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A mathematical model for determining the temperature of an electrically conductive plate
element under the action of pulsed electromagnetic radiation of the radio-frequency range
is proposed. This model allows us to take into account the influence of the process of
thermoelastic energy dissipation on the forecasting of the value of temperature in addition
to the joule heat. This process is determined by thermal expansion and the action of
poendromotive forces arising in the element. This approach allows us to predict a decrease
in the error of temperature determination. On this basis, the distributions of temperature
in an electrically conductive plate element under the action of an amplitude-modulated
radio pulse have been investigated numerically. Thermoelastic energy dissipation is taken
into account when using the frequencies of the carrying electromagnetic oscillations beyond
the resonant frequencies and of the first resonant frequency of the electromagnetic field for
this element. An estimate of the influence of the process of taking into account mechanisms
of energy dissipation on the total value of temperature in the element at the specified
action and used frequencies is obtained. This has allowed us to increase the accuracy of
temperature measurements in this element.
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1. Introduction

Electroconductive plates are widely used as structural elements of many devices, in particular, in
aviation and ship systems, in nuclear energy. These devices during operation are affected by many
physical factors, in particular, the action of pulsed electromagnetic radiation of the radio frequency
range [1]. As a result of such influence, the sources of the heat of Joule and ponderomotive forces emerge
in these elements [2]. These factors cause a change in the temperature of the element, which consists
of two components – the temperature component TQ due to the Joule heat and the temperature
component TF caused by the deformation of the element by ponderomotive forces [3, 4]. The last
component of the temperature is the result of the process of internal energy dissipation due to the
deformation of the element. When measuring the temperature of an element, which is important for
ensuring reliable operation and predicting its normal functioning [5, 6] under the influence of pulsed
electromagnetic action, it is important to be able to simulate their temperature-force regimes to reduce
temperature measurement error.

There are some works on determining the temperature of the plate elements under surface thermal
heating [7–9]. However, the estimation of the temperature in the considered elements under the
action of pulsed electromagnetic radiation of the radio frequency range, which is important in practical
applications in devices of aviation and nuclear technology, has not been sufficiently studied. This
work is devoted to taking into account the influence on the temperature estimation of the electrically
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conductive plate element of the process of thermoelastic energy dissipation under the action of an
amplitude-modulated radio pulse.

In the manufacturing and operation, the conductive structural elements of many devices are exposed
to external electromagnetic radiation of the radio frequency range. Due to this effect, the Joule
heat sources and ponderomotive forces arise in these elements. Such factors cause a change in the
temperature, which consists of two components – the component of temperature due to the Joule heat
and the component of temperature – due to deformation of the element by the ponderomotive forces.
The last component of temperature is the result of the internal energy dissipation process due to the
deformation of the element. When measuring the temperature of an element, which is important in
terms of ensuring the reliable operation of such elements and predicting their normal functioning under
the influence of electromagnetic action, it is important to simulate their temperature-force regime to
reduce the error of temperature measurement.

For example, in aviation and ship systems affected by the external electromagnetic radiation, elec-
trically conductive plates are used as plate elements for measuring temperature and mechanical oscil-
lations of elements of their structures; such electrically conductive plate elements operate under the
action of non-stationary electromagnetic fields (NEMF). On this basis, there arises a problem of devel-
opment of a mathematical model that takes into account, in addition to natural surface thermal and
force factors affecting the performance and reliability of such plate elements, also additional volumetric
thermal and force factors: the Joule heat Q and the ponderomotive forces F [1].

There are some known works on the method of determining the temperature and the study of
the temperature-force regime of operation of the plate elements due to surface thermal heating and
force load [2, 3]. However, the estimation of the temperature in the considered elements under the
action of electromagnetic radiation of the radio frequency range, which is important for the study of
the temperature-force regime of operation of such elements under the action of NEMF has not been
sufficiently studied.

This work is devoted to taking into account the influence on the estimation of temperature in a
conductive plate element under the action of NEMF, which is an urgent task to optimize the designing
and calculation of the reliability of plate elements under the action of amplitude-modulated radio pulses
used in modern technologies of processing.

