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This paper focuses on linear controlled discrete-time systems which subject to the control
input disturbances. A disturbance is said to be admissible if the associated output function
verifies the output constraints. In this paper, we address the following problem: determine
the set of all admissible disturbances from all disturbances susceptible to the deformation
of control input. An algorithm for computing the maximum admissible disturbances set
is described and the sufficient conditions for finite termination of this algorithm are given.
Numerical examples are given. The case of discrete-time delayed systems is also considered.
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1. Introduction

Disturbed systems have also been extensively studied in the past decade. In most control systems, the
existence of disturbances has a remarkable probability. The influence of the physical environment on
the systems leads to the emergence of these undesirable parameters [1–5], and references therein. In
this direction, and in the control literature, there are many works and techniques to avoid the effects of
disturbances, [6–15] and references therein. These disturbances can be deterministic or stochastic and
can affect different components of the system, for example, the system’s dynamic, the control operator,
the initial state . . . , which can drive the system to unstable behavior, or constraints violations. In
order to contribute to this thematic, we are interested in a class of systems described by







xi+1 = Axi +Bui,
x0 ∈ R

n,
yi = Cxi, i > 0,

where A ∈ R
n×n is the dynamic matrix, B ∈ R

n×m is the matrix governing the distribution of the
control variable on the different components of the state xi. (ui)i ∈ R

m is the control input and
yi = Cxi is the response output, where C ∈ R

p×n. We assume that the feed-back control (ui)i is given
by ui = Kxi, where K ∈ R

m×n. The gain matrix K is designed with the aim of forcing yi to achieve
the desired goal.
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For reasons that are due to random phenomenon, or by the principle of action and reaction between
a system and its surroundings or in the system simulations via a machine, task, which always generates
approximations and various disturbances. We assume that when applying the gain K, one can not
avoid disturbances (Ki)i, in other words, it is rather the disturbed control ui = (K +Ki)xi which acts
on the system, where Ki : R

n → R
m is not necessarily linear.

Inspired by works of [16–21]. We develop in the present work a theoretical and algorithmic approach,
for determining, among all disturbances Ki that may affect the system, those whose effect is relatively
tolerable, i.e. given a set of constraints Ω, the aim is to determine all disturbances such that the
corresponding output satisfies

yi ∈ Ω, i > 0

A violation of these constraints can lead the closed-loop system to an unstable behavior, or serious
damage may happen. Since time delay is encountered in various engineering systems, for examples,
chemical processes, biological systems, economic systems and hydraulic/pneumatic systems. A class
of delayed systems is also considered.

This paper is organized as follows. Some preliminaries are given in Section 2. Section 3 contains
efficient algorithms for computing the set of all admissible disturbances that infect the control input.
Section 4 provides numerical examples to show the efficiency of the proposed technique and contains
some figures illustrating the performance of the algorithm defined in the previous section. A class of
discrete-time delayed systems is also considered in Section 5 followed by conclusion in Section 6.

2. Preliminary results

The controlled linear discrete-time system considered is
{

xi+1 = Axi +Bui,
x0 ∈ R

n.
(1)

The associated output function is
yi = Cxi, i > 0 (2)

and the infected control input is given by

ui = (K +Ki)xi ∈ R
m, (3)

where the state variable xi ∈ R
n and A, B, C, K are respectively (n × n), (n ×m), (p × n), (m× n)

matrices, and (Ki)i>0 are maps which describe the disturbances that infect the control input. Ki

represents all kinds of unwanted signals inputs which then affect the control-system’s output. For
instance, sensor noise signal, load disturbances, gusts of wind hitting the satellite dish of a tracking
radar create unwanted large torques that affect the position of the antenna.

Replacing (3) in (1) we have
{

xi+1 = Axi +B(K +Ki)xi,
x0 ∈ R

n

by changing A+BK → A and BKi → Pi we have
{

xi+1 = (A+ Pi)xi,
x0 ∈ R

n.
(4)

For physical considerations, and without loss of generality, we assume that all disturbances suscep-
tible of infecting the system (4) have a limited age, i.e (Pi)i>0 are persistent on a given time interval
{0, . . . , I} which means that

Pi ≡ 0, ∀i > I,

I is called the age of the disturbances (Pi)i>0.
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Motivated by practical considerations, the controlled output is required to satisfies

yi ∈ Ω, i > 0, (5)

where Ω ∈ R
p is the set of constraints.

