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According to the analysis of literature sources, the statistical processing of measurement results is
not always given due attention. Unfortunately, appropriate algorithms are often limited to simplified
statistical procedures, without the proper justification of the objective function, including to check the
quality of processing of random data. Therefore, the author plans to publish a series of articles on
statistical modeling, which will include the results of original research by the author and others. In this
article are considered the methodological aspects of statistical modeling of two-dimensional systems with
random data, physical substantiation of correlation regularities of statistical relations between random
variables is given, since or the problem of establishing the law of distribution of random variable has
practical interest from the point of view of modeling statistical regularities of model "'signal + noise"".
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Introduction

In statistical research, the functions of not just one, but two or more random variables (RVs), are
used. Thus, the analysis of variance mainly investigates mutually statistically independent RVs that are

X=X2+X/ 44X 7 Y=Y 4V, ++Y 2

normally distributed, such as and . In Snedecor's

n X
statistics, the probabilistic regularities of RVs M Y are used, and in Fisher's statistics, the probabilistic
lan X§
Z= Iog—a——g
regularities of type 2emY g are used. The probability density function of the RVs as

X

2 2 2
‘/Yl Y b is described by the well-known Student's statistics, for which the mathematical
expectation is equal to zero, and due to homogeneity, the variance is not playing any role [1].
It is believed that the work [2] gave rise to a theory of summation of independent RVs. It was found that
some linear operations, such as summation and finding the minimum and maximum values of RVSs, generate
RVs, the distribution of which converges to several limit distributions, such as Gaussian distribution

\/——(X1+X2+"'+Xk_mxxk) _11/a (X, + %, + ..t %, )
PSx (normal distribution), stable distributions k

(StableDistribution), and Fisher-Tippet—-Gnedenko distribution B MaX(Xy, Xy - X ) + By

(MinStableDistribution and MaxStableDistribution) [3]. In the above examples, random phenomena are
described by several normally interrelated random numbers in the general case, where the probabilistic
characteristics of the RV system should be researched. We will turn your attention only to the analysis of
the system of two continuous RVs, although they can be discrete, continuous, and mixed, depending on the
types of the RV included in these systems.
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In statistical modeling, the properties of the so-called self-reproduction of the distribution laws are
widely used. Thus, the sum of normally distributed RVs is also normally distributed; according to Cauchy
law, the sum of Cauchy-distributed RVs, etc. The property of self-reproduction of the distribution laws
allows determining the type of the probability density function of an error by the given type of the error as
a random argument function and the known distribution of the arguments [4]. This is based on the fact that
if there are no correlations between components of the error composition, then the distribution of the sum
of normally distributed errors is distributed as close as possible to normal. This pattern is true more
accurately, the greater the number of RVs that add up. Therefore, regardless of the laws, the individual
errors are subject to, the features of the distributions in the sum of a large number of summands are
dropped out of the equation, and the sum turns out to be subject to normal distribution law. The joint
distribution of the composition of two independent RVs has been studied by many authors [5].

Methodical analysis and discussion

Two-Dimensional Systems of RVs. In many practical problems, we have to deal with not just one
RV, but with a system of RVs. Thus, a thermodynamic system in a state of thermal balance is described by
at least three parameters — volume, pressure, and temperature. Electrical and thermal systems are
described by such parameters as voltage, the resistance of an active component, and the current passing
through it. In deformation systems, the physical processes of energy conversion are determined by the
external force applied, reaction to this force, and the resilience of the component, etc. [6,7].

Physical variables in the system can be independent of each other or related to each other to a certain
extent. For characteristics of the probabilistic and statistical regularities of a system of two or more RVSs,
the same joint distribution and joint moments, etc., are introduced as for one-dimensional RVs. The

relationship between the joint two-dimensional probability density function foxn O6Y)

K, I

and the joint

moment of the order is put down as [7]

+¥
= (\)XkyI vy (X, y)dxdy
¥ : (1)
Both for one-dimensional and multi-dimensional RVs, the setting of all moments is similar to setting
the probability density function.

x“y

In a two-dimensional system with joint probability density function focn (%, y), the probability of
distribution of each of the components of the RV expresses the so-called marginal (individual)

probabilities with probability density function Fx (), Ty (¥) );

+¥ +¥
fy (X) = f) f(X,Y)(X’ ydy, f,(y)= 0 f(x,Y)(Xa y)dx
x & @

Thus, we should speak about both the individual independence of RVs and joint independence for an
arbitrary set of RVs. Thus, a two-dimensional set of RVs is independent, if the joint probability density
function is equal to the product of marginal probability density functions of RVs [8]

