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In the work, on the basis of the apparatus of fractional integro-differentiation, the math-
ematical models of heat-and-moisture transfer and of deformation-relaxation processes in
the medium with “memory” effects and self-organization are constructed. Numerical im-
plementation of the mathematical models of heat-transfer and moisture-transfer is based
on the adaptation of the predictor-corrector method. That is why the mathematical mod-
els obtained in this work are in a finite-difference form. For the explicit difference scheme,
the stability conditions are determined on the basis of the method of conditionally defined
known functions as well as by means of the Fourier integral method. An integral rep-
resentation of the deformation and stress of the fractional-differential rheological model
is obtained using the Laplace transform method. Including the numerical and analytical
methods of implementation of the constructed models, in this paper, the main results
are presented, in particular, identification of fractal parameters for the creep function
according to the experimental data.
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1. Introduction

Today, one can observe the development of a fractional integro-differential apparatus and its use for
modeling direct and inverse problems in various fields of science, including the processes of visco-elastic
deformation and heat-and-mass transfer. Non-integer integro-differentiation was used in [1–5] to model
systems characterized by biological variability in rheological properties, “memory” effects, structural
heterogeneity, spatial non-locality, deterministic chaos, and self-organization. It should be noted that
despite the considerable number of works devoted to the study of non-integer derivatives and integrals,
as well as their application to modeling, there are still a number of unresolved and controversial issues.
In particular, the ambiguity of the application of the mathematical apparatus of fractional operators
of integration and differentiation consists in the absence of an explicit physical, geometric, and proba-
bilistic interpretation of such operations, the imposition of the properties of an integer differentiation
apparatus and various approaches to its definition – Riemann-Liouville, Kaputo, Grunwald-Letnikov,
Weil, Marshaud, Riesz, Wright. The studies of deformation-relaxation processes in the works of sci-
entists [6, 7] have shown that the use of a fractional integro-differential apparatus for such processes
makes it possible to more adequately, based on physical considerations, generalize experimental data
to identify model parameters. At the initial stage are the studies devoted to the search for an effective
method for identifying fractal parameters of models, in particular, this is partially reflected in [8,9]. In
order to calculate heat-and-mass transfer and deformation processes, taking into account the effect of
“memory” and self-organization, it is important to solve the problem of identifying fractional differen-
tial parameters of models, since taking into account of certain continuum of the found parameters, it
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is possible to investigate the stress-strain state of the material to ensure its required quality, to create
new mathematical models based on the existing ones. To solve mathematical models of heat-and-mass
transfer and visco-elastic deformation in media with a fractal structure, both analytical and numerical
methods of implementation are used. In the works [10–13] the greatest preference for the analysis and
derivation of fractional integro-differential equations is given to analytical methods, for example, the
integral transform methods of Laplace, Mellin, Fourier, Green’s functions, and the spectral method
using Laguerre polynomials. However, since analytical methods are limited in application, numerical
methods [14–16], such as the finite element method [17] and the finite difference method, are more
efficient and easier to apply. The finite-difference approximations for the implementation of math-
ematical models, which provides accounting for the eridarity and self-organization of the material,
were used in the works [2, 18]. Thus, as a result of the analysis, it can be noted that the use of non-
integer integro-differentiation for modeling deformation and heat-and-mass transfer processes makes it
possible to describe new properties of material, such as the effects of “memory”, self-organization, het-
erogeneity of structure, and its self-similarity. That is why the purpose of this work is the construction
and study of mathematical models of deformation-relaxation, moisture-and-heat transfer processes of
capillary-porous materials, taking into account their fractal structure, as well as the development of
finite-difference schemes for approximating these mathematical models.