Definition 1. We say that a disturbance (Pi)06i6I is admissible, if the corresponding output satisfies

yi ∈ Ω, i > 0.

Otherwise (Pi)06i6I is said inadmissible.

Then the principal goal in this paper, is to characterize the set Σ of all admissible disturbances which
will be called the maximal admissible disturbances set described as follows

Σ = {(Pi)06i6I/yi ∈ Ω, ∀i > 0}. (6)

We see that Σ can be written as follows

Σ = U ∩ V, (7)

where
U = {(Pi)06i6I/yi ∈ Ω, ∀i = 0, 1, . . . , I},
V = {(Pi)06i6I/yi ∈ Ω, ∀i > I + 1}.

(8)

Note that U is determined by a finite number of inequalities but V is defined by an infinite number
of inequalities. The idea of this decomposition will be useful for the algorithmic determinations of V
so of Σ.

Proposition 1. The set V in (8) can be written as follows

V = {(Pj)06j6I/CAjΓ((Pj)06j6I) ∈ Ω, ∀j > 0}, (9)

where Γ((Pj)06j6I) =
∏I

j=0(A+ PI−j).x0 ∈ R
n.

Proof. For i > I + 1, we have

xi = (A+ Pi−1)(A+ Pi−2) . . . (A+ P0)x0,

xi =

i∏

k=1

(A+ Pi−k).x0,

xi =
i−I−1∏

k=1

(A+ Pi−k).x0.
i∏

k=i−I

(A+ Pi−k).x0,

xi = Ai−I−1
i∏

k=i−I

(A+ Pi−k).x0,

xi = Ai−I−1
I∏

j=0

(A+ PI−j).x0,

therefore
xi = Ai−I−1Γ ((Pj)06j6I) (10)

and

Γ((Pj)06j6I) =

I∏

j=0

(A+ PI−j).x0.
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Using (2), (8) and (10), V is written as follows

V =
{
(Pi)06i6I/CAi−I−1Γ((Pi)06i6I) ∈ Ω, ∀i > I + 1

}

or
V =

{
(Pj)06j6I/CAjΓ((Pj)06j6I) ∈ Ω, ∀j > 0

}
.

�

As Γ((Pj)06j6I) is a vector of Rn then we will introduce a set Λ defined by

Λ = {x ∈ R
n/CAjx ∈ Ω,∀j > 0} and (11)

Λk = {x ∈ R
n/CAjx ∈ Ω,∀j = 0, 1, . . . , k}. (12)

In [22], the set Λ is called the maximal output admissible set.

Remark 1. We note that for all k > 0: Λ ⊂ Λk+1 ⊂ Λk.

For a complete determination of Λ we need the following results.

Proposition 2. If there is an integer k∗ such that Λk∗ = Λk∗+1 then Λk∗ = Λ, and Λ is said to be
finitely determined.

Proof. let x ∈ Λk∗ then CAjx ∈ Ω ∀j = 0, 1, . . . , k∗ since Λk∗ = Λk∗+1 then CAk∗+1x = CAk∗(Ax) ∈
Ω therefore Ax ∈Λk∗ , then we have Ax ∈Λk∗ ∀x ∈ Λk∗ . By iteration we have Ajx ∈ Λk∗ ∀j > 0,
therefore Λk∗ ⊂ Λ, and since Λ ⊂ Λk∗, we deduce that Λ = Λk∗ . �

Remark 2. We note that V is given by

V = {(Pi)06i6I/Γ((Pi)06i6I) ∈ Λ}. (13)

Proposition 3. If Λk∗ = Λk∗+1 for an integer k∗ then the set of all admissible disturbances is given
by

Σ = {(Pi)06i6I/yi ∈ Ω ∀i = 0, 1, . . . , I + 1 + k∗}. (14)

Proof. If Λk∗ = Λk∗+1 then by proposition 2 and (13), the set V can be written as follows

V = {(Pj)06j6I/Γ((Pj)06j6I) ∈ Λk∗},

V = {(Pj)06j6I/CAjΓ((Pj)06j6I) ∈ Ω, ∀j = 0, 1, . . . , k∗},

V = {(Pi)06i6I/CAi−I−1Γ((Pi)06i6I) ∈ Ω, ∀i = I + 1, . . . , I + 1 + k∗}

according to (2) and (10)

V = {(Pi)06i6I/yi ∈ Ω, ∀i = I + 1, . . . , I + 1 + k∗}

and by (8), we have
Σ = {(Pi)06i6I/yi ∈ Ω, ∀i = 0, 1, . . . , I + 1 + k∗}.