Foon (6 Y) = B () Ry (y) o R(Xax,Yay) = R(Xax)R(Y dy) @)
then such explosives RVs X and Y are independent, and the two-dimensional
the distribution function F,, (X,Y) is factorized. For independent RVs, the common density function
fx.v) (X, ) is expressed by the product of one-dimensional densities of marginal probability distributions

f (x) and f, (y) fromRVs X and Y :
Focn (6 y) = (01, (y). @)

In general, it is impossible to solve the inverse problem, that is, to restore the joint distribution of the components.
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Then in this case (4), we have:

f2(2)= ¢ fx (O fy (z=x)dx or f,(2) = § fx (- y)f, (y)dy. (5)

Only in this case, the so-called inverse problem can be solved; according to the known RV
distribution laws, we can find a joint distribution law, as the distribution law itself does not indicate the
nature of the relationship between the RVs. Let us recall that it can be both functional and statistical
(probabilistic). Independent RVs are uncorrelated, whereas their uncorrelatedness does not stand for their
independence. If the correlation moment is equal to zero this means only that there is no linear relationship,
but does not exclude any other relationship. Dependent variables can be correlated and uncorrelated. The
formulas (3) and (4) are called the product rule of distribution laws. To fully characterize the distribution
of a two-dimensional system, knowing the distribution of each of the RVs in it is not enough; one should
also know the dependence between the RVs, which is characterized by conditional probabilities .

Conditional probabilities. Dependent and independent RVs. In the probability theory, concepts of

dependence and independence of RVs of probabilistic (stochastic) nature are important, as RV Y is related
to RV X by conditional dependence. This means that by knowing the value X you cannot specify the
exact value Y , but only indicate its distribution law, which depends on the value X . RVs are independent

within a system (X,Y) of the events Xax and Yay are not dependent on random %Y Note that we are
talking about the statistical independence of aggregate RVs, which in this case forms a two-dimensional
system. Thus, even the pairwise independence of the RVs does not presuppose the independence of

aggregate RVs. Thus, if RVs X and Y are independent, then both the events related to falling of the RVs

at the intervals (=¥,%) and (-%,y) random intervals [x,%;) and [y1Y2) are independent.

Analysis of the references shows that the independence of the RVs is simply declared in the majority
of cases. From the point of view of physics, the pressure is an average perpendicular component of the
force of the system applied to the regional unit of its margin of separation with its environment (for
example, a thermostat):

p =8 dmd)
Coa (6)

The temperature of the system introduced by Boltzmann as a measure of its heating in terms of the

smallness of the mass i of gas molecules, atoms, and microparticles with proportional equality of the
type of temperature

él mJ?2 = kT
P 2 . @)
Thus, based on the physical nature, pressure, and temperature, including their random values, are
dependent. However, the pressure and temperature are mostly statistical characteristics, the values of
which reflect the regularities of collective systems. But a researcher measures pressure with one tool, and
temperature with another tool. Therefore, if he carries out this procedure independently of the other one,
and if the measurement conditions remain unchanged, then, taking into account the fluctuation processes,

P, T

random values can be considered independent. The same model can be adopted for the analysis of

the measured values of current and voltage U. T on the electrical circuit component with resistance R .
However, we emphasize that at the same time both parameters are caused by the same physical process at a
given moment in time — a change in the number of electrons transferred by the electric field, which

Zener diode voltage regulator [9] can be a physical model of conditional probability.
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changes due to the processes of irreversible dissipation of their energy on defects. But, for statistical
analysis, in particular, for example, for the establishment of the distribution law of random values R
concerning | , in most cases, it is assumed that U, | are normally distributed, as will be discussed in more
detail below.

