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1. Introduction

Surface plasmon polaritons (SPPs) are collective excitations of electrons, propagating at the interface
between a metal and a dielectric [1, 2]. They are used to manipulate electromagnetic energy at the
subwavelength scales, which necessitates the study of their characteristics.

A considerable amount of research on the study of SPPs spectrum in heterogeneous dielec-
tric/metal/dielectric structures has been published for today (see bibliography in [1, 3]), in which
a metal layer is mainly considered as 2D metal or metallic graphene using the corresponding charac-
teristic expressions for the dielectric function ε(q, ω) (q = (kx, ky) is 2D vector, ω is frequency) of a
metal.

In the case when a metal layer is a 3D structure, the Drude model is widely used to describe
SPPs [1, 4] in which the dielectric permittivity of a metal is expressed by the formula:

ε(q, z, z′, ω) = εD(ω) δ(z − z′),

εD(ω) = 1−
ω2
p

ω2 + iγω
.

(1)

Unfortunately, this approach to the description of SPPs does not allow taking into account the influence
of the thickness of a metal layer and size effects on their properties.

Recently, in the paper [5] there has been presented the results of experimental studies on the
influence of a thickness of a metal film on the spectrum ~ω (~ is the reduced Planck constant [6])
of SPPs, where it has been demonstrated that such a dependence is significant in the area of small
(∼ 1−5nm) thicknesses. In this paper, a mathematical model for ε(q, ω, z, z′) is proposed and studied
and it is shown that taking into account the thickness of a metal layer can be described by such a
model; and the obtained results qualitatively coincide with the experimental results.

2. Problem formulation

Consider a heterogeneous structure (whose geometry is depicted in Fig. 1) formed by two non-
conducting media with dielectric permittivities ε1 and ε3 between which a metal nanofilm with thickness
L is sandwiched. We assume that dielectric permittivities ε1 and ε3 are functions of the time variable,
i.e.

ε1 = ε1(t), ε3 = ε3(t). (2)
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Dielectric permittivity of metal is ε2(r, r
′, t) and for the geometry of a dielectric/metal/dielectric

heterostructure has the form

ε2 = ε2(r|| − r′||, z, z
′, t), r|| = (x, y). (3)

Fig. 1. Schematic representation of di-
electric/metal/dielectric structure.

Let us consider a problem of describing the propagation
of electromagnetic waves, which are localized at the interface
between a dielectric (z > L) and a metal (0 < z < L). These
waves are called surface plasmons [1]. A mathematical model
describing the propagation of surface plasmons is based on the
Maxwell’s equations system [1,2]:

∇ ·D = ρ, ∇ ·B = 0,

∇×E = ρ, ∇×H = J +
∂D

∂t
,

(4)

where D is electric flux density, B is magnetic flux density,
E is electric field strength, H is magnetic field strength, ρ is

electric charge density аnd J is electric current density. We assume that external charges ρ in the area
of contact between dielectrics and metal are absent, namely ∇ ·D = 0. Here “·” is the dot product,
“×” is the cross product.

We assume that interconnection between the vectors E and D [2], namely

D(r||, z, t) =

∫∫∫

dr′|| dz
′ dt′ εi(r|| − r′||, z, z

′, t− t′)E(r′||, z
′, t′), i = 1, 2, 3. (5)

Let us write the system of Maxwell’s equations (4) in Fourier variables. We will define the Fourier
transform with respect to time as

f(t) =
1

2π

∫ ∞

−∞
f̃(ω) eiωtdω, f̃(ω) =

∫ ∞

−∞
f(t) e−iωtdt. (6)

And εi(r|| − r′||, z, z
′, t− t′) is expressed by the following equation:

εi(r|| − r′||, z, z
′, t− t′) =

Ω

(2π)3

∫ ∞

−∞
dω

∫

Ω
dq εi(q, z, z

′, ω) e
−i(q,r||−r

′
||
)−iω(t−t′)