�

Hereafter, we will give some sufficient conditions for existence of such integers k∗.

Theorem 1. If we have:
1) A is asymptotically stable (i.e., the eigenvalues λi of A satisfy the condition |λi| < 1 for all i).
2) The pair (A,C) is observable (i.e., the matrix

[
CT , ATCT , · · · , (AT )n−1CT

]
has rank n).

3) Ω bounded and contains the origin in its interior,
then there exists an integer k∗ such that Λ = Λk∗ .
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Proof. The pair (A,C) is observable implies that the matrix H =








C
CA
...

CAn−1








has rank n, then the

matrix HTH is invertible.
Therefore

∃α > 0, ∀x ∈ R
n such that α ‖x‖2 6 〈HTHx, x〉,

then α ‖x‖2 6
∥
∥HT

∥
∥ ‖Hx‖ ‖x‖ , ∀x ∈ R

n. (15)

It follows from the definition of Λn−1 that Hx ∈

n fois
︷ ︸︸ ︷

Ω× Ω× · · · × Ω ∀x ∈ Λn−1 and since Ω is bounded,
we deduce from (15) that

α ‖x‖2 6 β ‖x‖ ∀x ∈ Λn−1 for some β ∈ R,

hence ‖x‖ 6 γ, ∀x ∈ Λn−1 for some γ ∈ R.

Since the origin belongs to the interior of Ω then there exists ε > 0 such that B(0, ε) ⊂ Ω (where
B(0, ε) is the open ball of radius ε).

From the asymptotic stability of A we deduce that

∃k∗ > n− 1 such that
∥
∥CAk∗+1

∥
∥ 6

ε

γ
.

On the other hand, Λk∗ ⊂ Λn−1 implies that

‖x‖ 6 γ, ∀x ∈ Λk∗ ,

thus for all ∀x ∈ Λk∗ we have
∥
∥CAk∗+1x

∥
∥ 6

∥
∥CAk∗+1

∥
∥ ‖x‖

6
ε

γ
γ = ε

Hence CAk∗+1x ∈ B(0, ε) ⊂ Ω, ∀x ∈ Λk∗ , this shows that Λk∗ ⊂ Λk∗+1 or equivalently Λk∗ = Λk∗+1

(since Λk∗+1 ⊂ Λk∗). �

3. Algorithmic determination

To determine the integer k∗ defined above, the following algorithm is suggested.

Algorithm 1 Version 1
∣
∣
∣
∣
∣
∣
∣
∣

Step 1 : set k = 0 and move to Step 2

Step 2 :

∣
∣
∣
∣

if Λk = Λk+1 then k∗ = k
else continue

Step 3 : k = k + 1 and return to Step 2

This algorithm is conceptually similar to what is done in [22]. We show how the test in Step 2 can
be implemented, in the case where Ω is described as follows

Ω = {x ∈ R
m/fi(x) 6 0, ∀i = 0, 1, . . . , s},

where fi : R
m → R are a given functions.
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Therefore Λk can be written as follows

Λk = {x ∈ R
n/fi(CAjx) 6 0, ∀j = 0, 1, . . . , k,∀i = 0, 1, . . . , s },

we note that for every integer k we have Λk+1 ⊂ Λk, then Λk = Λk+1 if and only if Λk ⊂ Λk+1 which
is equivalent to

fi
(
CAk+1x

)
6 0, ∀i = 0, 1, . . . , s, ∀x ∈ Λk,

or
sup
x∈Λk

fi
(
CAk+1x

)
6 0, ∀i = 0, 1, . . . , s,

or

sup fi
(
CAk+1x

)
6 0, ∀i = 0, 1, . . . , s,







fl
(
CAjx

)
6 0,

j ∈ {0, . . . , k} ,
l ∈ {1, . . . , s} .