According to [10], if the variables X1 Xz %0 are random values, then each aggregate value

X1y Xy e X ) X1, Xy peeny X
SR SIERSY) is also a random value. The value SR STERSY) represents a joint distribution of value

X1 Xg0%n At the same time, each aggregate RV, as well as a single RV, has a one-dimensional

probability distribution. Joint distribution occurs in the case of repeated measurements. In the above

example, the joint distribution occurs, if the RVs U and | form a random value as a product P =U x| .
Therefore,

Thus, if two RVs are dependent, then the information about the actual value of one of them will
change our understanding of the distribution of another variable. Therefore, a concept of conditional
distribution law was introduced for dependent RVs. The distribution calculated under the condition that

another RV takes a certain value is called conditional. For continuous RV, the distribution law of RVs X
calculated under the condition that another RV Y takes a certain value Y =y [2] is called conditional
(integral F(x|y) and differential f (x| y)) distribution law:

1 ﬂFx,Y (X, y) 1 T“:X,Y (X, y) /

fx () X f.(y) Ty
Here the two-dimensional RVs (X,Y) is continuous if there is a negative differential function of
the common distribution

fyx (Y[X)=

’ 1Exn( (x|y)= (8)

d 2
f(X,Y) (X, y) = dx—dy Fex vy (X, Y) )
for which
1 N
:i;fx (x) = f(x, y)dy
1 Iif (10)
i (y) = o f(x y)dx
t ~
Then the integral function of the common probability distribution will be equal to
Xy
Fxyy(XYy) = R(— ¥4X éxé+¥,Yéy) =0 0 foxry (X y)dxdy . (11)
-¥-¥

Thus, we can determine the distribution law of the system by knowing the distribution law of one of
the values included in the system, and the conditional distribution law of the other RV.
The two-dimensional differential probability element dFx ) (%, Y) is equal to
foxn (%, )dxdy = R{(xa X ax + dx)x(yaY ay + dy)) 12)

that is, it is expressed through the product of the probabilities of the components. According to the
multiplication theorem on probability [11]

f(X,Y)(Xv y) = fy (X)x f\(|x (ylx)), (13)
the probability of the product of probabilities is equal to the following:
focvy (X y)dxdy = £, ()dxx fy (y [ x)dy, (14)
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Therefore, the probability density function of the system of two RVSs is equal to the probability
density function of one of the values included in the system multiplied by the conditional probability
density function of another value calculated on the condition that the first quantity has a certain value.
Integral of (14) is equal

+¥

0 oy (X )y = £, (x). (15)
-¥
or a similar expression
+¥
0 Foxny (X Y)dx = £, (y). (16)
-¥

allows calculating the distributions Fx (%) and fy (v) , only if a two-dimensional distribution

f X . . . . .
oo (% Y) is set, and if we are not interested in the value of the second RV. For example, suppose if an

ideal gas is located between two solid walls X =@ and X = b (aab) , then the distribution of the
coordinate X of the ideal gas molecule is independent of *:
11 . .
—— if  aaxab,
f(x)=tb-a (17)
10 if aix or xib.
The RV X is independent of the RV Y if the law of distribution of the quantity X does not

depend on the value of the quantity Y . For continuous RVs, the condition of independence Y can be put
down as follows:

fX|Y (X | y) = fX (X) (18)
at random X. Similarly, the condition of independence of Y of X has the following form:
fox (Y1) = £,() (19

at random Y . Thus, if the conditional and unconditional distributions of RVs coincide, then these random

variables are independent. Illustration of regularities of density function formation (19) from two directions
of observation is shown in Fig. 1. The calculation parameter is chosen at random.

[
fp2=3 A Axlp=3

fEY fZY

Fig. 1. llustration of regularities of density function formation (19) from two directions of observation
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The conditional distributions are characterized by the conditional mathematical expectation

¥
Exyey = 0XF(X] y)dx (20)
-¥
and conditional standard deviation
¥ ¥
Syyey = 0X= My )2 F(X|y)dx = gx* F (x| y)dx =-my,. 2. (21)
-¥ -¥

Thus, if RV X ~N(m,,S, ), then the conditional mathematical expectation of normally distributed

. 2 . . . i
RV is equal to my -./—S,, and is less than the unconditional mathematical expectation [2]. Features of
p

formation of probability density functions of dependent and independent RVs in a flat two-dimensional
system are reflected in [12]. Fundamental studies of correlation and dependence of RVs given in [13].

