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According to the analysis of literature sources, the statistical processing of measurement results is 

not always given due attention. Unfortunately, appropriate algorithms are often limited to simplified 
statistical procedures, without the proper justification of the objective function, including to check the 
quality of processing of random data. Therefore, the author plans to publish a series of articles on 
statistical modeling, which will include the results of original research by the author and others. In this 
article are considered the methodological aspects of statistical modeling of two-dimensional systems with 
random data, physical substantiation of correlation regularities of statistical relations between random 
variables is given, since or the problem of establishing the law of distribution of random variable has 
practical interest from the point of view of modeling statistical regularities of model "signal + noise". 
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Jacobian determinants, Correlation, and Transformation of Tow-Dimensional 

 
Introduction 

In statistical research, the functions of not just one, but two or more random variables (RVs), are 
used. Thus, the analysis of variance mainly investigates mutually statistically independent RVs that are 

normally distributed, such as 
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 are used. The probability density function of the RVs as 
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+++  is described by the well-known Student's statistics, for which the mathematical 
expectation is equal to zero, and due to homogeneity, the variance is not playing any role [1]. 

It is believed that the work [2] gave rise to a theory of summation of independent RVs. It was found that 
some linear operations, such as summation and finding the minimum and maximum values of RVs, generate 
RVs, the distribution of which converges to several limit distributions, such as Gaussian distribution 
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(StableDistribution), and Fisher–Tippet–Gnedenko distribution kkkk bxxxa +),...,,max( 1  
(MinStableDistribution and MaxStableDistribution) [3]. In the above examples, random phenomena are 
described by several normally interrelated random numbers in the general case, where the probabilistic 
characteristics of the RV system should be researched. We will turn your attention only to the analysis of 
the system of two continuous RVs, although they can be discrete, continuous, and mixed, depending on the 
types of the RV included in these systems. 
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In statistical modeling, the properties of the so-called self-reproduction of the distribution laws are 
widely used. Thus, the sum of normally distributed RVs is also normally distributed; according to Cauchy 
law, the sum of Cauchy-distributed RVs, etc. The property of self-reproduction of the distribution laws 
allows determining the type of the probability density function of an error by the given type of the error as 
a random argument function and the known distribution of the arguments [4]. This is based on the fact that 
if there are no correlations between components of the error composition, then the distribution of the sum 
of normally distributed errors is distributed as close as possible to normal.  This pattern is true more 
accurately, the greater the number of RVs that add up. Therefore, regardless of the laws, the individual 
errors are subject to, the features of the distributions in the sum of a large number of summands are 
dropped out of the equation, and the sum turns out to be subject to normal distribution law. The joint 
distribution of the composition of two independent RVs has been studied by many authors [5]. 

 
Methodical analysis and discussion 

Two-Dimensional Systems of RVs. In many practical problems, we have to deal with not just one 
RV, but with a system of RVs. Thus, a thermodynamic system in a state of thermal balance is described by 
at least three parameters — volume, pressure, and temperature. Electrical and thermal systems are 
described by such parameters as voltage, the resistance of an active component, and the current passing 
through it. In deformation systems, the physical processes of energy conversion are determined by the 
external force applied, reaction to this force, and the resilience of the component, etc. [6,7]. 

Physical variables in the system can be independent of each other or related to each other to a certain 
extent. For characteristics of the probabilistic and statistical regularities of a system of two or more RVs, 
the same joint distribution and joint moments, etc., are introduced as for one-dimensional RVs. The 

relationship between the joint two-dimensional probability density function ),(),( yxf YX  and the joint 

moment of the lk ,  order is put down as [7] 

dxdyyxfyxyx YX
lklk ò
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.    (1) 
Both for one-dimensional and multi-dimensional RVs, the setting of all moments is similar to setting 

the probability density function. 