Then the algorithm 1 will be implemented as follows

Algorithm 2 Version 2
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Step 1 : set k = 0 and move to Step 2

Step 2 :

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

For i = 0, . . . , s then
maximize Fi(x) = fi

(
CAk+1x

)







fi(CAjx) 6 0
j ∈ {0, . . . , k}
i ∈ {1, . . . , s}

Let F ∗
i the maximum value calculated of Fi.

If F ∗
i 6 0 for For i = 0, · · · , s then

Set k = k∗ and Stop
else continue

Step 3 : k = k + 1 and return to Step 2

Remark 3. i) This algorithm can never be useful, if there are no methods to solve rather large
mathematical programming problems which arise in Step 2. The search for a global optimum will be
more difficult. But in the case where Ω is a polyhedron (i.e., fi are affine functions for all i = 0, 1, . . . , s),
the difficulty disappears as the programming problems are linear and an efficient algorithm for it still
exists.

ii) Assumptions of theorems 1 are sufficient but not necessary. If these conditions are not verified,
there is not guarantee that Algorithm 2 will stop. If the Algorithm 2 converge then the set Λ is finitely
determined, else it is not.

4. Examples

Consider the following system






xi+1 = Axi +Bui

x0 =

(
−0.9
−0.2

)

∈ R
2,

(16)

where A and B are described as follows

A =

(
2 0
0.9 1

)

and B =

(
−2 2
1 −3

)

. (17)
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The infected control input is
ui = K +Ki, (18)

where

K =

(
2.675 0.55
1.225 0.55

)

(19)

is the desired gain matrix, and (Ki)i>0 are a maps which describe the disturbances that infect the
control input. We assume that the disturbances are unknown and disappears at I = 10. The associated
output

yi = Cxi, (20)

where C =
(
−0.1 −1

)
, is required to verify the constraints

yi ∈ Ω = [−0.7, 0.7] , ∀i > 0.

From (17) and (19), the change Ã = A+BK give

Ã =

(
−0.9 0
−0.1 −0.1

)

,

we see that Ã is asymptotically stable, and by means of simple hand calculations it is possible to verify
that the pair (Ã, C) is observable, thus by theorem 1 it follows that algorithm 2 will converge.

-4 -3 -2 -1 0 1 2 3 4
-4

-3

-2

-1

0

1

2

3

4

Fig. 1. The colored area represents the set Λ
given by (22).

By execution of the algorithm 2 with this data, we
have k∗ = 2. As a result, the only disturbances which
did not affect our system are those which verify the
following equations

|yi| 6 0.7, ∀i ∈ {0, . . . , 13}

and the set Σ in (14) is given by

Σ = {(Ki)06i610/ |yi| 6 0.7, ∀i = 0, 1, . . . , 13}, (21)

while the set Λ in (11) is given by

Λ = {x ∈ R
2/
∣
∣CÃix

∣
∣ 6 0.7, ∀i = 0, 1, 2}, (22)

which is represented in Fig. 1 by the filled area.
Let us define a set of indices O as follows

O = {0, 1, . . . , 10} (23)

and the indicator function of the set O given by

1O(x) =

{

1, if x ∈ O,

0, if x /∈ O.
(24)

Case 1. We consider an example of nonlinear disturbances (Ki)i>0 defined as follows

Ki :

(
x
y

)

→

〈(
x
y

)

,Mi

(
x
y

)〉

v, (25)

where

Mi =

(
0 a
a 0

)

1O(i), a ∈ R and v =

(
1
1

)

.
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Where O and 1O are given by (23) an (24), respectively. It is obvious that

Ki

(
x
y

)

=

〈(
x
y

)

,

(
0 a
a 0

)(
x
y

)〉

v

for i = 0, 1, . . . , 10, and

Ki

(
x
y

)

=

(
0
0

)

, ∀i > 10

and consequently the age of disturbances Ki is I = 10.
By (16), (18) and (25) we have

x1 = Ãx0 + 2ax
(1)
0 x

(2)
0 Bv, (26)

xi = 2a

(
i−2∑

k=0

x
(1)
k x

(2)
k ÃBv + x

(1)
i−1x

(2)
i−1Bv

)

+ Ãix0. (27)

For i > 2, where xi =

(

x
(1)
i

x
(2)
i

)