Correlation and Transformation of Tow-Dimensional RVs

Correlation between the RVs . The mean and the variance are convenient features of RVs. The

relationship between the two RVs X and Y is probabilistic, that is, when one of the changes, the other
one will not change deterministically, but a trend to change will occur. According to (1), the following
equation is justified for a two-dimensional system of independent RVs:

Xy =xKay' (22)
Therefore, to test the hypothesis of the independence of RVs, we should verify the validity of the
equation (22) for arbitrary positive integers K and | Since this is very hard to do, in practice, the validity
of the equation (22) is verified for any values K and |. The difference between the left and right parts in
(22) serves as a measure of a statistical relationship, which is called covariance in the case of two RVs
(k =1 g | =1y.
K, =Xy-XXy. (23)
The formula (23) expresses the degree of probabilistic relationship between the two RVs in the
language of mean RVs X and Y . If X =Y, then the correlation is equal to the variance
Ky =X2-X". (24)
Normalized covariance:
Ky _ Xy -Xx¥y
VKo Ky ETEY

is called correlation coefficient between the variables X and Y .

r:rXY:

(25)

Unlike covariance, the normalized variable ' is dimensionless, that is why it is more convenient for
practical use; its absolute values for independent RVs vary from zero to +1 at Y = =X . Therefore, the
correlation coefficient characterizes the degree of linear dependence of RVs. For a normally distributed
two-dimensional system, the Pearson correlation coefficient is used for correlation studies [15].

If the distribution of RVs is symmetric with respect to the zero point (origin point), then the mathematical expectation of

covk,X*)=E . -E,E,. =0 P covi X*)=0

2k+1 . . . .
the type X Rvsis equal to zero and the covariance is , While

2
the relationship between the RVs X and X is non-random. Therefore, the equality of the correlation function to
zero is not a sufficient condition for the independence of RVs [14]
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The variance of correlated RVs is calculated by the formula
D[X +Y]=D[X]+D[Y]+2rs,s,, (26)
where the third summand expresses the mutual correlation moment depending on the parameters r , S

ands, . If RVs are independent, then they are uncorrelated r = 0. The inverse proposition is not true.

You can build RVs, which are not correlated, yet are dependent[16] thus, the equality to zero of the
correlation coefficient r = 0 still does not imply the independence of RVs [17], a visual illustration is

shown in Figure 2. In this figure, its left side shows a chaotic scattering of points with statistically
independent coordinates. We see that the trend of the regularity of distribution is absent. The right part
shows a similar distribution when there is a correlation between the X and Y coordinates. Then it is
possible to draw some averaged curve - the distribution trend.

. i i — oy 2

An example of an uncorrelated dependence of RVs can be a nonlinear relationship Y =aX" The
concept of correlation of RVs is close to the concept of dependence (in terms of statistics), but they are not
equivalent. The only exception to this rule is the case of two normally distributed RVs when the concept of

correlation and dependence are equivalent. Thus, if |ny| 1 0, then the RVs are interdependent. But K,
displays the information about the scattering of a random point (X,Y) relative to a fixed point

(M [X],M [Y]). Therefore, if the variance of one of the RVs is small, then their covariance will be close

to zero, no matter how strong is the relationship between them. Other regularities of uncorrelated
dependent RVs are available in the works [16].

e
."5'=|:I » . ﬁED .

o W W W, o o
ke H "k
E H

@ ®

Fig. 2. The illustration of the chaotic scattering of points
with statistically independent of coordinates X and Y (left part)
and a correlation coordinates (right part)

Covariance characterizes not only the degree of dependence of RVs but also their scattering around
a random point m, ,m, . Thus, if an RV X little deviates from its mathematical expectation, then the
covariance will be small, despite the dependence between the RVs X and Y . Therefore, the numerical
characters of the dependence of RVs X and Y are the correlation coefficient, and not scattering.
Therefore, if r =0, then the coordinates of the two-dimensional normal random vector are independent.

It is important to correctly evaluate the statistical significance of the correlation coefficient, that is,

the degree of linear dependence between the sample characteristics. If its size n is large, then the Student's
statistics will be used for the correlation coefficient

Irn-2 5

t= =1-r? (27)
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with n -2 degrees of freedom. If at the sample size na30 the value r 3 0.8 is obtained, then Fisher's
distribution statistics will be applied:

1, 1+r
==In—-. (28)
2 1-r
The transformation of RVs and the Jacobian determinants. Arithmetic operations on the RVs by
the transformation Z = g(X,Y) are used to form two-dimensional systems [18]. At the same time, the

theorem that the expectation of the sum of several RVs is equal to the sum of the mathematical
expectations of these variables is important. This theorem is widely used because it does not impose any
restrictions on the RVs included in the sum, that is, they can be dependent and independent. So as for

independent RVs, the equation E,,, = E, *E, is true only for independent RVs, that the transformation
of the following type is incorrect:

E,: =Exx) = Ex *Ex = (Ex )2 (29)
as both factors are mutually dependent and the multiplication theorem cannot be used in this case. If the
transformation (29) was true, the difference EX2 - (EX )2 would be equal to zero, that cannot be true,
because, in a system of random nature, the variance is