2. Mathematical model of heat and moisture transfer taking into account the effect of
“memory” and self-organization and its numerical realization

A two-dimensional mathematical model of heat-and-moisture transfer of capillaryporous materials can
be described by an interconnected system of partial differential equations of fractional order in time t
and spatial coordinates x1 and x2:

cρ
∂αT (t, x1, x2)

∂tα
= λ1

∂βT (t, x1, x2)

∂xβ1
+ λ2

∂βT (t, x1, x2)

∂xβ2
+ ερ0r

∂αU (t, x1, x2)

∂tα
, (1)

∂αU (t, x1, x2)

∂tα
= a1

∂βU (t, x1, x2)

∂xβ1
+ a2

∂βU (t, x1, x2)

∂xβ2
+ a1δ

∂βT (t, x1, x2)

∂xβ1
+ a2δ

∂βT (t, x1, x2)

∂xβ2
. (2)

We add the boundary conditions of the third kind:

λi
∂γT

∂xγi

∣

∣

∣

∣

xi=0,li

+ ρ0 (1− ε) β∗
(

U |xi=0,li − Up

)

= α∗
(

T |xi=0,li
− tc

)

, (3)

aiδ
∂γT

∂xγi

∣

∣

∣

∣

xi=0,li

+ ai
∂γU

∂xγi

∣

∣

∣

∣

xi=0,li

= β∗
(

Up − U |xi=0,li

)

. (4)

And also the initial conditions:

T (0, x1, x2) = T0(x1, x2), U(0, x1, x2) = U0. (5)

Where (t, x1, x2) ∈ D, D = [0, τmax]× [0, l1]× [0, l2], T is temperature, U is moisture content, c(T,U)
is specific heat capacity, ρ(U) is density, ρ0 is base density, ε is phase transition coefficient, r is
specific heat of vaporization, λi(T,U) (i = 1, 2) are coefficients of thermal conductivity, ai (T,U)
(i = 1, 2) are coefficients of moisture conductivity, δ(T,U) is thermo-gradient coefficient, tc is ambient
temperature value, Up(tc, ϕ) is equilibrium moisture content, ϕ is relative moisture content of the drying
agent, α∗(tc, υ) is coefficient of heat exchange, υ is the speed of drying agent movement, β∗(tc, φ, υ)
is coefficient of moisture exchange, α is fractional order of time derivative, (0 < α 6 1), β, γ are
fractional indices of the derivative by spatial coordinates (1 < β 6 2), (0 < γ 6 1).
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Based on the use of fractional integro-differential apparatus finite-difference schemes are developed
for approximation of the mathematical model (1)–(5). So, the difference approximation of the fractional
derivative α in the time interval [tk, tk+1], taking into account the Riemann–Liouville formula [19], can
be written as follows:

∂αu

∂tα

∣

∣

∣

∣

tk
≈

uk+1 − αuk

Γ (2− α)∆tα
,
(

∆t = tk+1 − tk
)

. (6)

Using the Grunwald–Letnikov formula [19], the difference approximations of the fractional derivative
β by spatial coordinates x1 and x2 are written as follows:

∂βu

∂xβi

∣

∣

∣

∣

∣

xi(ni)

≈
1

hβi

m
∑

j=0

qjuni−j+1, (7)

i = 1, 2; hi = xi(ni+1) − xi(ni); q0 = 1, qj = (−1)j
β (β − 1) . . . (β − j + 1)

j!
.

Adapted is the method of predictor-corrector for the numerical implementation of a two-dimensional
mathematical model of non-isothermal moisture transfer, taking into account the fractal structure of
materials. The difference scheme for the numerical realization of the system of differential equations (1)
and (2) is obtained, taking into account the expressions of the approximations (6) and (7):

cρ
T k+1
n,m − αT k

n,m

Γ (2− α)∆tα
=

λ1

hβ1

n
∑

j=0

qjT
k+ω
n−j+1,m +

λ2

hβ2

m
∑

j=0

qjT
k+ω
n,m−j+1 + ερ0r

Uk+1
n,m − αUk

n,m

Γ (2− α)∆tα
, (8)

Uk+1
n,m − αUk

n,m

Γ (2− α)∆tα
=

a1

hβ1

n
∑

j=0

qjU
k+ω
n−j+1,m +

a2

hβ2

m
∑

j=0

qjU
k+ω
n,m−j+1 +

a1δ

hβ1

n
∑

j=0

qjT
k+ω
n−j+1,m +

a2δ

hβ2

m
∑

j=0

qjT
k+ω
n,m−j+1,

(9)
where T k

n,m, Uk
n,m are the temperature and the moisture content in a finite-difference form (x1,n =

t(n− 1)h1, x2,m = (m− 1)h2, t
k = k∆t), (n = 1, . . . , N , m = 1, . . . ,M , k = 0, . . . ,K).