, (7)

where Ω is the domain of the 2D vector q = (kx, ky).
We will assume that

ε1(r|| − r′||, z, z
′, t− t′) = ε1(t− t′) δ(r|| − r′||) δ(z − z′),

ε2(r|| − r′||, z, z
′, t− t′) = ε2(r|| − r′||, z, z, t − t′) δ(z − z′),

ε3(r|| − r′||, z, z
′, t− t′) = ε3(t− t′) δ(r|| − r′||) δ(z − z′),

(8)

where δ(z − z′) is the Dirac delta function [6].
The polarization of the waves corresponds to the transverse magnetic (TM) mode for the vectors

E and H, that is
E = (Ex, 0, Ey), H = (0,Hy, 0). (9)

Consequently [1], the magnetic field propagates along the axis OX and is homogeneous along the
axis OY

H(r, ω) = H(z, ω) eikxx, (10)

kx is a wave vector in the direction of propagation.
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For H we obtain a system of wave equations for all the domains of the heterogeneous structure [1]:

∂2Hy(z, ω)

∂z2
+

(

k20 ε1(ω)− k2x
)

Hy(z, ω) = 0, (11)

∂2Hy(z, ω)

∂z2
+

(

k20 ε2(q, z, z, ω) − k2x
)

Hy(z, ω) = 0, (12)

∂2Hy(z, ω)

∂z2
+

(

k20 ε3(ω)− k2x
)

Hy(z, ω) = 0, (13)

where k0 = ω/c. In order to solve the system (11)–(13), we need to find out expressions for dielectric
permittivities ε1(ω), ε2(q, z, z, ω), and ε3(ω).

3. Model of dielectric permittivity of a metal layer

Here and subsequently, we will use a high-frequency approximation for dielectric layers, this implies
that in (8) the first and the last expressions can be rewritten as follows

ε1(ω) = ε1(∞) = ε1 = const,

ε3(ω) = ε3(−∞) = ε3 = const.
(14)

As a model for the dielectric function ε2(q, z, z
′, ω) of the metal layer, we will use the diagonal

component of the dielectric permittivity tensor of a metal film which is obtained in [7],

ε(r, r′, ω) =

(

1−
ω2
p

neω2

∑

n

fn|ψn(r
′)|2

)

δ(r − r′). (15)

Here ωp =
√

4πnee2/me is the plasma frequency [1, 4], ne is an electron density in a metal, fn =
Θ(εn − εF ) is the Fermi–Dirac function [7, 8], Θ(x) is the Heaviside step function [8], εF is the Fermi
energy [4, 8], r = (r||, z).

The function

ψn(x, y, z) =

√

2

S
ei(q·r||)φn(z) (16)

is a wave function [6] of an electron in the metal layer and φn(z) is the solution of equation

− ~
2

2m

d2

dz2
φn(z) + U(z)φn(z) =Wφn(z), (17)

which is the Schrödinger equation [3] that describes behaviour of an electron in a metal film [6, 9, 10].
Potential U(z) that simulates surfaces bounding the film has the form

U(z) =











U1 if z < 0,

0 if 0 < z < L,

U2 if z > L,

(18)

where L is the film thickness. The solutions of the equation (17) that satisfies the conditions
φ(z → ±∞) → 0 can be presented as follows

φn(z) =



















Aeχ1z, χ1 =
√

2m
~2

(U1 −W ) if z < 0,

C1 e
ikz + C2 e

−ikz, k =
√

2m
~2
W if 0 < z < L,

B e−χ1z, χ2 =
√

2m
~2

(U2 −W ) if z > L.

(19)

Constants A, C1, C2, and B we will determine using continuity conditions for φn(z) and dφn(z)
dz

on the
boundaries z = 0 and z = L and a normalization condition
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∫ ∞

−∞
|φn(z)|2 = 1, (20)

which, actually, yields the condition φ(z → ±∞) → 0. Hence, the expressions for constants have the
form

C1 = A

(

1

2
− iχ1

2k

)

, C2 = A

(

1

2
+
iχ1

2k

)

. (21)

B = A
(

cos(kL) +
χ1

k
sin(kL)

)

eχ2L, (22)

|A|2 =
(

1

2χ1
+

1

2χ2

(

cos(kL) +
χ1

k
sin(kL)

)2

+
L

2

(χ2
1

k2
+ 1

)

+
χ1

2k2

(

1− cos(2kL)
)

+
1

4

(1

k
− χ2

1

k3

)

sin(2kL)

)−1

. (23)

In order to find k, we need to solve the following equation [3, 9, 10]

kL = πn−
(

arcsin
k~√
2mU1

+ arcsin
k~√
2mU2

)

, (24)

the roots of (24) will determine a value of

Wn =
~
2k2n
2m

(25)

which is discrete.
The maximum number of energy levels nmax we determine from the condition

nmax =

[

1

π

(

Lmin(S1, S2) + arcsin
min(S1, S2)

S1
+ arcsin

min(S1, S2)

S2

)

]

,

Si =

√

2m

~2
Ui, i = 1, 2.