D, =E,. -(Ex ) fi0. (30)
In the general case, the theorem on the mathematical expectation of the product of RV has the
following equation:

Eoxxy = Ex XEx + rxsyxs,. (31)

foxvy (% Y)

®
Therefore, if a vector Z = (X,Y) with the probability density function is given and it

is necessary to find the distribution law of the transformed RV Z = g(X,Y), then it is enough to
® ®
construct an appropriate single-valued view of the vector Z = (X,Y) into a vector W = (W,V) and find

®
the probability density function of the vector W [21] :
iX+Y and X-Y
Z=9g(X,Y)=7 .
T XxY and X/Y

The formulas for calculating the probability density functions f,(z) transformed according to

algorithms (32) of correlated and uncorrelated RVs are shown in Figure 3. In general, the probability
density functions are transformed according to the following rule. Let two direct transformations

Z =g(X,Y) (inverted X =g:(Z,V),Y =g, (Z,V)) and V =v(X,Y) take place at the RVs X and

Y with joint two-dimensional probability density function fzvy(z,v) and let us find the probability

(32)

density function f,,(z,v) of two-dimensional RVs (Z,V) . The following relationship is true in the

differential equation:

1(x,y) — f(x,Y)(g;(l(Z’V)’ ggl(z,v))p (Z,V)|, (33)

fzvy(z,v) = f(x,v)(g;(l(Z’V)1 gv'(z,V)) 1(.v)

where J(z,v)xJ(x,y)=1.
To find the distribution law of transformations (40) for independent RVs, we should switch from the
system of RVs ( X,Y ) to the system of RVs (Z, X) or (Z,Y) and carry out integration according to the
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formula (12). To do this, we have to solve the equation Z = g(X,Y) for one of the transitions from the
system RVs ( X,Y ) to the system of RVs (Z, X) or (Z,Y) . Forthe case y = w(z, X), itis given that

f(x,97(z,x))dx=g(z,x)dz P g(z,x)= f(x, g'l(z,x))g—}zl = f(x, 9™z, x)J|, (34)
and for the case X =q(z,Y),
92.¥) = F(g @Y o (3)
Then the probability density function is calculated as an integral
f,(2) = Eg(z, x)dx = ag(z, y)dy. (36)

Mutual single-valued direct and inverse transformations and Jacobian determinants of
transformations of the RVs for the sum, difference, product, and ratio of RVs are given in Table 1.

Table 1
Direct transformation Inverse transformation Jacobian determinants of transformations
Z=g(X,Y) 2zZV & X0 x/ 9z x/qv
g, Ty/9z fy /v
Z=X+Y, X =V 0 1
1 3(z,v) |5 =-1
V =X Y=Z-V (X,Y)® (Z,X). 1 -
Z=X+Y Y=V 1 1
[ I(z,v) |7 =-1
V=Y X=Z-V (X,Y)® (Z,Y). 0 -
e=r oy ) aewE’ =1
V)|~ =
X =X Y=X-Z (X,Y)®(Z,X). -1
Z=X-Y X=X 13z 0 1
V)|~ =
Y =Y Y=X-Z (X,Y)® (Z,Y). -1
Z = XxY X =V y X 1
_ _ | 3(z,v) |= =—
V=X Y=Z/V (X,Y)®(Z,X). 0 1 vy
Z = XxY X=Z/I/V y X 1
_ _ [ I(z,v) |= =—
V=Y Y=V (X,Y)®(Z,Y). 01 vy
Z=X1Y X =V 0 1
_ _ | I(z,v) |= =Y
V=X Y=V/Z (X,Y)® (Z,X). 1/x -z/x
Z=X1Y X =272V 13(zV) | 0
Z,V)|= =
V=Y Y=V (X,Y)® (Z,Y). Ux -z/x d

Let us demonstrate the transformation algorithm by the example of the transition from the Cartesian
coordinate system X, y to the polar coordinate system r, j :

(X, y) ®(r,j),ri0,j T(-p,p), (37)
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For which the Jacobian determinant of the transformation is put down as follows:

) ) g X/r ylr ¢
f(rd) _ g 21/ Ir/fys_ ¢ Cylx 1/x =1

Toy) ST T §1+(y/x)2 1+ (/175 "

blJ=r. (398

Thus,
f(R’j)(r,j) = rf(X’Y)(x =rcosj,y=rsinj) (39)

If the Cartesian coordinates are distributed under the normal law N(0.}) , then in spherical
coordinates we have

x2+y?