In a two-dimensional system with joint probability density function ),(),( yxf YX , the probability of 
distribution of each of the components of the RV expresses the so-called marginal (individual) 

probabilities with probability density function )(),( yfxf YX ): 
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== dxyxfyfdyyxfxf YXYYXX ),()(,),()( ),(),(

    (2) 
Thus, we should speak about both the individual independence of RVs and joint independence for an 

arbitrary set of RVs. Thus, a two-dimensional set of RVs is independent, if the joint probability density 
function is equal to the product of marginal probability density functions of RVs [8] 

)()(),(),( yFxFyxF YXYX =  or ( ) ( ) ( )yYxXyYxX áRáR=ááR , ,  (3) 
then such explosives RVs X  and  Y are independent, and the two-dimensional  
the distribution function ),( yxFXY  is factorized. For independent RVs, the common density function 

),(),( yxf YX is expressed by the product of one-dimensional densities of marginal probability distributions 

)(xf X  and )(yfY  from RVs X and Y : 
)()(),(),( yfxfyxf YXYX ×= .     (4) 

                                                           
In general, it is impossible to solve the inverse problem, that is, to restore the joint distribution of the components. 
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Then in this case (4), we have: 

ò
+¥

¥-

-= dxxzfxfzf YXZ )()()(   or ò
+¥

¥-

-= dyyfyzfzf YXZ )()()( .  (5) 

Only in this case, the so-called inverse problem can be solved; according to the known RV 
distribution laws, we can find a joint distribution law, as the distribution law itself does not indicate the 
nature of the relationship between the RVs. Let us recall that it can be both functional and statistical 
(probabilistic). Independent RVs are uncorrelated, whereas their uncorrelatedness does not stand for their 
independence. If the correlation moment is equal to zero this means only that there is no linear relationship, 
but does not exclude any other relationship. Dependent variables can be correlated and uncorrelated. The 
formulas (3) and (4) are called the product rule of distribution laws. To fully characterize the distribution 
of a two-dimensional system, knowing the distribution of each of the RVs in it is not enough; one should 
also know the dependence between the RVs, which is characterized by conditional probabilities). 

Conditional probabilities. Dependent and independent RVs. In the probability theory, concepts of 
dependence and independence of RVs of probabilistic (stochastic) nature are important, as RV Y  is related 
to RV X  by conditional dependence. This means that by knowing the value X  you cannot specify the 
exact value Y , but only indicate its distribution law, which depends on the value X . RVs are independent 

within a system ),( YX  of the events xX á  and yY á are not dependent on random yx, . Note that we are 
talking about the statistical independence of aggregate RVs, which in this case forms a two-dimensional 
system. Thus, even the pairwise independence of the RVs does not presuppose the independence of 
aggregate RVs. Thus, if RVs X  and Y  are independent, then both the events related to falling of the RVs 

at the intervals ),( x-¥  and ),( y-¥  random intervals ),[ 21 xx  and ),[ 21 yy  are independent. 
Analysis of the references shows that the independence of the RVs is simply declared in the majority 

of cases. From the point of view of physics, the pressure is an average perpendicular component of the 
force of the system applied to the regional unit of its margin of separation with its environment (for 
example, a thermostat): 

å=
i

ii

dt
mdP )( J

.     (6) 
The temperature of the system introduced by Boltzmann as a measure of its heating in terms of the 

smallness of the mass im  of gas molecules, atoms, and microparticles with proportional equality of the 
type of temperature 

kTm
i

ii =å 2

2
1

J
.     (7) 

Thus, based on the physical nature, pressure, and temperature, including their random values, are 
dependent. However, the pressure and temperature are mostly statistical characteristics, the values of 
which reflect the regularities of collective systems. But a researcher measures pressure with one tool, and 
temperature with another tool. Therefore, if he carries out this procedure independently of the other one, 
and if the measurement conditions remain unchanged, then, taking into account the fluctuation processes, 

random values ТР,  can be considered independent. The same model can be adopted for the analysis of 

the measured values of current and voltage IU ,  on the electrical circuit component with resistance R . 
However, we emphasize that at the same time both parameters are caused by the same physical process at a 
given moment in time — a change in the number of electrons transferred by the electric field, which 

                                                           
Zener diode voltage regulator [9] can be a physical model of conditional probability. 
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changes due to the processes of irreversible dissipation of their energy on defects. But, for statistical 
analysis, in particular, for example, for the establishment of the distribution law of random values R  
concerning I , in most cases, it is assumed that IU ,  are normally distributed, as will be discussed in more 
detail below. 