(26)

Square brackets indicate taking the integer part.
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Fig. 2. The dielectric permittivity of the metal layer
(L = 5 nm) when ω

ωp

= 4.

Expression for ε(q, z, z′, ω) (7) for the
model (15) has the form (for details see [7])

ε2(0, z, z
′, ω) = ε2(z, ω) δ(z − z′)

=

(

1−
ω2
p

πneω2

nmax
∑

n=1

(k2F − k2n)|φn(z)|2
)

× δ(z − z′). (27)

The results of numerical calculations of
ε2(z, ω) for specific values U1 = 4.2 eV and U2 =
5 eV, which correspond to the dielectrics (1 —
polyethylene, 2 — SiO2), are shown in Fig. 2.

The results obtained have shown that the di-
electric function ε2(z, ω) is different from con-
stant only near the contact areas (z = L and
z = 0) (Fig. 2). This allows making some simpli-
fications when studying the system (11)–(13).
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4. Investigation of the influence of the thickness of metal film on the wave spectrum

To solve the system of wave equations (11)–(13), Eq. (27) will be assumed that

ε2(z, z
′, ω) =

(

ε2(L,ω) + α∆ε2(z, ω)
)

δ(z − z′), (28)

where

ε2(L,ω) =
1

L

∫ L

0
ε2(z, ω)dz = 1−

ω2
p

2πneω2

nmax
∑

n=1

(k2F − k2n)|φn(z)|
2
, (29)

|φn(z)|
2
=

1

L

∫ L

0
|φn(z)|2dz

= |A|2
(

1

2

(χ2
1

k2
+ 1

)

+
χ1

2k2L

(

1− cos(2kL)
)

+
1

4L

(1

k
− χ2

1

k3

)

sin(2kL)

)

. (30)

Substitution of (29) into (12) yields

∂2Hy(z, ω)

∂z2
+

(

k20(ε2(L,ω) + α∆ε2(z, ω)) − k2x
)

Hy(z, ω) = 0. (31)

The solution of the equation (31) for Hy(z, ω) can be found as expansion into a series in increasing
powers of α

Hy(z, ω) =

∞
∑

m=0

αmHy,m(z, ω). (32)

In particular, the first two equations Hy,0(z, ω) and Hy,1(z, ω) are following:

∂2Hy,0(z, ω)

∂z2
+

(

k20ε(L,ω) − k2x
)

Hy,0(z, ω) = 0, (33)

∂2Hy,1(z, ω)

∂z2
+

(

k20ε(L,ω) − k2x
)

Hy,1(z, ω) = −k20α∆ε2(z, ω)Hy,0(z, ω). (34)
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Fig. 3. SPPs spectrum for the Drude model
εD(ω) (dotted line) and ε2(L, ω) (solid line).

When modeling the influence of the thickness of a
metal film L on SPPs spectrum, we will limit ourselves
to the case Hy(z, ω) ≈ Hy,0(z, ω). In this case, the disper-
sion relation has the form

e−4k1
L
2 =

k1/ε1 + k2/ε2
k1/ε1 + k2/ε2

k3/ε1 + k3/ε2
k3/ε3 + k2/ε2

, (35)

k2i = k2x − k20εi, i = 1, 2, 3; k0 =
ω

c
, (36)

which coincides with the results obtained in Ref. [1]. Here
ε1 = ε(ω), ε2 = ε(L,ω), and ε3 = ε(ω).

