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Signal-code constructions with modulating binary sequences are widely used in multichan-
nel radiocommunication systems, radar, and other information systems. Among these
sequences, there are those that provide the minimum levels of side lobes of the aperiodic
autocorrelation function and, accordingly, the required secrecy, noise immunity, resolution,
and other important characteristics and parameters. The paper describes an alternative
approach for solving optimization task that involves a complete full search for the optimal
binary skew-symmetric sequences with odd dimension [ using a criterion of minimum side
lobes of the aperiodic autocorrelation function. The proposed method based on perform-
ing two consecutive steps: optimizing in the space of dimension L < 0.5(I — 5) of the
objective functions with respect to the levels of side lobes of the aperiodic autocorrelation
function and solving of an equation system which specifies the aperiodic autocorrelation
function. The right sides of the equation system present the levels of the side lobes that
are obtained as the result of completing the first operation. The developed methodol-
ogy includes an analysis of the structure of sets of binary sequences; finding correlations
between the structural components using the methods of group theory; establishing an-
alytical forms that define the functional relationships between the levels of side lobes of
the aperiodic autocorrelation function. The article presents an example of application and
results of modeling of the offered algorithm to identify optimal binary sequences.

Keywords: binary sequence, aperiodic autocorrelation function, levels of side lobes, com-
plete full search, noise-proof radio systems.
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1. Introduction

The practice of using binary sequences (BS) as modulating functions in radiocommunication, radar,
sonar is well known [1-7]. The structure of such BS differs from others because they have minimum
levels of side lobes (LSL) of the aperiodic autocorrelation function (AACF). It allows obtaining high
rates of secrecy, noise immunity and resolution in these systems. However, the further development
of information technology leads to emerging new scientific and technical problems, in particular, the
creation of multi-channel noise-proof radio systems for data transmission [8] requires more advanced
structures of the BS binary sequences with increased dimension [ and the possible minimum of LSL of
the aperiodic autocorrelation function.

AACF Ag(a) for BS {a} is defined as follows [9,10]
{a} ={a1,a9,...,a;}; a;€[-1;1], ie{l,..., 1}, (1)
k
Apla) =Y aapys; ke[L2,..0], l=4m—1; me{N} (2)
i=1
where N is a set of natural numbers.
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Initially, the search for optimal structures of BS was described in the articles [11-13|. Later in the
paper [14] it has been proved that there is no BS with properties of Barker codes for 13 < [ < 10%2.
In the article [9] the most significant scientific achievements in this field were summarized and the
directions of further researches were defined. In particular, it pertains to the search of BS with the
minimum levels of side lobes. As of now, there are two classes of methods and algorithms:

- full search algorithms (FSA) which allows us to guarantee identification of the optimal BS in a
limited time. Herewith, a prerequisite condition is building of search tree of exponential type [10,15];
- metaheuristic algorithms that perform a controlled random search for possible solutions of the
combinatorial optimization problem that are close to the optimal ones until a specific termination
condition is fulfilled or after reaching a predetermined volume of computational operations [16-18|.

Metaheuristic algorithms are much simpler to implement than full search algorithms but generally
they do not guarantee the best solution.

In this sense, full search algorithms maintain the best solution, but have an exponential increase
in complexity with increasing dimension [.

A number of publications have been devoted to the search for compromises and appropriate methods
and algorithms [9,10,13,15,16,18-23]. Among them, the paper [10] proposes an approach that is based
on the analysis of the structure of BS set using the theory of groups and algorithms such as “branch
and bound”.

Besides, the essential cause for further research is the presence of operations for going over the
options to find the optimal binary sequences search in the BS space when using the known methods
and algorithms.

2. Formulation of the problem. Structural relations in a binary sequences set

During the process of exploring of the BS options within the formed subset, the above mentioned FSAs
allows calculating the AACF parameters. Obviously, the acceptance or elimination of binary sequences
occurs based on the calculation results for their LSL of the aperiodic autocorrelation function. From
this fact, it follows that the known FSAs perform the analysis of “redundant” binary sequences, that
are having an LSL with unacceptable value.

This circumstance creates motivation for research and development of alternative FSA type methods
and algorithms, which on the one hand would provide a full search for optimal BS, and on the other
hand reduce the dimension of the search space due to preliminary screening and eliminating of BS with
improper LSL of the aperiodic autocorrelation function.

The purpose of this work is to develop a method and full search algorithm to find optimal skew-
symmetric BS that would provide the efficiency estimation 0(¢') efficiency at 1 < ¢ < 1.63.

