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Signal-code constructions with modulating binary sequences are widely used in multichan-
nel radiocommunication systems, radar, and other information systems. Among these
sequences, there are those that provide the minimum levels of side lobes of the aperiodic
autocorrelation function and, accordingly, the required secrecy, noise immunity, resolution,
and other important characteristics and parameters. The paper describes an alternative
approach for solving optimization task that involves a complete full search for the optimal
binary skew-symmetric sequences with odd dimension l using a criterion of minimum side
lobes of the aperiodic autocorrelation function. The proposed method based on perform-
ing two consecutive steps: optimizing in the space of dimension L < 0.5(l − 5) of the
objective functions with respect to the levels of side lobes of the aperiodic autocorrelation
function and solving of an equation system which specifies the aperiodic autocorrelation
function. The right sides of the equation system present the levels of the side lobes that
are obtained as the result of completing the first operation. The developed methodol-
ogy includes an analysis of the structure of sets of binary sequences; finding correlations
between the structural components using the methods of group theory; establishing an-
alytical forms that define the functional relationships between the levels of side lobes of
the aperiodic autocorrelation function. The article presents an example of application and
results of modeling of the offered algorithm to identify optimal binary sequences.
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1. Introduction

The practice of using binary sequences (BS) as modulating functions in radiocommunication, radar,
sonar is well known [1–7]. The structure of such BS differs from others because they have minimum
levels of side lobes (LSL) of the aperiodic autocorrelation function (AACF). It allows obtaining high
rates of secrecy, noise immunity and resolution in these systems. However, the further development
of information technology leads to emerging new scientific and technical problems, in particular, the
creation of multi-channel noise-proof radio systems for data transmission [8] requires more advanced
structures of the BS binary sequences with increased dimension l and the possible minimum of LSL of
the aperiodic autocorrelation function.

AACF Ak(a) for BS {a} is defined as follows [9, 10]

{a} = {a1, a2, . . . , al} ; ai ∈ [−1; 1] , i ∈ {1, . . . , l} , (1)

Ak(a) =

k
∑

i=1

aial−k+i; k ∈ [1, 2, . . . , l] , l = 4m− 1; m ∈ {N}. (2)

where N is a set of natural numbers.
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Initially, the search for optimal structures of BS was described in the articles [11–13]. Later in the
paper [14] it has been proved that there is no BS with properties of Barker codes for 13 < l < 1022.
In the article [9] the most significant scientific achievements in this field were summarized and the
directions of further researches were defined. In particular, it pertains to the search of BS with the
minimum levels of side lobes. As of now, there are two classes of methods and algorithms:

- full search algorithms (FSA) which allows us to guarantee identification of the optimal BS in a
limited time. Herewith, a prerequisite condition is building of search tree of exponential type [10,15];

- metaheuristic algorithms that perform a controlled random search for possible solutions of the
combinatorial optimization problem that are close to the optimal ones until a specific termination
condition is fulfilled or after reaching a predetermined volume of computational operations [16–18].

Metaheuristic algorithms are much simpler to implement than full search algorithms but generally
they do not guarantee the best solution.

In this sense, full search algorithms maintain the best solution, but have an exponential increase
in complexity with increasing dimension l.

A number of publications have been devoted to the search for compromises and appropriate methods
and algorithms [9,10,13,15,16,18–23]. Among them, the paper [10] proposes an approach that is based
on the analysis of the structure of BS set using the theory of groups and algorithms such as “branch
and bound”.

Besides, the essential cause for further research is the presence of operations for going over the
options to find the optimal binary sequences search in the BS space when using the known methods
and algorithms.

2. Formulation of the problem. Structural relations in a binary sequences set

During the process of exploring of the BS options within the formed subset, the above mentioned FSAs
allows calculating the AACF parameters. Obviously, the acceptance or elimination of binary sequences
occurs based on the calculation results for their LSL of the aperiodic autocorrelation function. From
this fact, it follows that the known FSAs perform the analysis of “redundant” binary sequences, that
are having an LSL with unacceptable value.

This circumstance creates motivation for research and development of alternative FSA type methods
and algorithms, which on the one hand would provide a full search for optimal BS, and on the other
hand reduce the dimension of the search space due to preliminary screening and eliminating of BS with
improper LSL of the aperiodic autocorrelation function.

