

n

k
tk

n

k
kkT

kbea
TtTTS

1

2

1

22 1
α

 (7) 

or the corresponding mean square deviation 
2

T TS nσ = .   (8) 

There is no doubt that for practice problems, it is 
expedient to use a mean square deviation Tσ . It is also 
necessary to note that in formula (7) the values 

nkTk ,,2,1, L=  are the values of RR −  intervals (of 
the variable period) obtained as a result of the 
experiment, ( )ktT  – the values of the variable period, 
calculated by the formula 

( )0.014( ) 1 1.176 0.995T t e−= + ×  

in points ktt = . 

In addition to evaluating arrhythmias that are 
calculated using RR −  intervals, the "arrhythmia" 
of the heart contractions frequency can be calculated 
similarly. Quadratic arrhythmia (deviation) of 
frequency 

( )( ) ( )( )∑∑
=

−

=

+−=−=
n

k

t
k

n

k
kk kbeatS

1

2

1

22 α
υ υυυ , (9) 

mean square arrhythmia of frequency 
2
vS nνσ = . 

The results of the above experiment (experiment 1), 
that is, the values of the coefficients a , b , the 
parameters α , Tσ  and υσ , are given in the table. For 
comparison, the results of another experiment 
(experiment 2) are also given. 

Table 3 

Experi-
ment 

number 
a  b  α  Tσ  υσ  

1 1.176 0.995 0.014 0.025 0.017 

2 1.127 1.121 0.020 0.027 0.018 

 

The values of the coefficients a , b  and the 
parameter α , included in the formula VP )(tT  and VF 

)(tν , and the values of the parameters Tσ  and υσ  are 
proposed to use as new diagnostic features of the 
variability of the post-exercise heart rhythm. 

7. Conclusions 
It is noted that in addition to empirical periodic 

signals, whose model is a periodic function, applied 
research deals with signals also characterized by 
periodicity, but their period changes in some way. 
However, if for periodic functions, their theory, first 
of all, the Fourier series, and analysis methods have 
been developed quite deeply, signals with a variable 
period practically have not been studied. The paper 
highlights the main achievements of the theory and 
methods of studying signals with a variable period. 
The basis of the research is the model of such signals 
– these are periodic functions with a variable period. 
The main direction of the research is the 
recommendations of the constructive theory of 
functions – approximation of functions with a 
variable period by the Fourier series. To construct 
such series, we have developed methods for the 
formation of orthogonal systems of trigonometric 
functions with a variable period, with their variable 
period having to coincide with the period of the 
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investigated function. An example of constructing a 
Fourier series for the analytically given function 
with a variable period is considered. The issue of 
evaluating the variable period of the PFVP is also 
raised, and for the ECG obtained after physical 
activity, evaluations of the VF and VP were derived. 
The evaluation of the VF turned out to have the form 
of exponential function, which is determined by 
three parameters.The obtained results reveal the 
perspective directions of the research into real 
signals with a variable period, in particular, 
electrocardiograms obtained during or after the 
exposure to “the exciter of calm”, and the values of 
the parameters of the VF evaluation significantly 
complement the arsenal of diagnostic features of the 
ECG and VF of heartbeat. 
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ПЕРІОДИЧНІ ФУНКЦІЇ  
ЗІ ЗМІННИМ ПЕРІОДОМ  
ТА ЇХ НАБЛИЖЕННЯМИ 

РЯДАМИ ФУР’Є 
Микола Приймак, Ярослав Василенко,  

Леся Дмитроца, Марія Олійник  

Звернуто увагу, що крім періодичних емпіричних 
сигналів, моделлю яких є періодичні функції, трапля-
ються сигнали, які ведуть себе подібно періодичним, 
але при цьому період повторюваності їхніх значень уже 
не є постійним, а певним чином змінюється. Наглядним 
прикладом є електрокардіограми (ЕКГ), отримані під 
час чи після дії на організм пацієнта певного збудника 
спокою, наприклад, фізичного навантаження. Яким же 
чином досліджувати періодичні сигнали із змінним 
періодом (ПСЗП)? Огляд літературних джерел показує, 
що донедавна на це питання будь-якої науково 
обґрунтованої відповіді не було. Тому розроблення 
інформаційних технологій (ІТ) дослідження ПСЗП є 
актуальною як з теоретичного, так і прикладного 
погляду. Для її вирішення пропонують використовувати 
підхід, суть якого вкладається в тріаду “модель–
алгоритм–програма”. Певні результати на цьому шляху 
вже отримані в попередніх роботах авторів цієї статті, 
зокрема наведено означення періодичної функції із 
змінним періодом (ПФЗП), розглянуто приклади 
тригонометричних ФЗП (ТФЗП) та записані їхні змінні 
періоди, розроблено метод утворення системи 
ортогональних ТФЗП і визначено скалярний добуток 
для функцій системи. У цій роботі записано ряд Фур’є 
для ПФЗП та отримано формули для знаходження його 
коефіцієнтів. Як приклад побудовано скінчений ряд 
Фур’є для аналітично заданої ПФЗП та показано, що із 
збільшенням кількості коефіцієнтів ряд наближається до 
самої функції, що підтверджує правильність отриманих 
теоретичних результатів. 

Враховуючи, що для більшості емпіричних ПФЗП 
їх змінний період є невідомим, порушено питання його 
оцінки. Для випадку ЕКГ, отриманої після фізичного 
навантаження, побудовані оцінки її змінної частоти 
(ЗЧ) та ЗП. Виявилося, що оцінка ЗЧ має вигляд 
експоненційної функції, що визначається трьома 
параметрами. Розроблені ІТ для вивчення ПФЗП дають 
можливості досліджувати реальні ПСЗП, зокрема ЕКГ 
зі ЗП, а отримані числові значення параметрів 
використовувати в задачах діагностики, підтримки 
прийняття рішень. 
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