In the case where ω = 1, we obtain an implicit finite-difference scheme, and when ω = 0 we obtain
an explicit scheme.

The predictor is realized by means of an implicit difference scheme, and the corrector by means of
an explicit difference scheme. On the first half of the time interval write an implicit difference scheme,
in which we take into account only the derivative of the fractional order β by coordinate x1:

cρ
T
k+1/4
n,m − αT k

n,m

Γ (2− α) (∆τ/2)α
=

λ1

hβ1

n
∑

j=0

qjT
k+1/4
n−j+1,m + ερ0r

U
k+1/4
n,m − αUk

n,m

Γ (2− α) (∆τ/2)α
, (10)

U
k+1/4
n,m − αUk

n,m

Γ (2− α) (∆τ/2)α
=

a1

hβ1

n
∑

j=0

qjU
k+1/4
n−j+1,m +

a1δ

hβ1

n
∑

j=0

qjT
k+1/4
n−j+1,m, (11)

The equation (10) and boundary conditions converted, and it is wrote in matrix form, such as:

Uk+1/4
n = AT k+1/4

n + αUk
n −

αcρ

ερ0r
T k
n +Ψ1, (12)

where

Uk+1/4
n =

[

U
k+1/4
1,m , U

k+1/4
2,m , . . . , U

k+1/4
N−1,m, U

k+1/4
N,m

]T
,

T k+1/4
n =

[

T
k+1/4
1,m , T

k+1/4
2,m , . . . , T

k+1/4
N−1,m, T

k+1/4
N,m

]T
,
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Uk
n =

[

0, Uk
2,m, . . . , Uk

N−1,m, 0
]T

, T k
n =

[

0, T k
2,m, . . . , T k

N−1,m, 0
]T

,

Ψ1 =

[

U∗
p1 −

α∗
1t

∗
c1

ρ0 (1− ε) β∗
1

, 0, . . . , 0, Up1 −
α1tc1

ρ0 (1− ε) β1

]T

.

Components aij, i, j = 1, N , matrices A are defined by the expressions:

aij =



























0, j > i+ 2;
(

α1
ρ0(1−ε)β1

−B1

)

, i = j = N ;

0, i = N, 1 6 j 6 N − 2; −B∗
1 , i = 1, j = 2;

(

cρ
ερ0r

−A1q1

)

, i = j 6= 1 6= N ; B1γ, i = N, j = N − 1;
(

α∗

1
ρ0(1−ε)β∗

1
+B∗

1γ
)

, i = j = 1; −A1qi−j+1, other.

Similarly, write in the matrix form (11) and the corresponding boundary conditions:

BT k+1/4
n + CUk+1/4

n +Ψ2 + αUk
n = 0, (13)

C = (cij) , B = (bij) , i, j = 1, N,

cij =















































0, j > i+ 2;
0, i = N, 1 6 j 6 N − 2;
(Z1q1 − 1) , i = j 6= 1 6= N ;
(a1γ − β∗

1Γ (2− γ) hγ1) , i = j = 1;
− (a1 + β1Γ (2− γ) hγ1) , i = j = N ;
−a1, i = 1, j = 2;
a1γ, i = N, j = N − 1;
Z1qi−j+1, other.

bij =































0, j > i+ 2;
0, i = N, 1 6 j 6 N − 2;
Zq1δ, i = j 6= 1 6= N ;
a1δγ, i = j = 1; i = N, j = N − 1;
−a1δ, i = j = N ; i = 1, j = 2;
Zqi−j+1δ, other.