The purpose of this work is to develop a method and full search algorithm to find optimal skew-
symmetric BS that would provide the efficiency estimation 0(ϕl) efficiency at 1 < ϕ < 1.63.

The procedure for solving the formulated task involves the sequential implementation of the fol-
lowing steps:

- identifying subsets of BS according to certain criteria,
- describing the properties BS subsets,
- developing procedures to split the subset of skew-symmetric BS into classes,
- characterizing reflections of classes of skew-symmetric BS into the AACF subset,
- obtaining analytical expressions for the LSL interrelation functions Ak,
- forming of FSA in the subset of BS of skew-symmetrical type.

It is known [1, 11] that allomorphic transformations of BS leave unchanged LSL AACF with the
same indices. The operators “addition” (denoted by C) and “inversion” (denoted by R) are allomorphic.
If we add to them the operator “alternative addition” (denoted by Q), then their action in the aggregate
and in different combinations leaves unchanged modules LSL AACF with the same indices.

The use of algebraic methods and, in particular, the group theory to analyze the BS sets, has been
proposed in the works [10, 24, 25].
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Adding the identity operator I, to operators C, R, Q and their combinations form a group G order
8 with group elements

G ∈ {I,R,C,Q,RC,RQ,CQ,RCQ} ; g2 = I;

for all g ∈ G.
The group elements acting on the BS divide the set of all states of the BS into symmetric classes.

It should be emphasized that the structure of division into classes depends on the type of BS. In total,
the set of BS contains 2l sequences that are divided into three subsets:

- symmetrical BSs that contain 20.5(l+1) BSs;
- skew-symmetrical BSs that contain 20.5(l+1) BSs;
- general BSs that contain 2l − 20.5(l+3) BSs.

Next, we analyze the subset of skew-symmetric BSs. Action of operators C and R creates classes,
each of which contains four BSs. Note that due to the properties of the structure of the BS

ai = −al−i+1, (3)

for i odd;
ai = al−i+1, (4)

for i even, and operator Q action forms the structure, which coincides with the action of the operator R.
The total number of classes for skew-symmetric BSs is equal to 20.5(l−3). Each class is associated with
AACF, which is the image of all BSs of this class, and the modules LSL AACF with the same indices
for all BSs of this class are equal.

… …

… …

quantity

a subset of skew-symmetric BS
subset of classes of skew-

symmetric BS

quantity

…

a1

a1a1

a2

a2a2
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Fig. 1. Formation of classes of binary sequences in the subset of skew-symmetric binary sequences.

The scheme of classes formation for binary sequences in the subset of skew-symmetric binary
sequences is depicted in Fig. 1. We add that due to the properties of the group G, that is presented in
Fig. 1, the operators C and R may change places.
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3. Mutual projections and properties of classes of binary sequences and subsets of
aperiodic autocorrelation functions

For further actions it is expedient to present the system of equations (2) in the expanded form, having
reduced set of values of parameter k: k ∈ {1, 2, . . . , l − 1}

a1al = A1,

a1al−1 + a2al = A2,

a1al−2 + a2al−1 + a3al = A3,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

a1al−k+1 + a2al−k+2 + . . .+ akal = Ak,

a1a2 + a2a3 + . . . . . .+ al−1al = Al−1.















































(5)

The value of the dimension l of BS is selected based on the condition

l = 1 + 2m; m ∈ [N ]. (6)

where [N ] is the set of natural numbers.
The papers [26–28] identify that in the set of BS there is a subset Θ containing at least one AACF

with the maximum of LSL Aj satisfying the condition

Aj <
√
l, j ∈ {1, 2, . . . , l − 1} . (7)

Let us mark GΘ(a) a subset of symmetry classes of BS, in which LSL AAKF satisfy (7), and AΘ

is a subset of ordered sequences LSL (A1, A2, . . . , Al−1), formed by the projection of the subset GΘ(a)
in LSL AACF by system (5), (6).

Projection of any BS with GΘ(a) in AΘ is unambiguous, the projection AΘ in GΘ(a) is also
unambiguous, however, the reverse projection AΘ in BS subsets GΘ(a) is ambiguous.

It is not an obstacle to find the BS with minimal LSL, since determination of the optimal sequence
(A1, A2, . . . , Al−1) allows receiving at least one binary sequence from (5), (6). The next step involves
identifying of all BSs, which belong to the found class, with using operators C, R, Q.