According to [10], if the variables nxxx ,...,, 21  are random values, then each aggregate value 
),...,,( 21 nxxx  is also a random value. The value ),...,,( 21 nxxx  represents a joint distribution of value 

nxxx ,...,, 21 . At the same time, each aggregate RV, as well as a single RV, has a one-dimensional 
probability distribution. Joint distribution occurs in the case of repeated measurements. In the above 
example, the joint distribution occurs, if the RVs U  and I  form a random value as a product IUР ×= . 
Therefore,  

Thus, if two RVs are dependent, then the information about the actual value of one of them will 
change our understanding of the distribution of another variable. Therefore, a concept of conditional 
distribution law was introduced for dependent RVs. The distribution calculated under the condition that 
another RV takes a certain value is called conditional. For continuous RV, the distribution law of RVs X  
calculated under the condition that another RV Y  takes a certain value yY =  [2] is called conditional 
(integral )|( yxF  and differential )|( yxf ) distribution law: 
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Here the two-dimensional RVs ),( YX  is continuous if there  is a negative differential function of 
the common distribution  
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Then the integral function of the common probability distribution will be equal to  

( ) dxdyyxfyYxXyxF
x y

YXYX ò ò
¥- ¥-

=áá+¥á¥á-R= ),(,),( ),(),(  .  (11) 

Thus, we can determine the distribution law of the system by knowing the distribution law of one of 
the values included in the system, and the conditional distribution law of the other RV. 

The two-dimensional differential probability element ),(),( yxdF YX  is equal to 
( ) ( )( )dyyYydxxXxdxdyyxf YX +áá×+ááR=),(),( ,    (12) 

that is, it is expressed through the product of the probabilities of the components. According to the 
multiplication theorem on probability [11] 

)|()(),( |),( xyfxfyxf XYXYX ×= ,    (13) 

the probability of the product of probabilities is equal to the following: 
dyxyfdxxfdxdyyxf XYXYX )|()(),( |),( ×= ,   (14) 
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Therefore, the probability density function of the system of two RVs is equal to the probability 
density function of one of the values included in the system multiplied by the conditional probability 
density function of another value calculated on the condition that the first quantity has a certain value. 
Integral of (14) is equal 

)(),(),( xfdyyxf XYX =ò
+¥

¥-

.    (15) 

or a similar expression 

)(),(),( yfdxyxf YYX =ò
+¥

¥-

.     (16) 

allows calculating the distributions )(xf X  and )(yfY , only if a two-dimensional distribution 
),(),( yxf YX  is set, and if we are not interested in the value of the second RV. For example, suppose if an 

ideal gas is located between two solid walls ax =  and bx = )( baá , then the distribution of the 
coordinate X  of the ideal gas molecule is independent of х : 
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The RV X  is independent of the RV Y  if the law of distribution of the quantity X  does not 
depend on the value of the quantity Y . For continuous RVs, the condition of independence Y can be put 
down as follows: 

)()|(| xfyxf XYX =      (18) 
at random x . Similarly, the condition of independence of Y  of X  has the following form: 

)()|(| yfxyf YXY =       (19) 
at random y . Thus, if the conditional and unconditional distributions of RVs coincide, then these random 
variables are independent. Illustration of regularities of density function formation (19) from two directions 
of observation is shown in Fig. 1. The calculation parameter is chosen at random. 
 

 
Fig. 1. Illustration of regularities of density function formation (19) from two directions of observation 
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The conditional distributions are characterized by the conditional mathematical expectation 

ò
¥
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= = dxyxxfE yYX )|(|       (20) 

and conditional standard deviation 
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Thus, if RV X ~ ),( XXmN s , then the conditional mathematical expectation of normally distributed 

RV is equal to XXm s
p
2

- , and is less than the unconditional mathematical expectation [2]. Features of 

formation of probability density functions of dependent and independent RVs in a flat two-dimensional 
system are reflected in [12]. Fundamental studies of correlation and dependence of RVs given in [13]. 