2. Mathematical statement of the problem

An electroconductive plate element is considered in the form of a plate of the constant thickness 2h
referred to a Cartesian coordinate system (x, y, z) whose plane xOy coincides with the middle surface
of the plate. The plate material is homogeneous, isotropic, non-ferromagnetic, and its physical and
mechanical characteristics are constant over the considered temperature range of the element. The
plate is affected by the NEMF given by the values of the tangent component Hy of the magnetic field
strength vector H = {0;Hy ; 0} on its surfaces z = ±h, which are in the conditions of convective heat
exchange with the environment and are free from the force surface loading.

The components Hy(z, t) of the vector H and the temperature T (z, t) are selected as the determin-
ing functions for describing the temperature-force regime of the given plate. Such functions correspond
to the functions of the thickness variable z and time t.

The process of the thermo-force regime of the plate under the action of NEMF consists of two
stages. In the first stage, the NEMF is determined from the Maxwell relation. It is described by the
vector H , and caused by it the volumetrically distributed non-stationary Joule heat sources Q and
ponderomotive forces F taking into account the given initial and boundary conditions. In the second
stage from the system of equations of connected dynamical problem of thermoelasticity for a plate with
plane-parallel boundaries [8], the nonstationary temperature field T and normal (with respect to the
plate surface) component σzz of the tensor of dynamic stresses are defined. From the obtained Joule
heat Q and ponderomotive force F = {0; 0;Fz(z, t)} we define components of the temperature TQ and
TF caused by these physical factors, and summary temperature T = TQ + TF . Let consider each of
the steps in sequence.
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2.1. Definition of NEMF

The non-zero component Hy(z, t) of the vector H in the plate is determined from the equation

∂2Hy

∂z2
− σµ

∂Hy

∂t
= 0, (1)

under boundary conditions on the surfaces z = ±h of the plate

Hy(−h, t) = H−
y (t), Hy(h, t) = H+

y (t),

and zero initial condition
Hy(z, 0) = 0,

where H−
y (t), H+

y (t) are the given time functions that describe the specific nature of the change in
time of the NEMF; σ, µ are coefficients of electric conductivity and magnetic permeability of the plate
material.

From the equation (1) under specified boundary and initial conditions, the function Hy(z, t) deter-
mines the specific densities of the Joule heat Q(z, t) and ponderomotive forces F = {0; 0;Fz(z, t)} in
the form of ratios

Q =
1

σ

(

∂Hy

∂z

)2

, (2)

Fz = −µ

(

∂Hy

∂z

)

Hy. (3)

2.2. Determination of temperature components

According to the chosen physical and mathematical model for determining temperature components
TQ and TF the system of equations of connected dynamical problem of thermoelasticity for a plate
needs to be solved,

∂2T

∂z2
−

1 + ε∗
κ

∂T

∂t
− ε∗

1 + 2ν

καE

∂σzz
∂t

= −
1

λ
Q,

∂2σzz
∂z2

−
1

c21

∂2σzz
∂t2

= αρ
1 + ν

1− ν

∂2T

∂t2
−

∂Fz

∂z
. (4)

Here κ, λ are temperature- and heat conductivity coefficients; α, ν are linear thermal ex-
pansion and Poisson coefficients, E, ρ are Young module and plate material density; c1 =

[(1− ν)E/(ρ(1 + ν)(1− 2ν))]1/2 is an elastic wave of expansion velocity; ε∗ = κα2ET0(1+ν)
λ(1−ν)(1−2ν) is the

temperature and deformation fields connectivity parameter [9, 10].
The component TQ of the temperature we determine from the first equation of the system (4)

letting ε∗ = 0 under the condition of termal isolation

∂T (±h, t)

∂z
= 0

of the surfaces z = ±h and under the zero initial condition

T (z, 0) = 0.