∈ R
2. From (20), (21) and (27) we deduce that

Σ = {a ∈ R/ |Fi(a)| 6 0.7, ∀i = 0, 1, . . . , 13}, (28)

where

F0(a) = Cx0,

F1(a) = CÃx0 + 2ax
(1)
0 x

(2)
0 CBv,

Fi(a) = 2a

(
i−2∑

k=0

x
(1)
k x

(2)
k CÃBv + x

(1)
i−1x

(2)
i−1CBv

)

+ CÃix0, i > 2.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Bounds

The set

a

F
i(
a
)

Σ

i = 1
i = 2
i = 3
i = 4
i = 5
i = 6
i = 7
i = 8
i = 9
i = 10
i = 11
i = 12
i = 13

i = 0

Fig. 2. Geometric representation of the set Σ given by (28).

In Fig. 2, we plot functions Fi, i = 0, . . . , 13 with different colors, in order to simplify the determi-
nation of the set Σ given by (28). From the definition of Σ in (28), its clear that Σ in this case is a
segment of R, which is plotted in this figure with the dotted segment in red.
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Case 2. We also consider here an example of non linear disturbances (Ki)i>0 defined as follows

Ki :

(
x
y

)

→

〈(
x
y

)

,Mi

(
x
y

)〉

v, (29)

where

Mi =

(
a 0
0 b

)

1O(i), (a, b) ∈ R
2 and v =

(
1
1

)

with O and 1O are given by (23) an (24) respectively. It is obvious that

Ki

(
x
y

)

=

〈(
x
y

)

,

(
a 0
0 b

)(
x
y

)〉

v

for i = 0, 1, . . . , 10, and

Ki

(
x
y

)

=

(
0
0

)

, ∀i > 10

and consequently the age of disturbances Ki is I = 10.
By (16), (18) and (29) we have

x1 = Ãx0 +
(

a(x
(1)
0 )2 + b(x

(2)
0 )2

)

Bv, (30)

xi =
i−2∑

k=0

(

a(x
(1)
k )2 + b(x

(2)
k )2

)

ÃBv

(

a(x
(1)
i−1)

2 + b(x
(2)
i−1)

2
)

Bv + Ãix0. (31)

For i > 2, where xi =

(

x
(1)
i

x
(2)
i

)

∈ R
2. From (20), (21) and (31) we deduce that

Σ =
{
(a, b) ∈ R

2/ |Fi(a, b)| 6 0.7, ∀i = 0, 1, . . . , 13
}
, (32)

where

F0(a, b) = Cx0,

F1(a; b) = CÃx0 +
(

a(x
(1)
0 )2 + b(x

(2)
0 )2

)

CBv,

Fi(a, b) =

i−2∑

k=0

(

a(x
(1)
k )2 + b(x

(2)
k )2

)

CÃBv

(

a(x
(1)
i−1)

2 + b(x
(2)
i−1)

2
)

Bv + CÃix0

for i > 2. Let us define functions Gi as follows

{

G2i(a, b) = Fi(a, b) − 0.7,

G2i+1(a, b) = Fi(a, b) + 0.7.

In Fig. 3, we plot equations G2i = 0 and G2i+1 = 0, for each i in {0, 1, . . . , 13}, with the same color,
in order to simplify the appearance of iterations, then the set Σ in (32) is represented in this figure
with the filled area.
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Fig. 3. Geometric representation of the set Σ given by (32).
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Bounds

Fig. 4. System’s response with an admissible and inad-
missible disturbances.

Case 2. We give here an example correspond-
ing to the two families of disturbances given by

Ki :

(
x
y

)

→

(
sin(y2)
i+1
−xy
i+1

)

1O(i), (33)

and

Ki :

(
x
y

)

→

(
y sin(x)
i+1

cos(y)
2i+x2

)

1O(i). (34)

Where O and 1O are given by (23) an (24)
respectively. Its clear that the age of these dis-
turbances is I = 10. Fig. 4 shows the impact of
these disturbances on the system’s output for

x0 =

(
−0.9
−0.2

)

, where the impact of the dis-

turbances (33) do not cause constraints viola-
tion, which means that these disturbances are

admissible for the chosen x0, while the system’s output exceeds 0.7 when there are disturbances (34),
which means that disturbance (34) could possibly cause serious damage, thus, are inadmissible.