 
Correlation and Transformation of Tow-Dimensional RVs 

Correlation between the RVs ). The mean and the variance are convenient features of RVs. The 
relationship between the two RVs X  and Y  is probabilistic, that is, when one of the changes, the other 
one will not change deterministically, but a trend to change will occur. According to (1), the following 
equation is justified for a two-dimensional system of independent RVs: 

lklk yxyx ×= .     (22) 
Therefore, to test the hypothesis of the independence of RVs, we should verify the validity of the 

equation (22) for arbitrary positive integers k  and l . Since this is very hard to do, in practice, the validity 

of the equation (22) is verified for any values k  and l . The difference between the left and right parts in 
(22) serves as a measure of a statistical relationship, which is called covariance in the case of two RVs 

( 1=k  and 1=l ): 
 yxxyXY ×-=K .     (23) 

The formula (23) expresses the degree of probabilistic relationship between the two RVs in the 
language of mean RVs X and Y . If X =Y , then the correlation is equal to the variance 

22 ХХXY -=K .    (24) 
Normalized covariance: 
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 is called correlation coefficient between the variables X and Y . 
Unlike covariance, the normalized variable r  is dimensionless, that is why it is more convenient for 

practical use; its absolute values for independent RVs vary from zero to 1±  at XY ±= . Therefore, the 
correlation coefficient characterizes the degree of linear dependence of RVs. For a normally distributed 
two-dimensional system, the Pearson correlation coefficient is used for correlation studies [15]. 

                                                           
If the distribution of RVs is symmetric with respect to the zero point (origin point), then the mathematical expectation of 

the type 
12 +kХ RVs is equal to zero and the covariance is 

0),cov(0),cov( 22
23 =Þ=-= XXEEEXX XXX , while 

the relationship between the RVs X  and 
2X  is non-random. Therefore, the equality of the correlation function to 

zero is not a sufficient condition for the independence of RVs [14] 
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The variance of correlated RVs is calculated by the formula 

YXYDXDYXD srs2][][][ ++=+ ,    (26) 

where the third summand expresses the mutual correlation moment depending on the parameters r , Xs  

and Ys . If RVs are independent, then they are uncorrelated 0=r . The inverse proposition is not true. 
You can build RVs, which are not correlated, yet are dependent[16] thus, the equality to zero of the 
correlation coefficient 0=r  still does not imply the independence of RVs [17], a visual illustration is 
shown in Figure 2. In this figure, its left side shows a chaotic scattering of points with statistically 
independent coordinates. We see that the trend of the regularity of distribution is absent. The right part 
shows a similar distribution when there is a correlation between the X and Y coordinates. Then it is 
possible to draw some averaged curve - the distribution trend. 

An example of an uncorrelated dependence of RVs can be a nonlinear relationship 
2aXY = . The 

concept of correlation of RVs is close to the concept of dependence (in terms of statistics), but they are not 
equivalent. The only exception to this rule is the case of two normally distributed RVs when the concept of 
correlation and dependence are equivalent. Thus, if 0¹K XY , then the RVs are interdependent. But XYK  

displays the information about the scattering of a random point ),( YX  relative to a fixed point 

( )][],[ YMXM . Therefore, if the variance of one of the RVs is small, then their covariance will be close 
to zero, no matter how strong is the relationship between them. Other regularities of uncorrelated 
dependent RVs are available in the works [16]. 

 

 
Fig. 2. The illustration of the chaotic scattering of points  

with statistically independent of coordinates  X and Y (left part)  
and  a correlation coordinates (right part) 

 
Covariance characterizes not only the degree of dependence of RVs but also their scattering around 

a random point YX mm , . Thus, if an RV Х  little deviates from its mathematical expectation, then the 
covariance will be small, despite the dependence between the RVs Х  and Y . Therefore, the numerical 
characters of the dependence of RVs Х  and Y are the correlation coefficient, and not scattering. 
Therefore, if 0=r , then the coordinates of the two-dimensional normal random vector are independent. 