. r - ro-C .
f(RJ)(r.J)=$e 2 =59 2=t fa) (40)
The uniformly distributed two-dimensional system of RVs. The probability density function

fx vy (X, y) of the joint distribution of two RVs is equal to:

T10£ XE X0
TOEYE Y.

The surface of the function (41) has the shape of a rectangular parallelepiped, one of the vertices of
which is aligned with the origin of coordinates in the plane XoY with x long sides, so the region

1
fxyy (% Y) = g (41)

max ! ymax

of the rectangle is S = X, * Y. - 1he marginal probability density function is equal to:

Xmax ymax Xmax

\ . 1 \ 1
fy (X) = 0 f(x,v)(xl y)dy = 5 0 dy = ! fy (y) = 0 f(x,v)(X7 y)dx =——  (42)
0 0 0

max max

If the two-dimensional RV (X,Y) s uniformly distributed in a circle with a radius R, then the joint
probability density function is equal to:

i1 )
+——5, if x*+y®*£R?,
f(xy)=1P R (43)
1o, if x*+y?>R%
The marginal probability density functions of both components in this case at [x| £ /R? - y* and

ly| £VR? - x* are equal to:

¥ I e T AT
fM=§fxydx=——5 fd=——; =2 h-Fr2
¥ pR Ry pR R2y? PRY ¢eRg
¥ R2 2 R%-x? (44)
N 1 \_X 2 2 2X0
fy () =g f(xy)dy=—7px (dx=—7yj1 =— J1-¢=% |
RV PR® =2 PR e PRY eRg

Let us verify the condition of independence of RVs:

2 2
exg 1 20
— 1 — 1-¢—= x—.,[1-¢== P f(xyrf, (X)f _ 45
RE 2R\ SR, RVTSR, (xy) * £ (x)* £y (y) (45)
Thus, although the joint distribution function (51) is divided into the product of two functions, one of
which depends only on one variable, and the other one is dependent on the other RV (formula (44)), the

condition of equality of the function f, ,(x,y) of the product f, (x) f, (y)is not met, that is, the RVs
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with joint distribution (43) are dependent. Let us calculate the probability density functions of conditional
probability distributions:

1
f(x,y) p R? 1 5 \-1/2
fy = = =—MW-ly/R 1 £, (x),
R R e e - GrRP 2 1
i 1 (46)
_f(X,y)_ pR2 _ 1 _ 2—1/21
NPT T2 _(X/R)Z"gﬁg@- (/R 2 1, (9.

Here, the fact that f(x,y) =0 at X* +y® >R’ therefore f,(x|y)=0 at [X>+R* -y’

and similarly: f,(y|x)=0 at ‘X‘ > 1/R2 - y2 , IS not taken into account. Note that the geometric
probability calculation can be used for uniform distribution.

If X =0, then the RV Y can take an arbitrary value from the range [_ R;+R] with the same
probability; if X = %R, then the RV Y can take only a single value Y =0. To make sure, whether there
is a functional relationship between the RVs X and Y the considered problem, we should calculate the
correlation coefficient (normalized covariance). In the case of uniform generation of random points in the
area of the circle with the radius R, the correlation moment is equal to:

K = (47)

(C=pr?) (C =pr?)

If the origin of the Cartesian coordinate system is aligned with the center of the circle, the area of which is
uniformly filled with random points, then, taking into account the symmetry between the mutually opposite
guadrants (sectors), we conclude that the correlation moment is equal to zero, that is, in this system, the RVs X
and Y are uncorrelated, yet dependent. The correlation coefficient does not characterize any dependence, but a
linear dependence, and in the borderline case Y = kX + const, itisequal to r = £1.