It follows from the above that in order to solve the problem of finding optimal BS through opti-
mization in the sequence space (A1, A2, . . . , Al−1) it is necessary to have a function of interconnection
of LSL A1, A2, . . . , Al−1. Therefore, the determinant component of the proposed method is obtaining
these functions from (5), (6).

It should be noted that the variant for working out the problem by setting all possible values Ak

in system (5), (6) and the following solving of the equations (with assessment of compatibility this
system) is inefficient. It follows from the number of options for searching the LSL Ak with odd k,

which is equal to the product of 1 · 3 · 5 · . . . · (l − 1) and exceeds the number of search options 2
l

2 in
known FSA for skew-symmetrical binary sequences.

Hence, the interconnection functions of LSL A1, A2, . . . , Al−1 determine the conditions for limiting
search for subsets for each Ak levels of side lobes.

4. Interdependencies and structures of sets for levels of side lobes of binary sequences
aperiodic autocorrelation functions

For further transformations, the system (5), (6) is presented, taking into account the properties of the
elements of skew-symmetrical BS, as follows
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
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








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


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




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
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
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







A1 = −1,
−a1a3 = 0.5 (A3 − 1) ,
−a1a5 + a2a4 = 0.5 (A5 + 1) ,
−a1a7 + a2a6 − a3a5 = 0.5 (A7 − 1) ,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

−a1a l−1

2

+ . . .+ a l−3

4

· a l+5

4

= 0.5
[

A l−1

2

+ (−1)
l+5

4

]

,

a1a l−1

2

+ . . .+ a l+1

4

· a l+9

4

= 0.5
[

A l+1

2

+ (−1)
l+9

4

]

,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

a1a2 + a2a3 + . . . + a l−3

2

· a l−1

2

= 0.5
[

Al−2(−1)
l−1

2

]

.

(8)

It is necessary to obtain from (8) the following: functional dependencies between values Ak k ∈
[1; 3; 5; . . . ; l − 2], expressions that would determine the structure of sets of valid values, number of
independent variables Ak in the specified functional dependences, quantity of options of search in
space LSL AACF, relationships between parameters of symmetric classes of skew-symmetrical BS and
quantity of AACF, which are determined from the obtained functional dependencies.

Representation (8) of system (5), (6) contains only equations with odd values k, because as a
result of conditions (3), (4) all Ak with even k equal to zero. The left parts of each of the equations
contain products aiaj; further transformations of these equations are performed using these products
as functions of Ak.

Together with the conditions (1), (3), (4), the following procedures are applied with using several
properties of products aiaj from (8): the sum of an odd number of items (each item equals to 1 in
absolute value) is an odd number; from the expression

aij + apn = Bp, |aiaj | = |apan| = 1; i, j, p, n ∈ [1, 2, . . . , k] ; i 6= j; p 6= n;

follows the next: at Bp 6= 0 → aiaj = 0.5Bp; apan = 0.5Bp; at Bp = 0 → aiaj = −apan.
Conditions (3), (4) define the structure of a1 = −al; a2 = al−1, which causes the presence in the

BS of two outside elements of the same sign and, on the opposite side of the BS, two outside elements
with different signs. This circumstance allows assuming that a1 = a2 without reducing the generality
of reasoning.

Further transformations are performed sequentially for equations with Ak; k ∈ [1, 3, . . . , 0.5l + 3]
and at each step intermediate expressions are defined for aiaj , (as functions from Ak to substitute them
into the following equations) and the structure of subsets of valid values Ak. The indicated remaining
0.25(l − 7) equations, after substitution in them A3, A5, A0.5(l−1), form 0.25(l − 7) objective functions
in which A3, A5, A0.5(l+3) they are independent variables, and Ak; k ∈ [0.5(l + 7), . . . , l − 2] are param-
eters of the AACF LSL, depending on the indicated variables. In general, 0.25(l + 5) equations from
(8) are sequentially involved in these transformations in ascending order of their odd numbers from 1
to 0.5(l + 3), since these equations contain all ai, ai ∈ [1, 2, . . . , l].