It is important to correctly evaluate the statistical significance of the correlation coefficient, that is, 
the degree of linear dependence between the sample characteristics. If its size n  is large, then the Student's 
statistics will be used for the correlation coefficient 
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with 2-n  degrees of freedom. If at the sample size 30án  the value 8.0³r  is obtained, then Fisher's 
distribution statistics will be applied: 

r
r

-
+

=
1
1ln

2
1z .      (28) 

The transformation of RVs and the Jacobian determinants. Arithmetic operations on the RVs by 
the transformation ),( YXgZ =  are used to form two-dimensional systems [18]. At the same time, the 
theorem that the expectation of the sum of several RVs is equal to the sum of the mathematical 
expectations of these variables is important. This theorem is widely used because it does not impose any 
restrictions on the RVs included in the sum, that is, they can be dependent and independent. So as for 
independent RVs, the equation YXYX EEE ×=× )(  is true only for independent RVs, that the transformation 

of the following type is incorrect: 

( )2
)(2 XXXXXX EEEEE =×== ×     (29) 

as both factors are mutually dependent and the multiplication theorem cannot be used in this case. If the 

transformation (29) was true, the difference ( )2
2 XX EE -  would be equal to zero, that cannot be true, 

because, in a system of random nature, the variance is 

( ) 02
2 ñ-= XXX EED .    (30) 

In the general case, the theorem on the mathematical expectation of the product of RV has the 
following equation: 

YXXXXX EEE ssr ××+×=× )( .    (31) 

Therefore, if a vector ),( YXZ =
®

 with the probability density function ),(),( yxf YX  is given and it 
is necessary to find the distribution law of the transformed RV ),( YXgZ = , then it is enough to 

construct an appropriate single-valued view of the vector ),( YXZ =
®

 into a vector ),( VWW =
®

 and find 

the probability density function of the vector 
®

W  [21] : 
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The formulas for calculating the probability density functions )(zfZ  transformed according to 
algorithms (32) of correlated and uncorrelated RVs are shown in Figure 3. In general, the probability 
density functions are transformed according to the following rule. Let two direct transformations 

),( YXgZ =  (inverted ),(),,( 11 VZgYVZgX YX
-- == ) and ),( YXvV =  take place at the RVs X  and 

Y  with joint two-dimensional probability density function ),(),( vzf VZ and let us find the probability 

density function ),(),( vzf VZ  of two-dimensional RVs ),( VZ . The following relationship is true in the 

differential equation: 

),()),(),,((
),(
),()),(),,((),( 11
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),(),( vzJvzgvzgf
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yxvzgvzgfvzf YXYXYXYXVZ

---- =
¶
¶

= , (33) 

where 1),(),( =× yxJvzJ . 
To find the distribution law of transformations (40) for independent RVs, we should switch from the 

system of RVs ( YX , ) to the system of RVs ),( XZ  or ),( YZ  and carry out integration according to the 
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formula (12). To do this, we have to solve the equation ),( YXgZ =  for one of the transitions from the 
system RVs ( YX , ) to the system of RVs ),( XZ  or ),( YZ . For the case ),( xzwy = , it is given that 

Jxzgxf
dz
dyxzgxfxzgdzxzgdxxzgxf )),(,()),(,(),(),()),(,( 111 --- ==Þ= , (34) 

and for the case ),( yzqx = , 

dz
dxyyzgfyzg )),,((),( 1-= .     (35) 

Then the probability density function is calculated as an integral 
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== dyyzgdxxzgzfZ ),(),()( .   (36) 

Mutual single-valued direct and inverse transformations and Jacobian determinants of 
transformations of the RVs for the sum, difference, product, and ratio of RVs are given in Table 1. 

 
Table 1 

 
Direct transformation Inverse transformation Jacobian determinants of transformations 
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Let us demonstrate the transformation algorithm by the example of the transition from the Cartesian 
coordinate system yx,  to the polar coordinate system j,r : 

),(,0),,(),( ppjj -Îñ® rryx ,   (37) 
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For which the Jacobian determinant of the transformation is put down as follows: 

rJ
rxy

x
xy

xy
ryrx

yx
yrxr

yx
r

=Þ=
÷÷
÷

ø

ö

çç
ç

è

æ

++
-=÷÷

ø

ö
çç
è

æ
¶¶¶¶
¶¶¶¶

=
¶
¶ ||1

)/(1
/1

)/(1
/

//
det

//
//

det
),(
),(

22

2

jj
j

. (38) 

Thus, 
)sin,cos(),( ),(),( jjjj ryrxrfrf YXR ===    (39) 