Z1 =
a1Γ (2− α) (∆τ/2)α

hβ1
, Ψ2 =

[

β∗
1Γ (2− γ) hγ1U

∗
p1, 0, . . . , 0, β1Γ (2− γ) hγ1Up1

]T
.

Substitute (12) into (13) and obtain a system of equations, which we solve with respect to the
function T :

(B + CA)T k+1/4
n −

αcρ

ερ0r
CT k

n + (αC + α)Uk
n +Ψ1 +Ψ2 = 0. (14)

We found from (14) the set of solutions T
k+1/4
1,m , T

k+1/4
2,m , . . . , T

k+1/4
N−1,m, T

k+1/4
N,m , (k = 0, 1, . . . ,K−1), then

was found from (12) the set of solutions — U
k+1/4
1,m , U

k+1/4
2,m , . . . , U

k+1/4
N−1,m, U

k+1/4
N,m , (k = 0, 1, . . . ,K − 1).

On the second half of the time interval we write an implicit difference scheme, in which we take
into account only the derivative of the fractional order β by coordinate x2:

cρ
T
k+1/2
n,m − αT

k+1/4
n,m

Γ (2− α) (∆τ/2)α
=

λ2

hβ2

m
∑

j=0

qjT
k+1/2
n,m−j+1 + ερ0r

U
k+1/2
n,m − αU

k+1/4
n,m

Γ (2− α) (∆τ/2)α
, (15)

U
k+1/2
n,m − αU

k+1/4
n,m

Γ (2− α) (∆τ/2)α
=

a2

hβ2

m
∑

j=0

qjU
k+1/2
n,m−j+1 +

a2δ

hβ2

m
∑

j=0

qjT
k+1/2
n,m−j+1. (16)

Similarly to the first half step, we got two systems in the second half step. As a result of their

solutions we get a set of solutions with respect to the function T — T
k+1/2
n,1 , T

k+1/2
n,2 , . . . , T

k+1/2
n,M−1, T

k+1/2
n,M ,

(k = 0, 1, . . . ,K − 1), and U — U
k+1/2
n,1 , U

k+1/2
n,2 , . . . , U

k+1/2
n,M−1, U

k+1/2
n,M , (k = 0, 1, . . . ,K − 1).

To find solutions for the entire time interval, we use a corrector, which is implemented on an explicit
difference scheme:
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cρ
cT k+1

n,m − αcT k
n,m

Γ (2− α)∆τα
=

λ1

hβ1

n
∑

j=0

qjT
k+1/2
n−j+1,m +

λ2

hβ2

m
∑

j=0

qjT
k+1/2
n,m−j+1ερ0r +

Uk+1
n,m − αUk

n,m

Γ (2− α)∆τα
, (17)

Uk+1
n,m − αUk

n,m

Γ (2− α)∆τα
=

a1

hβ1

n
∑

j=0

qjU
k+1/2
n−j+1,m +

a2

hβ2

m
∑

j=0

qjU
k+1/2
n,m−j+1 +

a1δ

hβ1

n
∑

j=0

qjT
k+1/2
n−j+1,m +

a2δ

hβ2

m
∑

j=0

qjT
k+1/2
n,m−j+1.

(18)
Therefore, from (18) there was found the set of solutions

{

Uk+1
n,m : k = 0,K − 1;n = 1, N ;m = 1,M

}

,

and from (17) was found the set of solutions
{

T k+1
n,m : k = 0,K − 1;n = 1, N ;m = 1,M

}

.
To determine the stability conditions of the obtained difference equations (8)–(9) of the associated

heat-and-mass transfer, we used the method of conditionally defined known functions of the system,
according to which the following relation was found:

∆tα

(

C1

hβ1
+

C2

hβ2

)

6
(α+ 1)C3

(2 + β) Γ(2− α)
, (19)

where C1 = λ1, a1; C2 = λ2, a2; C3 = (cρ− ερ0r) , (1 + δ)−1. Assuming that the fractal parameters α,
β take integer values, an analysis and comparison are made as a result of which it was found that the
found stability condition (19) coincides with the stability condition for classical equations of thermal
conductivity.