The products aiaj, that are defined in this way and functions from them are substituted in the
rest of 0.25(l − 7) equations with odd k from 0.5(l + 7) to l− 2. The given algorithm gives 0.25(l − 7)
functional dependencies 0.25(l − 7) with odd numbers from 0.5(l + 7) to l − 2. Independent variables
in the aforesaid functional dependences are Ak with odd numbers from 3 to 0.5(l − 1). Number of
independent variables Ak does not exceed 0.25(l + 1), and therefore the number of search options does
not exceed 20.25(l+1). When entering an additional upper limit

√
l for LSL Ak k ∈ [3; 5; . . . ; 0.5(l − 1)]

this number is reduced by at least 33%. Evaluation of effectiveness ϕ of proposed method satisfies the
condition 0(ϕl); 1 < ϕ < 1.41.

Part 5 provides a detailed description of the method and algorithm with example for the binary
sequence with l=11.
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5. An example of the application of the method and algorithm for finding the optimal
binary sequences

An example of the application of the method and algorithm for finding the optimal BS in the set AACF
for l = 11.

1. The initial system of equations taking into account the conditions (5), (6)

A1 = −1; a1 = a2, (9)

−a1a3 = 0.5(A3 − 1), (10)

−a1a5 + a2a4 = 0.5(A5 + 1), (11)

a1a5 + a2a6 − a3a5 = 0.5(A7 − 1), (12)

a1a3 + a2a4 + a3a5 + a4a6 = 0.5(A9 + 1), (13)

2. Analysis of transformation of the equations,
2.1. Equation (10). For further substitutions used a1a3 = −0.5(A3 − 1), and determining the set

of valid values of LSL A3 is carried out on the basis of the condition |−0.5(A3 − 1)| = 1. The solution
gives A3 ∈ {−1; 3}; A3 6= 1. The result:

A3 ∈ |−1; 3| ; a1a3 = −0.5(A3 − 1). (14)

2.2. Equation (11). There are two options for the right part:
2.2.1. A5 = −1; a5 = a4
2.2.2. A5 + 1 6= 0; a2a4 = 0.25(A5 + 1); a1a5 = −0.25(A5 + 1).
The search for a set of values A5 is carried out on the basis of the condition |0.25(A5 + 1)| = 1,

and the solution is the set A5 ∈ {−5; 3}. Note: a subset of values can be expanded as a result of
consideration of the equations from s. 2.4 and taking into account (sub-s. 2.2.1). Result:

A5 ∈ {−5; 3}; a2a4 = 0.25(A5 + 1); a1a5 = −0.25(A5 + 1). (15)

2.3. Equation (12). The number of items in the left part is odd, therefore A7 6= 1. The item a3a5
is represented as a product

a3a5 = (a1a3) (a1a5) = −0.5 (A3 − 1) [−0, 25 (A5 + 1)] = 0.125 (A3 − 1) (A5 + 1) .

Next equation (12) is presented in the next form: a2a6 = 0.5(A7 − 1) + 0.125(A3 + 1)(A5 + 1). Set of
values A7 is determined by the condition: 0.5(A7 − 1) + 0.125(A3 + 1)(A5 + 1) = ±1. Expression for
LSL A7, as a function of LSL A3 and A5 is written as follows:

A7 =

(

+3
−1

)

− 0.25(A3 + 1)(A5 + 1). (16)

Table 1. Possible combina-
tions of values A3, A5, A7.

A3 A5 A7

−1 −5 3 −1

−1 3 3 −1

3 −5 7 3

3 3 −1 −5

Since (16) shows that A7 is not an independent variable in AACF,
the number of options for values A3, A5, A7 is equal to the number of
variants for values A3, A5. Possible combinations of values A3, A5, A7

are indicated in Table 1.
The obtained result:

a2a6 = 0.5(A7 − 1) + 0.125(A3 + 1)(A5 + 1) (17)

A7 =

(

+3
−1

)

− 0.25(A3 + 1)(A5 + 1).
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2.4. Equation (13).
2.4.1. We will make replacements using the above expressions (14), (15), (16), (17) obtained above

− 0.5(A3 − 1) + 0.25(A5 + 1) + 0.125(A3 − 1)(A5 + 1)

+ 0.25(A5 + 1)[0.5(A7 − 1) + 0.125(A3 + 1)(A5 + 1)].

The result of these substitutions will be two pairs of equations:

{

−0.5 (A3 − 1) + 0.25 (A5 + 1) + 0.125 (A3 − 1) (A5 + 1) + 0.25 (A5 + 1) = 0.5 (A9 + 1) ,
A7 = 3− 0.25 (A3 + 1) (A5 + 1) ,

{

−0.5 (A3 − 1) + 0.25 (A5 + 1) + 0.125 (A3 − 1) (A5 + 1) = 0.5 (A9 + 1) ,
A7 = −1− 0.25 (A3 + 1) (A5 + 1) .