Normally distributed two-dimensional system of RVs . Continuous multidimensional systems
described by the normal distribution, based on the concept of a random vector, are widely used in physical
modeling and many engineering applications of probability theory. It was substantiated that a continuous

random vector (X,Y) as a two-dimensional system of correlated RVs X ~N(m,,s,) iY ~N(m,,S,)
with unconditional mathematical expectations m, , and unconditional standard deviations s, , is
distributed according to normal law if the joint probability density function has the form of [1; 14]:

‘_ 2
oo (09) = el 160 y=m)t Gem) om)l
Zp\/D7r T 2@ Sy Sy Sy Sy QE)
or in a more convenient vector and matrix notation
N I S S
_ <& X =M 9 S S, &X—My o
f(X’Y)(X’ y)_ZpF pg 2D, egy m, 5 g r S gy m, gu (49)
g 8 8SXSY ! 0 Hz

More detailed information about the statistical and probabilistic normal distribution of binary systems is
available in the monograph [8]
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It follows from (56) that the RVs X and Y are independent, only when the correlation coefficient
isequalto r =0. Then
g 16,2 2 40
B S S — +%3j= f (00T, (V) Syy =Syy N1-T2.  (50)
2psy sy g 2@Sx Sy Hﬂ

The covariance of the RVs in a two-dimensional system with normally distributed RVs is
calculated as a double integral:

f(X,Y) (x,y)=

coviy)= Um0 M) L f L2y 2rxem)ly=m)R g
vy 2ps)(sY\/D7r 2ps, S, g 2D, @sz SYz S,«Sy iy

. S S
In the general case of normal correlation,theRVs X and Y - r — X or X - r—Y and Y
S Y S Y
[14, page 350] are independent.
The integral probability density function of two standard normal values is equal to:

X-Mmy y-my

Sxo 8y 1 8 x2-2rxy+y20
Fouy (V)= 5 0 Y=Y “dxdy (52)

exps -
-¥  -¥ 2p \/Dr g 2Dr 1)

If the full square is highlighted in the exponent

l 2 2 1 2 2
—— (X" =2rxy+y?) =——(x°D, +(y -rx)?), 53
2D(X Xy y)2D (XD, +(y-rx)7) (53)

r r

the subintegral function in (52) can be represented as a product of

1 g8 x2-2rxy+y20
fox vy (X y) = exps- T=
(X.Y) :
ZDVD,— 8 2Dy 0 (54)
_(y-n)? 2

L e AP LT s (X =i (0

J20 D, V2p

Fig. 3. lllustration of the graph of the function f, ,(X,Y)

The graph of the function f, ,,(X,y) is shown in Fig. 3. The surface vertex is projected onto a

plane x0y as a point (M, ,m, ). The cross-section of the surface plane parallel to the plane x0y is the
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ellipse of equal probability f, ., (x,y) = const, the center of which is a point (m, ,m, ). The ellipse of

equal probability is also called the scattering ellipse that is why the point (m, ,m, ) is also called the

scattering center. If the components X and Y of the two-dimensional RVs are independent variables,
then the ellipse axes are parallel to the coordinate axes. For uncorrelated RVs, the ellipse has a shape of a
circle.

As the joint probability density function is

o (G Y) = By (Y 1 X) T (%) = Fuy (XTY) £ () (55),
then the conditional probability density functions will be equal to:

~

1 1'1e(xm)(ym)M‘
1E\(|x (y|x) = expi- u )’/,
Sy4/2PD, T 2D, é sz Sy }5 (56)
1 1 1 e(x m, (y-m,)u}
(X|y) = ——F—==¢expi- r R
" SYVZpDr T 2D, e Sy Sy b
wherefrom the one-dimensional law of normal distribution follows
1 T [y-m,J°§
o (V19 = ———expp- Y~ 67)
Sy 2pDr T Zsle %
with conditional mathematical expectations and variance
S
= +rY (x -
myx =m, rsx(x my ) SY|X2:SY2Dr
and , (58)

_ Sy S, =S,°D
My =My + rS_(y_ my ) XY x =r
y

If D, &l then the variance of conditional mathematical expectations is less than unconditional ones;

at the same time, it decreases to the extent, to which the correlation between RVs X and Y increases.
Thus, RVs X and Y will have the following conditional distributions:

& 0
ool

NEm +r—(y m,),s,’D,
Y| X Sy g (60)
The graphs of conditional mathematical expectations are straight Ilnes (straight lines of mean quadratic
regressions) that intersect at the point (m, ,m, ) in the center of the joint distribution of RVs X and Y .
Thus, as follows from (59) and (60), the mathematical expectation linearly depends on the condition,
whereas the variance does not depend on the condition. Therefore, the value m,, is called the conditional

mathematical expectation of RV X , provided that either Y =y or the regression of RV X on the variable
Y with a regression coefficient r =*-. The variable s , YZDr is also called the residual variance of the
Sy '
RV of one RV against another. Residual variance characterizes the value of an error arising from the
replacement, for example from the replacement of RV X with a linear function g(Y) =aY +b.
According to Cauchy-Schwarz inequality, -1ara+1. For values r =1, there are linear
dependencies with positive and negative slopes, for which there is no residual variance and the
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corresponding error is equal to zero, that is, the RV X is accurately represented by a linear function

g(v)=ay +b of the RV Y . These cases correspond to the transformation of the quadratic function
Q(x,y) into linear functions. For linear relationships between the random variables that form a two-

dimensional system, the function g(Y) will be the best approximation of the RV X in terms of the least-
squares method, if the mathematical expectation is
M[X - g(Y)] ® min. (61)