Case 3. We consider here an example of linear disturbances (Ki)06i610 defined as follows

Ki :

(
x
y

)

→ Mi

(
x
y

)

, ∀i ∈ {0, . . . , 10} , (35)

where Mi =

(
a 0
0 b

)

1O(i) with (a, b) ∈ R
2, O and 1O are given by (23) an (24) respectively. It is

obvious that

Ki

(
x
y

)

=







(

ax

by

)

, if i ∈ {0, . . . , 10} ,

0, elsewhere.
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Thus the system (16) is rewritten as follows

xi = (Ã+BMi)
ix0 (36)

for i ∈ O. By (21) and (36), the maximal disturbances set corresponding to this example is given then
by

Σ =
{
(a, b) ∈ R

2/ |Fi(a, b)| 6 0.7, ∀i = 0, 1, . . . , 13
}
, (37)

where

Fi(a, b) = C

(
−2a− 0.9 2b
a− 0.1 −3b− 0.1

)i

x0, i > 1,

F0(a, b) = Cx0 = 0.29.
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1
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b

i = 1
i = 2
i = 3
i = 4
i = 5
i = 6
i = 7
i = 8
i = 9
i = 10
i = 11
i = 12
i = 13

i = 0

Fig. 5. The colored area represents the set Σ given by (37).

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4
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-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Fig. 6. The colored area represents the set Λ in
(11) corresponding to example 2 with k∗ = 327.

Fig. 5 depicts a geometric illustration of the set Σ
given by (37), we have to note that F0(a, b) is not
plotted in this figure because it does not depend nei-
ther on a nor on b, and its clear that |F0(a, b)| 6 0.7.

We give in Table 1 some examples of the execution
of the algorithm 2, with different choice of matrices
that define the system.

Remark 4. i) While the conditions in the theo-
rem 1 are sufficient for the convergence of the algo-
rithm 2, example 4 show that they are not necessary,
we can see that the matrix Ã is unstable. Further-
more, Ã is just Lyapunov stable in examples 3 and 5.

ii) In example 2, the fact of writing k∗ = ∞ does
not mean that the algorithm is not convergent, but we explain that at the time of the analysis of this
example on a computer, we obtained higher values of k∗ (k∗ = 327) in a somewhat larger time. Fig. 6
shows the set Λ defined by (11) with data of example 2.
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5. Discrete-time delayed systems

Table 1. Data of examples 2–5.

E
x

A
B

C
K

Ã
Ω

k
∗

2

(
1

0
0.
1

1

)
(

−
1

2
1

−
1

)
(
−
2

2
)

(
−
0.
3

−
4

−
1.
1

−
2

)
(

−
0.
9

0
0.
9

−
1

)

[−
0.
5,
0.
5]

∞

3

(
1

0
−
2

3

)
(

−
2

0
−
1

2

)
(
−
0.
1

−
1
)

(
0

0
1.
25

−
1.
55

)
(

1
0

0.
5

−
0.
1

)

[−
0.
1,
0.
1]

3

4

(
1

−
2

0.
2

7

)
(

−
1

−
1

1
2

)
(
−
0.
9

1.
9
)

(
4.
4

2
−
2.
4

−
4

)
(

−
1

0
−
0.
2

1

)

[−
0.
2,
0.
2]

1

5

 

1
3

0
−
2

1
0

0
2

0

 

 

−
1

−
1

0
1

2
−
2

1
2

0

 
(
−
0.
1

−
0.
3

0.
2
)

 

1
8.
4

0
−
1

−
5.
4

0
−
1

−
0.
5

0

 

 

1
0

0
−
1

−
0.
4

0
−
1

−
0.
4

0

 
[−

0.
2,
0.
2]

4

The considered discrete-time delayed systems are described by






xi+1 = A0xi + . . . +Arxi−r +B0ui + . . . +Bsui−s,
x0 ∈ R

n given
xj = αj , −r 6 j 6 −1

(38)

with delayed output function

yi = C0xi + . . .+ Cdxi−d ∈ R
p, (39)

where xi ∈ R
n and ui ∈ R

m are, respectively, the state, control
input of the system (38). (Ai)06i6r, (Bi)06i6s and (Ci)06i6d

are real matrices of appropriate dimension.
The infected delayed control input is given by

ui−k = (K +Ki)xi−k, 0 6 k 6 s, (40)

where K is a real matrix of compatible dimension, and (Ki)i>0

are a nonlinear maps which describe the disturbances that in-
fect the control input. We assume that there exists an integer
I for which Ki ≡ 0, ∀i > I, in this case I is called the age of
disturbances.