A series of elementary transformations leads these expressions to the next form

{

A9 = 0.25 (A3 + 3) (A5 + 1)−A3,

A7 = 3− 0.25 (A3 + 1) (A5 + 1) ,
(18)

{

A9 = 0.25 (A3 + 3) (A5 + 1)−A3,

A7 = 3− 0.25 (A3 + 1) (A5 + 1) .
(19)

Table 2. Possible combinations of values
A3, A5, A7, A9 (at A5 6= 0).

A3
∗ A5

∗ A7 A9 A7 A9

−1 −5 3 −1 −1 1

−1 3 3 3 −1 1

3 −5 7 9 3 −7

3 3 −1 −3 −5 1

∗independent variables (within defined subsets) A3,
A5 in the aperiodic autocorrelation function.

Expressions (18), (19) and subsets of values A3, A5,
A7, A9 show that in the system of equations (8) there are
two independent variables A3, A5; subsets of values A3,
A5, defined by the first three equations from (8); expres-
sions for substitution in the equation with A9 defined in
the first five equations of (8).

The total number of AACF obtained from (18), (19)
and subsets of independent variables A3, A5 is equal to
8. Each of these AACF sets four allomorphic BSs, so the
total number of BSs from (18), (19) is equal to 32.

Substituting in (8) the numerical values of the found LSL AACF gives a solution in the form of
BS, which is included in one of the classes of symmetry of the set of skew-symmetric BS. The other
three BSs of this class are obtained by applying allomorphic operators to the found BS.

2.4.2. Equations (12) and (13). With condition sub-s. 2.2.1, a1a5 + a2a6 − a3a5 = 0.5 (A7 − 1);
A7 6= 1 and considering (1), (14), an equation (12) is presented in the form:

a1a5 [0.5 (A3 + 1) + a4a6] = 0.5 (A7 − 1) .

Application of properties |a1a5| = 1, |a4a6| = 1 and a series of transformations gives a subset of
expressions A7 through A3: A7 = A3 + 4; A7 = A3; A7 = −A3 − 2; A7 = −A3 + 2.

Considering appropriate conditions to obtain expressions for A7, the expressions and values for
a1a3, a2a4, a3a5, a4a6 are substituted in (13) and groups of formulas for calculating of LSL A7, A9 are
derived as functions from A3, A5.







A9 = −2A3 + 5,
A7 = A3 + 4,
A5 = −1,







A9 = −1,
A7 = A3 − 2,
A5 = −1,







A9 = −2A3 + 1,
A7 = A3,

A5 = −1,







A9 = −3,
A7 = −A3 + 2,
A5 = −1.

(20)

Since A3 ∈ {−1; 3}, then each of the resulting expression systems for A5, A7, A9 gives two variants
of AACF. In total, these are 8 variants of AACF, which are classes of symmetry of skew-symmetrical
BS and are shown in Table 3. Together with the AACF, that are described in sub-s. 2.4.1., we obtain
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16 such classes. Each of these classes generates four skew-symmetric binary sequences from system (8).
Their total number is 64. This value coincides with the estimation of the number of skew-symmetrical
BSs that are given in Part 2: 26 = 64. This fact confirms that the proposed method and algorithm give
the full set of possible values of skew-symmetric BSs and, accordingly, provide a comprehensive search
for optimal skew-symmetric BSs. In addition, an important advantage of the proposed method is the
possibility for screening and eliminating of unacceptable values at each successive step Ak, for example,
using the criterion Ak <

√
l. It allows significantly reducing the number of search options (in general,

the degree of this decreasing is determined by the value of the upper limit Alimit → Ak < Alimit).

Table 3. Possible combinations of values A3, A5, A7, A9 (at A5 = 0).

A3
∗ A5

∗ A7 A9 A7 A9 A7 A9 A7 A9

−1 −1 3 7 −1 −1 −1 3 3 −3

3 −1 7 −1 −5 −1 3 −5 −1 −3

∗independent variables (within defined subsets) A3, A5.