Conclusion

A methodological analysis of primary sources for the formulation of basic laws of the two-
dimensional distribution of random variables, which are most relevant for the correct interpretation of the
data of physical experiments. This article is introductory and provides for its continuation, where it is
planned to reflect the following important sections,as: A two-dimensional system of Cauchy-distributed
RVs; A two-dimensional system of Rayleigh-distributed RVs; A three-dimensional system of Maxwell-
distributed RVs; Statistical modeling of the composition of the RVs; The composition of Gaussian RVs;
The composition of two normally distributed random vectors; The composition of Rayleigh-distributed

RVs X, ~ Ra(sii Jd = 1,2) with the scattering region of values (04x;8%¥) ; The distribution of the sum of
Maxwell-distributed RVs; The Distribution Regularities of the Difference Module R = |X - Y| ; Statistical

Regularities of the Composition of Normally Distributed RVs of the Type X +Y ?; Distribution of the

Sum Z = (X +Y) , of Correlated Normally Distributed RVs; About some features of the distribution of
X
Z=—
a two-dimensional system of dependent RVs; Statistical Modeling of the Correlation Y of RVsina
Two-dimensional System and Modeling of the Distribution Parameters of the Product Z = X xY of RVs
in a Two-Dimensional System.
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I1. KocoOyubkuii
Hanionanenuii yniBepcutet “JIbBiBChbKa mosniTexHika”

METOANYHI ACIIEKTH CTATUCTUYHOI'O MOJAEJIOBAHHS IBOBUMIPHUX CUCTEM
I3 BUITAAKOBUMU JAHUMH

© Kocobyywkuii I1., 2020

Sk cBiTUMTH aHaJI3 JiTepaTypHHUX JKepes, CTATUCTHYHIH 00podui pe3ybTaTiB BUMipIOBaHb He
3aBKIM TNPHUAINAETbCsl HadexkHa yBara. Ha mnpeBeaukuii skaab, BiamoBigHi aaropuTvMm 4yacro
00MeXKYIOThCSl CIIPOLIEHUMH CTATUCTUYHUMHU NpoueaypamMu, 6e3 Ha1e:KHOro OOrPYHTYBAHHS LiIbOBOI
(yHkuii, B TOMy 4ncai A5 nepeBipKu AKOCTi ONPalIOBAHHS BUNAKOBUX JaHUX. ToMmy aBTOp IJIaHy€
onyOaikyBaTH cepilo cTaTeil i3 CTAaTHCTHYHOrO MOJEeNIOBaHHA, fAKi BKJIIOYATHMYTh pe3yJabTaTH
OPUTiHAJIBHUX AOCJHIJ:KeHb CcaMoro aBTropa Ta iHmux. B wiii crarri, po3riisiHyTi METOAUYHI acneKTH
CTATUCTUYHOTO0  MOJEJIOBAHHS /JABOBHMIPHMX CHCTeM i3 BHNAJAKOBUMH [JaHUMHU, JdaHe GiznuHe
OOIPYHTYBaHHSI KOPeJSIiHHNUX 3aKOHOMipHOCTEeH CTATUCTHYHMX CHIiBBiHOIIEHb MIK BHNAJKOBHMHU
BeJMYUHAMHU, OCKUIbKH  3aJa4a BCTAHOBJIEHHS 3aKOHY PpO3MOJUIYy BHMIAJKOBOI BeJMYUHU MAE
NPAKTHYHMI iHTepec 3 TOYKH 30py MOJEJIOBAHHS CTATHCTHUYHHMX 3aKOHOMipHoOcTed Mojei
CCHTHAJITIIYM».

Kurouosi ciioBa: IBoBuMipHi cuctemu, yMoOBHi iiMoBipHocTi, 3anexHi Ta He3asexHi, SIkobiiicbki
JleTepMiHAHTH, KopeJislisi Ta Tpancopmanisi OykcupHoi MipHOCTI