We assume that the control (40) is introduced such that the
corresponding output function (39) satisfies the constraints

yi ∈ Ω, i > 0. (41)

We assume hereafter that r = s and using (40) in (38), we
have

xi+1 = A0xi + . . .+Arxi−r +B0(K +Ki)xi + . . .

+Br(K +Ki)xi−r,

xi+1 =
r∑

k=0

(Ak +BkK +BkKi)xi−k.

By changing

Ãk = Ak +BkK and Pi,k = BkKi,

the system (38) can be written as follows






xi+1 =
r∑

k=0

(Ãk + Pi,k)xi−k,

x0 ∈ R
n given

xj = αj, −r 6 j 6 −1.

(42)

We will investigate the admissible disturbances, i.e. the dis-
turbances such that the corresponding output function satisfies
also the constraints (41). As above, the set of all admissible
disturbances Σ is given by

Σ = {(Pi,k)06i6I,06k6r/yi ∈ Ω, ∀i > 0} (43)
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or
Σ = U ∩ V, (44)

where
U = {(Pi,k)06i6I,06k6r/yi ∈ Ω, ∀i = 0, 1, . . . , I},
V = {(Pi,k)06i6I,06k6r/yi ∈ Ω, ∀i > I + 1}.

(45)

First, we give the following result.

Proposition 4. The system (42) is equivalent to
{

zi+1 = (∆ + Γi)zi,

z0 ∈ R
(r+1)n,

(46)

where

zi = (xi, xi−1, . . . , xi−r)
T ,

z0 = (x0, α−1, . . . , α−r)
T ,

and

∆ =








Ã0 Ã1 · · · Ãr

I 0 · · · 0
...

. . .
. . .

...
0 · · · I 0







,

and

Γi =








Pi,0 Pi,1 · · · Pi,r

0 0 · · · 0
...

...
. . .

...
0 0 · · · 0







.

Proof. From (42), we have

xi+1 = (Ã0, Ã1, . . . , Ãr)








xi
xi−1

...
xi−r








+ (Pi,0, Pi,1, . . . , Pi,r)








xi
xi−1

...
xi−r








and

xi = (I, 0, · · · , 0)








xi
xi−1

...
xi−r








, . . . , xi−r+1 = (0, 0, · · · , I, 0)








xi
xi−1

...
xi−r








.

Let zi = (xi, xi−1, . . . , xi−r)
T , then we have zi+1 = (∆ + Γi)zi. �

The output function yi can be written in terms of the new state variables zi as follows

yi = C̃zi, i > 0,

where
C̃ = (C0, . . . , Cd, 0, . . . 0) ∈ R

p×(r+1)n.

Remark 5. A disturbance (Γi)06i6I is admissible for system (46), if and only if the corresponding
disturbance (Pi,k)06i6I,06k6r is also admissible for system (42). Since system (46) have the form
of system (4) in Section 2, we can apply the above results to characterize the set of all admissible
disturbances. Which means that
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Theorem 2. If the following assumptions hold:
1) ∆ is asymptotically stable,
2) the pair (△, C̃) is observable,
3) Ω is bounded and contains the origin in its interior,

then there exists an integer k∗such that

Σ = {(Γi)06i6I/yi ∈ Ω, ∀i = 0, 1, . . . , I + 1 + k∗}.

Remark 6. i) In most case of delayed systems, one can find an equivalent system in the form (46),
and we can use the above ideas to solve the problem of perturbed control input.

ii) To execute the algorithm 2, described above, the following change is made

A = ∆ and C = C̃.

Example. Without loss of generality, we consider the following discrete-time delayed model with
r = 2: 





xi+1 = −1.3xi + 2.4xi−1 − 3.1xi−2 +
4
15ui −

34
15ui−1 +

16
15ui−2,

x0 = 0.2,

x−1 = 0.1,

x−2 = 0.1.

(47)

With the delayed output
yi = −0.1xi + xi−1.