The second equation of the system (4) we solve under boundary conditions σzz(±h, t) = 0 (surfaces
z = ±h free from force loading) and initial condition σzz(z, 0) = 0, ∂σzz(z,0)

∂t = αE
1−ν

∂T (z,0)
∂t enforced on

component σzz(z, t) = 0 of the stress tensor.
It is known [10,11] that under pulsed electromagnetic action deformation process in electroconduc-

tive bodies caused by ponderomotive force, is adiabatic. Taking into consideration this physical law,
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we determine the temperature component TF by obtained component σF
zz of the stresses tensor compo-

nent σzz. Component σF
zz of the stresses tensor we define from the second equation of the system (4),

letting T = 0. As a result we obtain following formula [3, 4, 12]:

TF = −
αT0

λ(1− ν)

κ(1 + 2ν)σF
zz

[1 + 3ε∗(1− ν)/(1 + ν)]
. (5)

The temperature distribution T (z, t) in the plate is determined from (2) and (3) by the specific
Joule heat Q(z, t) density in particular, under the boundary conditions of thermal insulation on the
inner and outer surfaces of the plate where κ and λ are the coefficients of temperature and thermal
conductivity of the plate material. Note that in the case of convective heat transfer, the recorded
boundary conditions of the thermal insulation of the plate surfaces are replaced by the corresponding
convective heat transfer conditions.

3. Determination of solutions of the formulated initial boundary value problems

To solve the formulated initial boundary value problems, we approximate the distributions of the
determining functions Hy(z, t), T (z, t), σzz(z, t) by the plate thickness variable z, by cubic polynomials

Hy(z, t) =

3
∑

i=0

ai(t) z
i, (6)

T (z, t) =
3
∑

i=0

bi(t) z
i, (7)

σzz(z, t) =
3
∑

i=0

ci(t) z
i. (8)

The coefficients ai(t), bi(t), ci(t) of the approximation polynomials (6)–(8) are determined by the
integral characteristics Hys(t), Ts(t), σzzs(t) of the key functions Hy(z, t), T (z, t), σzz(z, t)

Hys(t) =

∫ h

−h
Hy(z, t) z

s−1 dz, s = 1, 2, (9)

Ts(t) =

∫ h

−h
T (z, t) zs−1 dz, s = 1, 2, (10)

σzzs(t) =

∫ h

−h
σzz(z, t) z

s−1 dz, s = 1, 2, (11)

and given boundary conditions on the surfaces z = ±h of the plate. To find the integral characteristics
Hys(z, t), Ts(z, t) and σzzs(z, t) the initial equations (1), (4) are integrated according to (9)–(11) taking
into account the expressions (6)-8).

As a result, the initial boundary value problems for the definition of the key functions Hy(z, t)
and T (z, t) are reduced to the corresponding Cauchy problems for the integral characteristics of these
functions, which are described by the systems of equations











dHy1(t)

dt
− d1Hy1(t)− d2Hy2(t) = d3H

−
y (t) + d4H

+
y (t),

dHy2(t)

dt
− d5Hy1(t)− d6Hy2(t) = d7H

−
y (t) + d8H

+
y (t),

(12)
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dT1

dt
+ dT1 T1 + dT2 T2 = W1(t),

dT2

dt
+ dT3 T1 + dT4 T2 = W2(t),

(13)











dσzz1
dt

+ dσ1σzz1 + dσ2σzz2 = W ∗
1 (t),

dσzz2
dt

+ dσ3σzz1 + dσ4σzz2 = W ∗
2 (t),

(14)

and are solved under the initial conditions according to (7), (8). The coefficients d1÷8, dT1÷4, d
σ
1÷4 are

determined by the geometric parameters of the plate and the physical and mechanical characteristics
of its material, WS(t), (s = 1, 2), W ∗

S(t), (s = 1, 2) is the right hand part of the heat conductivity
equation (4), integrated according to (10) and (11).