3. Mathematical models of deformation taking into account the effect of “memory”,
and their analytical and numerical implementations

Using the methods of the mechanics of inherited media [20] and fractional integro-differential apparatus,
a one-dimensional mathematical Kelvin’s model of capillaryporous materials was constructed, taking
into account the fractal structure of the medium:

E1τ
αDα

t σ(t) + (E1 + E2)σ(t) = E1E2

(

ε(t) + τβDβ
t ε(t)

)

, (20)

where t is time, τ is relaxation time, E1 is the Voigt element elastic modulus for the Kelvin model, E2

is the elastic modulus for the Kelvin model, σ(t) is stress, ε(t) is deformation, Dα
t , Dβ

t are fractional
derivatives in the sense of Riemann-Liouville by time t with order α, β respectively 0 < α, β < 1.

Using the Laplace transform method and the properties of fractional integro-differential operators,
analytical relations in the integral form were found to determine the deformations ε and stresses σ for
the Kelvin model:

σK(t) = cKtα−1tA(t) +
E2

τα

∫ t

0
(t− z)α−1A(t− z)

(

ε(z) + τβDβ
z ε(z)

)

dz, (21)

εK (t) = c̃Ktβ−1Eβ,β

(

−
tβ

τβ

)

+
1

E2τβ

∫ t

0
(t− z)β−1Eβ,β

(

−
(t− z)β

τβ

)

[

ταDα
z σ(z) +

(E1 + E2)

E1
σ(z)

]

dz.

(22)
The construction of two-dimensional mathematical models of deformationrelaxation processes, tak-

ing into account the fractal structure of the material, is based on the use of the properties of fractional
integrodifferentiation apparatus and studies of visco-elastic media under conditions of interaction with
heat transfer processes [17, 18]. In general terms, the mathematical model of two-dimensional defor-
mation of capillary-porous materials, taking into account the effects of “memory” and self-organization
for rheological models, can be described by equilibrium equations of fractional order γ (0 < γ 6 1) in
spatial coordinates x1 and x2:
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C11

(

∂γε11
∂xγ1

(

1− R̄11

)

−
∂γεT1

∂xγ1
+ R̃11

)

+ C12
∂γε22
∂xγ1

(

1− R̄12

)

− C12
∂γεT2

∂xγ1
+ C12R̃12 + 2C33

(

∂γε12
∂xγ2

(

1− R̄2
33

)

−
∂γεT3

∂xγ2
+ R̃2

33

)

= 0, (23)

C21

(

∂γε11
∂xγ2

(

1− R̄21

)

−
∂γεT1

∂xγ2
+ R̃21

)

+ C22
∂γε22
∂xγ2

(

1− R̄22

)

− C22
∂γεT2

∂xγ2
+ C22R̃22 + 2C33

(

∂γε12
∂xγ1

(

1− R̄1
33

)

−
∂γεT3

∂xγ1
+ R̃1

33

)

= 0, (24)

where εT = (ε11, ε22, ε12), εT = (εT1, εT2, εT3)
T are deformation vectors, the components of the

second vector are conditioned by changes in temperature (∆T = T − T0) and moisture content
(∆U = U − U0), which are obtained from the model (1)–(5):

εT1 = α11∆T + β11∆U, εT2 = α22∆T + β22∆U, εT3 = 0, (25)

α11, α22, β11, β22 are coefficients of thermal expansion and moisture-dependent shrinkage; Cij are
components of the elasticity tensor of the orthotropic body, R̄ij, R̃ij are some values of integrals that
include relaxation kernels:

∫ t

0
Rij(t− z, T, U)dz = R̄ij ,

∫ t

0
Rij(t− z, T, U)

∂γεT1,T2

∂xγk
dz = R̃ij , (26)

where (k, i, j = 1, 2). Developed is an algorithm for the numerical method for implementing a two-
dimensional mathematical model of visco-elastic deformation of a material, taking into account its
fractal structure based on the use of difference approximations. A finite-difference scheme for approx-
imating equilibrium equations (23) and (24) is obtained based on the Riemann–Liouville formula:

C11

Γ(2− γ)hγ1

[

(1− R̄11)
(

εk
11(n+1,m)

− γεk11(n,m)

)

−
(

εkT1(n+1,m) − γεkT1(n,m)

)

]

+
C12

Γ(2− γ)hγ1

[

(1− R̄12)
(

εk22(n+1,m) − γεk22(n,m)

)

−
(

εkT2(n+1,m) − γεkT2(n,m)

)]

+
2C33

Γ(2− γ)hγ2

[

(1− R̄2
33)
(

εk12(n,m+1) − γεk12(n,m)

)

−
(

εkT3(n,m+1) − γεkT3(n,m)

)

]

+ C11R̃11 + C12R̃12 + 2C33R̃
2
33 = 0, (27)

C21

Γ(2− γ)hγ2

[

(1− R̄21)
(

εk11(n,m+1) − γεk11(n,m)

)

−
(

εkT1(n,m+1) − γεkT1(n,m)

)

]

+
C22

Γ(2− γ)hγ2

[

(1− R̄22)
(

εk22(n,m+1) − γεk22(n,m)

)

−
(

εkT2(n,m+1) − γεkT2(n,m)

)

]

+
2C33

Γ(2− γ)hγ1

[

(1− R̄1
33)
(

εk12(n+1,m) − γεk12(n,m)

)

−
(

εkT3(n+1,m) − γεkT3(n,m)

)

]

+C22R̃22 + C21R̃21 + 2C33R̃
1
33 = 0, (28)

where
(

εk11(n,m), ε
k
22(n,m), ε

k
12(n,m)

)

are deformation components in a finite-difference form.
The method of splitting two-dimensional creep nuclei for fractional-differential rheological models

has also been adapted, which allows to determine creep nuclei and the function of bulk creep ve-
locity according to experimental data for one-dimensional models, to identify fractional-differential
parameters of models and to investigate effects of “memory” and self-organization of material [17].
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4. The results of the identification of fractal parameters and results of numerical im-
plementation of mathematical models
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Fig. 1. The results of the identification of fractal pa-
rameters of the creep function according to experi-

mental data.
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Fig. 3. Stress dynamics of fractional differential rhe-
ological models.

We present the results of the developed algo-
rithm for identifying non-integer fractional differ-
ential parameters according to the experimental
data [24] using the iterative method. The appli-
cation of the iterative method has two stages. At
the first stage, assuming that the parameters α,
β of the deformation function are integer, based
on the method of least squares, the search for the
initial value of stress, relaxation time, modulus of
elasticity. The obtained identification results at
the first stage are taken into account in the next
stage, where the values of fractional-differential
parameters are obtained by minimizing the ex-
pressions describing the law of creep for rheolog-
ical models. The coordinate descent method was
used to clarify the identified parameters. A sta-
tistical criterion based on the application of the
correlation coefficient was used to assess the di-
vergence of the results. Thus, the correlation co-
efficient r is equal to the value of 0.992, which
indicates a good agreement between the approxi-
mant and the experimental data shown in Fig. 1.
It is shown that moisture content is released faster
from materials with the effects of “memory” and
self-organization with a lower base density. A de-
crease in the fractional differential parameters of
the heat-and-mass transfer model leads to the ac-
celeration of the process of moisture removal. So,
we can observe the influence of the fractal struc-
ture of the material on the process of moisture
removal. The simulation results with experimen-
tal data and are shown in Fig. 2.