Similarly as in our previous work [11], for the upper
layer we took a polyethylene with a permittivity constant
ε1 = 2.3 and the electron work function U1 = 4.24 eV;
SiO2 for the lower dielectric substrate with a permittivity
constant ε1 = 4 and the electron work function U2 = 5 eV.
The dielectric function of the metal layer (gold) is described by the function (16)

ε2(L,ω) = 1−
ω2
p

2πneω2

nmax
∑

n=1

(k2F − k2n)|φn(z)|
2
. (37)
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Fig. 3 shows the result of spectrum calculations obtained from (35) using (29), (30). These results
we compared to the data obtained for the Drude model with negligible damping [1]

ε(L,ω) = εD(ω) = 1−
ω2
p

ω
(38)

in which the plasmon frequency spectrum does not depend on the thickness L.
In Table 1 the results of numerical calculations of the dependence of frequency ω∗ = ω

ωp
, and a wave

vector k∗x = kxc
ωp

on the number of levels of dimensional quantization nmax are provided [12].

Table 1.

ε2(L, ω
∗) εD(ω∗)

L (nm) ω∗ ω∗ nmax

k∗x = 1
100 0.33992328 0.34237082 335
1000 0.34016832 0.34237082 3357
5000 0.34019295 0.34237082 16789
10000 0.34019603 0.34237082 33579
30000 0.34019749 0.34237082 100737

k∗
x
= 2

100 0.40974355 0.41421356 335
1000 0.41021317 0.41421356 3357
5000 0.41025793 0.41421356 16789
10000 0.41026353 0.41421356 33579
30000 0.41026618 0.41421356 100737

k∗
x
= 3

100 0.42679347 0.43187178 335
1000 0.42732626 0.43187178 3357
5000 0.42737706 0.43187178 16789
10000 0.42738341 0.43187178 33579
30000 0.42738642 0.43187178 100737

k∗x = 4
100 0.43313236 0.43844718 335
1000 0.43368968 0.43844718 3357
5000 0.43374282 0.43844718 16789
10000 0.43374947 0.43844718 33579
30000 0.43375261 0.43844718 100737

The data in the table show that difference be-
tween spectra ω(kx) for both models increases
with increasing of the wave vector kx. Also, it
should be noted that with increasing of L, ω(kx)
is steadily approaching from below the values ob-
tained for the Drude model.

0.5
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0.05 0.10 0.15 0.20
kx, nm−1

~ω, eV

the Drude model
model (29), 2 ML
model (29), 5 ML
model (29), 10 ML
model (29), 15 ML

experiment, 10 ML [5]
experiment, 12 ML [5]

Fig. 4. SPPs spectrum for the Drude model εD(ω)
(dotted line) and ε2(L, ω) for the different thicknesses

of a metal layer (solid lines), 1 ML ∼ 0.24 nm.

In Fig. 4, the results of calculations for the structure “Si–silver–SiO2” are shown. The dielectrics
were simulated for the following parameters: U1 = 5 eV, ε1 = 2.4 and U1 = 4.8 eV, ε1 = 11.7 for Si and
SiO2 correspondingly [1].

The same figure shows the experimental results for the structure “Si–silver–SiO2” published in [5].
These results demonstrate that the spectrum of plasmons strongly depends on the thickness of a
metal layer when L ∼ 50ML. As can be seen from Fig. 4, the proposed approach gives a qualitative
explanation of the influence of a metal film on the SPPs spectrum.

Note that the results obtained in [5] for the SPPs spectrum were obtained for structures that consist
of 2–15 monolayers, thus simulation of ε2(q, z, z

′, ω) should be carried out for such thicknesses. In such
metal structures, quantum effects become significant [9,10,13] and they should be taken into account.
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Поверхневi плазмон–поляритони в структурах
“дiелектрик–метал–дiелектрик”: вплив товщини металевого

прошарку

КостробiйП., ПольовийВ.

Нацiональний унiверситет “Львiвська полiтехнiка”,

вул. С. Бандери, 12, Львiв, 79013, Україна

Запропоновано та дослiджено модель, яка дає змогу пояснити експериментальнi данi
щодо впливу товщини металевого прошарку на спектр SPP хвиль у гетерогенних
структурах “дiелектрик–метал–дiелектрик”.

Ключовi слова: поверхневi плазмони, спектр плазмона, товщина металевого ша-

ру, дiелектрична проникнiсть.
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