Applying the Laplace integral transformation of time t, the solutions of the Cauchy problem (12),
(13) are written as a convolution of functions describing given boundary conditions and homogeneous
solutions. As a result we obtain the expressions

Hy(z, t) =
3
∑

i=0

{

2
∑

s=1

ais

2
∑

k=1

∫ t

0

[

As1(k)H
−
y (τ) +As2(k)H

+
y (τ)

]

epk(t−τ)dτ + ai3H
−
y (t) + ai4H

+
y (t)

}

zi

(15)
for components Hy (z, t) and

T (z, t) =

3
∑

k=0

2
∑

s=1

(

bks

2
∑

m=1

∫ t

0
[Bs1(m)W1(τ) +Bs2(m)W2(τ)] e

pm(t−τ)dτ

)

zk (16)

for the temperature T (z, t), and the expression for the component σzz(z, t)

σzz(z, t) =

3
∑

n=0

2
∑

α=1



cnα

2
∑

γ=1

∫ t

0
[Cα1(γ)W

∗
1 (τ) + Cα2(γ)W

∗
2 (τ)] e

pγ(t−τ)dτ



 zn, (17)

where As1(k), As2(k) (s = 1, 2) are expressions that depend on the roots pk (k = 1, 2) of the char-
acteristic equation of system (12); Bs1(m), Bs2(m) (s = 1, 2) are expressions that correspond to the
non-homogeneous solutions of system (13) and depend on the roots pm (m = 1, 2) of its characteristic
equation, Cα1(γ), Cα2(γ) (α = 1, 2) are expressions that depend on the roots of the characteristic
equation pα (α = 1, 2) of system (14).

Based on the developed general relations (15) and (6), (16) and (7), (17) and (8) for homogeneous
non-stationary electromagnetic action, the results of numerical analysis of the temperature-force regime
of the plate electrically conductive plate element under the action of amplitude-modulated radio pulse
(AMRP) are obtained.

4. Investigation of the temperature-force regime under the action of AMRP

The AMRP action is mathematically described by the function H±
y (t) in the form [4,13–15]

H±
y (t) = k0H0

(

e−β1t − e−β2t
)

cosωt, (18)

where k0 is the normalization factor; β1 and β2 are parameters characterizing respectively the times
of the increase tiner and decrease tdekr fronts of the modulated pulse which duration is ti; H0 is the
maximum value of magnetic field strength in AMRP; ω is the frequency of carrier electromagnetic
oscillations.
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Substituting the expression (16) into expressions (14), (6) and (15), (7), we obtain the expressions
for the non-stationary volumetric ponderomotive force and temperature in the plate element under
the action of AMRP. The Joule heat Q, the component Fz of the ponderomotive force F and the
temperature T in this plate element with thickness 2h = 2mm made of X18H9T stainless steel are
analyzed. The characteristics β1 and β2 are consistent with the duration of the modulated pulse
ti = 100µs and the circular frequency ω = 628000 1/s.

Figures 1–3 show the changes in time of the Joule heat Q, the ponderomotive force Fz and tem-
perature TQ (TQ is temperature which is caused by the Joule heat Q). Lines 1, 2, 3 in the figures
correspond to the values of the thickness coordinate z = h; 0.5h; 0. It should be noted that the maxi-
mum values of the considered value are reached on the surface of the plate, and the minimum – on its
middle surface.

0 20 40

0.0

0.3

0.6

1

2

3

Q

H2

0

, J · m
2

A2

t, µs

-3

3

0 20 40

1

2

3

6

0

Fz

H2

0

, N · m
2

A2

t, µs

Fig. 1. The change in time of the Joule heat
dissipation in the plate element.

Fig. 2. The change in time of the pondero-
motive force in the plate element.
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Fig. 3. The change in time of the tempera-
ture TQ in the plate element.

Fig. 4. The change in time of the total tem-
perature in the plate element at ω = ωr1.