The perturbed control function

ui−k = (1.5 +Ki) xi−k, 0 6 k 6 2 (48)

is introduced in this model to satisfy the output constraint

yi ∈ Ω = [−0.5, 0.5] , ∀i > 0

We assume that the perturbation Ki is inevitable for all i ∈ {0, 1, . . . , 10}. By substituting the
control (48) in the model (47) we have

xi+1 = −1.3xi + 2.4xi−1 − 3.1xi−2 +
4

15
(1.5 +Ki) xi −

34

15
(1.5 +Ki) xi−1 +

16

15
(1.5 +Ki) xi−2,

after simplification we have

xi+1 =

(

−0.9 +
4

15
Ki

)

xi +

(

−1−
34

15
Ki

)

xi−1 +

(

−1.5 +
16

15
Ki

)

xi−2.

Then, by using the change of variables as before, we note

zi =





xi
xi−1

xi−2



 .

Therefore, the new equivalent model is written as

zi+1 = (△+ Pi) zi,

where

∆ =





−0.9 −1 −1.5
1 0 0
0 1 0



 ,
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and

Pi =





4
15Ki −34

15Ki
16
15Ki

0 0 0
0 0 0



 ,

and
C̃ =

(
−0.1 1 0

)
.

15

10

5

0

-5

-10

-15
0 0.1 0.2 0.3 0.4 0.5-0.5 -0.4 -0.3 -0.2 -0.1

Fig. 7. The colored area represents the set Λ in (50) corresponding to
example of delayed model, where k∗ = 3.

By a simple calculation
we can verify that the matrix
∆ is not stable and the pair
(∆, C̃) is observable, never-
theless, the algorithm2 con-
verges, for the two matrices
∆ and C̃ and the set Ω, and
gives k∗ = 3. As a result, the
only disturbances Pi which
did not affect this system are
those which verify the follow-
ing equations

|yi| 6 0.5, ∀i ∈ {0, . . . , 14}

and the set Σ in (14) is given
by

Σ = {(Pi)06i610/ |yi| 6 0.5, ∀i = 0, 1, . . . , 14}, (49)

while the set Λ in (11) is given by

Λ = {x ∈ R
2/|C̃△ix| 6 0.5, ∀i = 0, 1, 2, 3}, (50)

which is illustrated by the filled area of the Fig. 7.

6. Conclusion

In this paper, we have developed a new technique that allows us to determine admissible disturbances
susceptible to infecting the control input of a controlled linear discrete-time system. A disturbance
is said to be admissible if the corresponding output satisfies specific constraints. In this paper, we
restrict our interest in the determination of the set of all these admissible disturbances which is called
the maximal admissible disturbances set. By assuming that disturbances have a limited age, we
managed to develop an algorithmic method for computing this set, under some conditions. Numerical
examples were used to demonstrate the effectiveness of the proposed technique. We have shown also,
for a class of controlled discrete-time delayed systems, that the maximal admissible disturbances set
can be computed with the same way of delay-free systems, after some changes.
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Iдентифiкацiя набору всiх допустимих збурень: дискретно-часовi
системи зi збуреною матрицею пiдсилення

ЗакариО.1, РачикМ.1, ТриданА.2, АбдельхакА.3

1Лабораторiя аналiзу, моделювання та симулювання,

кафедра математики та обчислювальних наук,

факультет наук Бен М’сiк, Унiверситет Хасана II Касабланки,

Касабланка 20000, Марокко
2Вiддiл математичних наук,

Унiверситет Об’єднаних Арабських Емiратiв,

Аль-Айн, Абу-Дабi, Об’єднанi Арабськi Емiрати
3Кафедра математики,

факультет наук, Унiверситет Iбн Тофайл,

Кенiтра 14000, Марокко

Стаття присвячена лiнiйним керованим дискретно-часовим системам, на якi дiють
вхiднi збурення. Збурення вважаються допустимими, якщо функцiя виходу задоволь-
няє вихiднi обмеження. У цiй статтi вирiшується наступна задача: визначити набiр
усiх допустимих збурень з усiх збурень, сприйнятливих до деформацiї керуючого вхо-
ду. Описано алгоритм обчислення множини максимально допустимих збурень i наве-
дено достатнi умови для припинення цього алгоритму. Наведено числовi приклади.
Також розглядається випадок дискретно-часових систем iз затримкою.

Ключовi слова: дискретно-часова система, лiнiйна система, збурена система,

допустимi збурення, система iз затримкою.
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