Investigated is the variation of stress for the
rheological models of fractional-differential type:
Maxwell, Kelvin (Fig. 3). The elastic modulus
of the material E = 10200MΠa, the fractional
differential parameters of the models were taken,
β = 0.9, α is variable. These numerical values
are taken into account from previous studies —
identification of fractal parameters of models. For
the Maxwell and Kelvin models, the stress curves
almost coincide, which is explained by other re-
searchers as follows: three-element schemes con-
taining two eponymous elements are mechanically
equivalent to two-element schemes.
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5. Conclusions

A mathematical model of heat-and-mass transfer based on the use of fractional integro-differential
apparatus is constructed in the work, which allows analyzing the dynamics of change in temperature
and moisture content of a material, taking into account the effects of “memory” and self-organization.
Finite-difference schemes are developed to approximate the mathematical model of non-isothermal
moisture transfer of capillary-porous materials with fractal structure, which makes it possible to carry
out the algorithm of the numerical method. The stability conditions for difference schemes are es-
tablished, which, by comparison, are consistent with the results of other studies. The fractal Kelvin
model in fractional differential form is obtained. Based on the non-integer integro-differential appa-
ratus and the Laplace transform method, analytical relationships in an integral form are found to
determine the deformations and stresses of the rheological model, which makes it possible to determine
the dynamics of the stress-strain state of the material taking into account eridarity (process memory)
and self-organization, to obtain thermodynamic functions, relaxation and creep kernels of fractional
differential models. Two-dimensional mathematical models of deformation processes are constructed,
which allows accounting for the fractal structure of a material, depending on the initial values of tem-
perature and moisture content, thermomechanical characteristics of the anisotropy, the base density
of materials. The developed algorithm for the numerical implementation of two-dimensional mathe-
matical models of visco-elastic deformation allows us to calculate the components of the stress-strain
state of the material, taking into account the effects of “memory” and self-organization. That is why
the paper presents a finite-difference scheme for the approximation of equilibrium equations based on
the Riemann–Liouville formula. Presented are the results of the developed algorithm for the identi-
fication of fractional-differential parameters of the models. New patterns of heat-and-mass transfer
and deformation processes are defined taking into account the fractal structure of the material, which
makes it possible to give due consideration for the effects of “memory” and self-organization of the
material depending on its base density, thermomechanical characteristics, technological parameters,
and anisotropy directions. The results obtained were compared with the experimental data and the
results of numerical studies which did not take into account the fractal structure of the material nor
took into account the time. Thus, the consistency of new results with existing ones is shown.
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Дослiдження теплоперенесення та напружено-деформацiйного
стану матерiалу з урахуванням фрактальної структури

СоколовськийЯ. I.1, ЛевковичМ.В.1, Соколовський I.Я.2

1Нацiональний лiсотехнiчний унiверситет України,

вул. Г. Чупринки, 103, 79057, Львiв, Україна
2Нацiональний унiверситет “Львiвська полiтехнiка”,

вул. С. Бандери, 12, 79013, Львiв, Україна

У роботi на основi апарату дробового iнтегро-диференцiювання побудовано матема-
тичнi моделi тепловологоперенесення, деформацiйно-релаксацiйних процесiв в умо-
вах середовища з ефектами “пам’ятi” та самоорганiзацiї. Чисельна реалiзацiя мате-
матичних моделей теплоперенесення та вологоперенесення грунтується на адапта-
цiї методу предиктор-коректор. Саме тому у роботi отримано математичнi моделi у
скiнченно-рiзницевому виглядi. Для явної рiзницевої схеми на основi методу умовного
задання вiдомих функцiй та методу iнтеграла Фур’є визначено умови стiйкостi. Отри-
мано iнтегральне представлення деформацiї та напруження дробово-диференцiальної
реологiчної моделi за допомогою методу перетворення Лапласа. Враховуючи чисель-
нi та аналiтичнi методи реалiзацiй побудованих моделей у роботi наведено основнi
результати, зокрема, iдентифiкацiю фрактальних параметрiв для функцiї повзучостi
за експериментальними даними.

Ключовi слова: фрактальна структура, самоорганiзацiя, тепломасоперенесення,

дробово-диференцiальний апарат, модель Кельвiна.
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