If the Cartesian coordinates are distributed under the normal law )1,0(N , then in spherical 
coordinates we have 
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The uniformly distributed two-dimensional system of RVs. The probability density function 
),(),( yxf YX  of the joint distribution of two RVs is equal to: 
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The surface of the function (41) has the shape of a rectangular parallelepiped, one of the vertices of 
which is aligned with the origin of coordinates in the plane ХоY  with maxmax , yx  long sides, so the region 

of the rectangle is maxmax yxS ×= . The marginal probability density function is equal to: 
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If the two-dimensional RV ),( YX is uniformly distributed in a circle with a radius R , then the joint 
probability density function is equal to: 
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The marginal probability density functions of both components in this case at 22 yRx -£  and 
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Let us verify the condition of independence of RVs: 
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Thus, although the joint distribution function (51) is divided into the product of two functions, one of 
which depends only on one variable, and the other one is dependent on the other RV (formula (44)), the 
condition of equality of the function ),(),( yxf YX  of the product )()( yfxf YX × is not met, that is, the RVs 
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with joint distribution (43) are dependent. Let us calculate the probability density functions of conditional 
probability distributions: 
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Here, the fact that 0),( =yxf  at 222 Ryx >+ , therefore 0)|( =yxf X  at 22 yRx ->  

and similarly: 0)|( =xyfY  at 22 yRx -> , is not taken into account. Note that the geometric 
probability calculation can be used for uniform distribution. 

If 0=X , then the RV Y  can take an arbitrary value from the range [ ]RR +- ;  with the same 
probability; if RX ±= , then the RV Y can take only a single value 0=Y . To make sure, whether there 
is a functional relationship between the RVs X  and Y  the considered problem, we should calculate the 
correlation coefficient (normalized covariance). In the case of uniform generation of random points in the 
area of the circle with the radius R , the correlation moment is equal to: 
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If the origin of the Cartesian coordinate system is aligned with the center of the circle, the area of which is 
uniformly filled with random points, then, taking into account the symmetry between the mutually opposite 
quadrants (sectors), we conclude that the correlation moment is equal to zero, that is, in this system, the RVs X  
and Y  are uncorrelated, yet dependent. The correlation coefficient does not characterize any dependence, but a 
linear dependence, and in the borderline case constkXY += , it is equal to 1±=r . 

Normally distributed two-dimensional system of RVs). Continuous multidimensional systems 
described by the normal distribution, based on the concept of a random vector, are widely used in physical 
modeling and many engineering applications of probability theory. It was substantiated that a continuous 
random vector ),( YX  as a two-dimensional system of correlated RVs X ~ ),( XXmN s  і Y ~ ),( YYmN s  
with unconditional mathematical expectations YXm ,  and unconditional standard deviations YX ,s  is 
distributed according to normal law if the joint probability density function has the form of [1; 14]: 
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or in a more convenient vector and matrix notation 
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More detailed information about the statistical and probabilistic normal distribution of binary systems is 

available in the monograph [8] 
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It follows from (56) that the RVs X  and Y  are independent, only when the correlation coefficient 
is equal to 0=r . Then 
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The covariance of the RVs in a two-dimensional system with normally distributed RVs is 
calculated as a double integral: 
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In the general case of normal correlation, the RVs X  and XY
Ys

s
r-  or YX

Ys
s

r-  and Y  

[14, page 350] are independent. 
The integral probability density function of two standard normal values is equal to: 
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If the full square is highlighted in the exponent 
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the subintegral function in (52) can be represented as a product of 
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Fig. 3. Illustration of the  graph of the function ),(),( yxf YX  

 
The graph of the function ),(),( yxf YX  is shown in Fig. 3. The surface vertex is projected onto a 

plane yx0  as a point ),( YX mm . The cross-section of the surface plane parallel to the plane yx0  is the 
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ellipse of equal probability constyxf YX =),(),( , the center of which is a point ),( YX mm . The ellipse of 

equal probability is also called the scattering ellipse that is why the point ),( YX mm  is also called the 
scattering center. If the components X  and Y  of the two-dimensional RVs are independent variables, 
then the ellipse axes are parallel to the coordinate axes. For uncorrelated RVs, the ellipse has a shape of a 
circle. 