The search for BSs is as follows (an example is given for one of the eight variants of AACF). A3 = 3;
A5 = −1; A7 = 3; A9 = −5















−a1a3 = 1,
−a1a5 + a2a4 = 0,
a1a5 + a2a6 − a3a5 = 1,
a1a3 + a2a4 + a3a5 + a4a6 = −2.

Solving the above system gives one BS from which three more BSs of the found symmetry class are
formed according to Fig. 2.

+ + + + + ++

+ + + +

+ ++ +

+ + + ++ + +

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11

C

C

R

Fig. 2. Formation of binary sequences with aperiodic autocorrelation function.

6. Conclusion

In the paper, there are introduced the method and the algorithm to perform the full search for the
optimal binary skew-symmetric sequences with odd dimension l using a criterion of minimum side
lobes of the aperiodic autocorrelation function. The proposed method is based on performing two
consecutive operations: optimizing in the space of dimension L < 0.5(l − 5) of the objective functions
with respect to the levels of side lobes of the aperiodic autocorrelation function; solving of the equation
system, which specifies the aperiodic autocorrelation function. The right sides of the equation system
present the levels of the side lobes that are obtained as the result of completing the first operation.
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The advantage of the proposed method and algorithm is the possibility of further reducing the
dimension 0.5(l− 5) search space by limiting the upper limit of the levels of side lobes of the aperiodic
autocorrelation function with value

√
l.

The suggested methodology is formed on the results of the analysis of the structure of sets of binary
sequences; finding correlations between the structure components using the methods of group theory;
establishing analytical forms that define the functional relationships between the levels of side lobes
of aperiodic autocorrelation function. The article presents an example of application and results of
modeling of the proposed algorithm to identify the optimal binary sequences.
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Оптимальний пошук двiйкових кососиметричних послiдовностей
з мiнiмальними рiвнями бiчних пелюсткiв

МiськiвВ.-М.В.1, Прудиус I.Н.1, ФабiровськийС.Є.1 , ПащукЮ.М.2

1Нацiональний унiверситет “Львiвська полiтехнiка”,

вул. С. Бандери, 12, 79013, Львiв, Україна
2Нацiональна академiя сухопутних вiйськ iменi гетьмана Петра Сагайдачного,

вул. Героїв Майдану, 32, 79012, Львiв, Україна

Сигнально-кодовi конструкцiї з модуляцiйними двiйковими послiдовностями широ-
ко застосовується в багатоканальних радiосистемах зв’язку, радiолокацiї та iнших
системах iнформацiйного напрямку. Серед зазначених послiдовностей особливо видi-
ляються тi, якi забезпечують мiнiмальнi рiвнi бiчних пелюсткiв аперiодичної авто-
кореляцiйної функцiї i, вiдповiдно, необхiдну скритнiсть, завадостiйкiсть, роздiльну
здатнiсть та низку iнших важливих параметрiв. У цiй роботi розглядається задача
повного пошуку оптимальної, за критерiєм мiнiмуму бiчних пелюсткiв, аперiодичної
автокореляцiйної функцiї двiйкових кососиметричних послiдовностей непарної роз-
мiрностi l. Поставлену задачу розв’язано на основi альтернативного пiдходу та мето-
ду, суть якого полягає у проведеннi двох послiдовних операцiй: оптимiзацiї в просторi
розмiрностi L < 0.5(l− 5) цiльових функцiй вiд рiвнiв бiчних пелюсткiв аперiодичної
автокореляцiйної функцiї та розв’язування системи рiвнянь, яка задає зазначену апе-
рiодичну автокореляцiйну функцiю. При цьому правими частинами системи рiвнянь
є рiвнi бiчних пелюсткiв, знайденi за результатом виконання першої операцiї. Засади,
якi покладенi в основу запропонованого методу: аналiз структури множин двiйкових
послiдовностей; визначення спiввiдношень мiж складовими частинами структури зi
застосуванням методiв теорiї груп; аналiтичнi вирази, якi визначають функцiональнi
взаємозв’язки мiж рiвнями бiчних пелюсткiв аперiодичної автокореляцiйної функцiї.
Наведено приклад застосування та результати моделювання запропонованого алго-
ритму пошуку оптимальних двiйкових послiдовностей.

Ключовi слова: двiйкова послiдовнiсть, аперiодична автокореляцiйна функцiя, рiв-

нi бiчних пелюсткiв, повний пошук, завадостiйкi радiосистеми.
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