Figure 4 shows the change in time of the total temperature T = TQ + TF (TF is the temperature
of the plate element due to its deformation by the ponderomotive force F ) for the frequency of the
carrier electromagnetic oscillations ω = ωr1 = 4.678 · 106 1/s. Here ωr1 is the first resonant frequency
of the carrier electromagnetic oscillations for a given plate element. Lines 1—3 in Fig. 4 correspond to
the values of such lines in Fig. 3.
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Note that at the carrier frequency ωr1, the maximum values of the total temperature increase
approximately 8−10 times compared to the temperature values for the frequency ω = 628000 1/s (this
frequency is outside the resonant frequency range ωr1). Note that the contribution of the temperature
component TF to the total temperature at frequency ω = 628000 1/s relative to the component TQ can
be neglected. Accordingly, for the frequency ω = ωr1 the contribution of the temperature component
TF is 20− 25% compared to the contribution of the component TQ.

The change in the total temperature TQ + TF at the frequency ω = ωr1 has oscillating character
in accordance with the nature of change in time of the ponderomotive force, and its maximum values
are an order of magnitude higher than the same values of the total temperature at the frequency
ω = 628000 1/s.

5. Conclusions

The proposed method allows us to determine the temperature and volumetric ponderomotive forces
in the considered electrically conductive plate element under the action of a homogeneous external
NEMF.

On the basis of this technique, the initial-boundary value problems for the determining functions
(the tangent component of the magnetic field intensity vector and the temperature) are reduced to
the Cauchy problems for the integral characteristics of these functions. The Cauchy problem solutions
were written using the Laplace integral transform in the form of functions convolutions. Such functions
describe the given boundary conditions and homogeneous solutions of the problems of electrodynamics
and heat conductivity under the homogeneous non-stationary electromagnetic action.

Based on the obtained solutions, a numerical analysis of the change in the time of the Joule heat,
the ponderomotive force, and total temperature under the action of the AMRP on the considered
plate element was performed. The regularities of the change in time of these physical quantities at
the frequency of the carrier signal AMRP, which is outside the range of resonant frequencies of the
electromagnetic field, as well as at the first resonant frequency, are investigated.

The proposed approaches and the qualitative and quantitative regularities of temperature change
can be a theoretical basis for improving the accuracy of measurement and reliability of the plate
elements under the action of AMRP, which are used in navigation systems and nuclear power stations.
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Математична модель прогнозування оцiнки температури
електропровiдних пластинчастих елементiв за дiї iмпульсного
електромагнiтного випромiнювання радiочастотного дiапазону

Мусiй Р. С., Наконечний А. Й.

Нацiональний унiверситет “Львiвська полiтехнiка”,

вул. С. Бандери, 12, 79013, Львiв, Україна

Запропоновано математичну модель визначення температури електропровiдного пла-
стинчастого елемента за дiї iмпульсного електромагнiтного випромiнювання радiо-
частотного дiапазону. Дана модель дозволяє враховувати вплив на прогнозування
значення температури крiм тепла джоуля ще й процесу термопружного розсiювання
енергiї. Цей процес зумовлений тепловим розширенням i дiєю пондеромоторних сил,
що виникають в елементi. Такий пiдхiд дозволяє прогнозувати зменшення похибки
визначення температури. На цiй основi чисельно дослiджено розподiли температу-
ри в електропровiдному пластинчастому елементi за дiї амплiтудно-модульованого
радiоiмпульсу. Враховано термопружне розсiювання енергiї за використання частот
несучих електромагнiтних коливань поза околом резонансних частот i рiвних першiй
резонанснiй частотi електромагнiтного поля для даного елемента. Отримано оцiнку
впливу процесу врахованих механiзмiв дисипацiї енергiї на сумарне значення темпе-
ратури в елементi за вказаної дiї i використовуваних частот. Це дозволяє пiдвищити
точнiсть вимiрювання температури в даному елементi.

Ключовi слова: електропровiдний пластинчастий елемент, електромагнiтне ви-

промiнювання, радiочастотний дiапазон, амплiтудно модульований радiоiмпульс,

несучi та резонанснi частоти, тепло Джоуля, пондеромоторна сила, дисипацiя

енергiї, температура, похибка вимiрювання.

Mathematical Modeling and Computing, Vol. 8, No. 1, pp. 35–42 (2021)