As the joint probability density function is 
))()|()()|(),( ||),( yfyxfxfxyfyxf YYXXXYYX == ,  (55), 

then the conditional probability density functions will be equal to: 
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wherefrom the one-dimensional law of normal distribution follows 
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with conditional mathematical expectations and variance 
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If 1áDr  then the variance of conditional mathematical expectations is less than unconditional ones; 

at the same time, it decreases to the extent, to which the correlation between RVs X and Y  increases. 
Thus, RVs X  and Y  will have the following conditional distributions: 
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The graphs of conditional mathematical expectations are straight lines (straight lines of mean quadratic 

regressions) that intersect at the point ),( YX mm  in the center of the joint distribution of RVs X  and Y . 
Thus, as follows from (59) and (60), the mathematical expectation linearly depends on the condition, 

whereas the variance does not depend on the condition. Therefore, the value YXm |  is called the conditional 

mathematical expectation of RV X , provided that either yY =  or the regression of RV X  on the variable 

Y  with a regression coefficient 
Y

X

s
s

r . The variable rs D2
,YX  is also called the residual variance of the 

RV of one RV against another. Residual variance characterizes the value of an error arising from the 
replacement, for example from the replacement of RV X  with a linear function baYYg +=)( . 

According to Cauchy–Schwarz inequality, 11 +áá- r . For values 1±=r , there are linear 
dependencies with positive and negative slopes, for which there is no residual variance and the 
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corresponding error is equal to zero, that is, the RV X  is accurately represented by a linear function 
baYYg +=)(  of the RV Y . These cases correspond to the transformation of the quadratic function 

),( yxQ  into linear functions. For linear relationships between the random variables that form a two-
dimensional system, the function )(Yg  will be the best approximation of the RV X  in terms of the least-
squares method, if the mathematical expectation is 

min)]([ 2 ®- YgXM .    (61) 
 

Conclusion 

A methodological analysis of primary sources for the formulation of basic laws of the two-
dimensional distribution of random variables, which are most relevant for the correct interpretation of the 
data of physical experiments. This article is introductory and provides for its continuation, where it is 
planned to reflect the following important sections,as: A two-dimensional system of Cauchy-distributed 
RVs; A two-dimensional system of Rayleigh-distributed RVs; A three-dimensional system of Maxwell-
distributed RVs; Statistical modeling of the composition of the RVs; The composition of Gaussian RVs; 
The composition of two normally distributed random vectors; The composition of Rayleigh-distributed 
RVs iX ~ ( )2,1, =iRa

ii
s  with the scattering region of values )0( á¥á ix  ; The distribution of the sum of 

Maxwell-distributed RVs; The Distribution Regularities of the Difference Module YXR -= ; Statistical 

Regularities of the Composition of Normally Distributed RVs of the Type 2YX + ; Distribution of the 
Sum 

0
)(

¹
+=

r
YXZ  of Correlated Normally Distributed RVs; About some features of the distribution of 

a two-dimensional system of dependent RVs; Statistical Modeling of the Correlation Y
XZ =

 of RVs in a 
Two-dimensional System and Modeling of the Distribution Parameters of the Product YXZ ×=  of RVs 
in a Two-Dimensional System. 
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Як свідчить аналіз літературних джерел, статистичній обробці результатів вимірювань не 

завжди приділяється належна увага. На превеликий жаль, відповідні алгоритми часто 
обмежуються спрощеними статистичними процедурами, без належного обгрунтування  цільової 
функції, в тому числі для перевірки якості опрацювання випадкових даних.  Тому автор планує 
опублікувати серію статей із статистичного моделювання, які включатимуть результати 
оригінальних досліджень  самого автора та інших. В цій статті, розглянуті мeтодичні аспекти 
статистичного  моделювання двовимірних систем із випадковими даними, дане фізичне 
обґрунтування кореляційних закономірностей статистичних співвідношень між випадковими 
величинами, оскільки  задача встановлення закону розподілу випадкової величини має  
практичний інтерес з точки зору моделювання статистичних закономірностей моделі 
«сигнал+шум». 

Ключові слова: Двовимірні системи, умовні ймовірності, Залежні та незалежні, Якобійські 
детермінанти, кореляція та трансформація буксирної мірності 