The procedure for solving the formulated task involves the sequential implementation of the fol-
lowing steps:

- identifying subsets of BS according to certain criteria,

- describing the properties BS subsets,

- developing procedures to split the subset of skew-symmetric BS into classes,

- characterizing reflections of classes of skew-symmetric BS into the AACF subset,
- obtaining analytical expressions for the LSL interrelation functions Ay,

- forming of FSA in the subset of BS of skew-symmetrical type.

It is known [1,11] that allomorphic transformations of BS leave unchanged LSL AACF with the
same indices. The operators “addition” (denoted by C') and “inversion” (denoted by R) are allomorphic.
If we add to them the operator “alternative addition” (denoted by @), then their action in the aggregate
and in different combinations leaves unchanged modules LSL. AACF with the same indices.

The use of algebraic methods and, in particular, the group theory to analyze the BS sets, has been
proposed in the works [10,24,25].
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Adding the identity operator I, to operators C', R, () and their combinations form a group G order
8 with group elements
G €{I,R,C,Q,RC,RQ,CQ,RCQ}; ¢* =1,

for all g € G.
The group elements acting on the BS divide the set of all states of the BS into symmetric classes.
It should be emphasized that the structure of division into classes depends on the type of BS. In total,
the set of BS contains 2! sequences that are divided into three subsets:
- symmetrical BSs that contain 20-°(+1) BSs;
- skew-symmetrical BSs that contain 20-°(+1) BSs:
- general BSs that contain 2! — 20-5(+3) BSg.

Next, we analyze the subset of skew-symmetric BSs. Action of operators C' and R creates classes,
each of which contains four BSs. Note that due to the properties of the structure of the BS

a; = —Aj—it1, (3)

for ¢ odd;

a; = ay_i41, (4)
for i even, and operator ) action forms the structure, which coincides with the action of the operator R.
The total number of classes for skew-symmetric BSs is equal to 20-°(=3) Each class is associated with

AACF, which is the image of all BSs of this class, and the modules LSL AACF with the same indices
for all BSs of this class are equal.

subset of classes of skew-
symmetric BS

a subset of skew-symmetric BS

] A % v y v v v v

% ;o *.o

A Ag sy Ao P C R CR| R C | RC >
°

° o % [}

* B A AE L ®H

quantity 20-5(+1)

] A * * A - quantity 20-5(=3)
| ai | a2 | as | | Glle al—ll aj | | ax | a2 | as | |al,2| al,ll aj |
|—a1| —a2| —a3| |_a172|_a171| —all | aj |a171|a172| | as | a9 | aq |

Fig. 1. Formation of classes of binary sequences in the subset of skew-symmetric binary sequences.

The scheme of classes formation for binary sequences in the subset of skew-symmetric binary
sequences is depicted in Fig. 1. We add that due to the properties of the group G, that is presented in
Fig. 1, the operators C and R may change places.
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3. Mutual projections and properties of classes of binary sequences and subsets of
aperiodic autocorrelation functions

For further actions it is expedient to present the system of equations (2) in the expanded form, having
reduced set of values of parameter k: k € {1,2,...,1 — 1}

aja; = Ay,
aia;—q + aga; = As,
ara;—2 + aga;—1 + aza; = As,

1041 + a20;_y2 + ... +aga; = Ay,

aias + azas + ... ... +aj_1a; = Aj_1.
The value of the dimension [ of BS is selected based on the condition
l=1+2m; me]N]. (6)

where [NV] is the set of natural numbers.
The papers [26-28] identify that in the set of BS there is a subset © containing at least one AACF
with the maximum of LSL A; satisfying the condition

A< Vi, je{1,2,...,1—1}. (7)

Let us mark Gg(a) a subset of symmetry classes of BS, in which LSL AAKF satisfy (7), and Ag
is a subset of ordered sequences LSL (A1, Ag,...,A;—1), formed by the projection of the subset Gg(a)
in LSL AACF by system (5), (6).

Projection of any BS with Gg(a) in Ag is unambiguous, the projection Ag in Gg(a) is also
unambiguous, however, the reverse projection Ag in BS subsets Gg(a) is ambiguous.

It is not an obstacle to find the BS with minimal LSL, since determination of the optimal sequence
(A1, Ay, ..., Aj_1) allows receiving at least one binary sequence from (5), (6). The next step involves
identifying of all BSs, which belong to the found class, with using operators C, R, Q.

It follows from the above that in order to solve the problem of finding optimal BS through opti-
mization in the sequence space (A1, Ao, ..., Aj_1) it is necessary to have a function of interconnection
of LSL Ay, As, ..., A;_1. Therefore, the determinant component of the proposed method is obtaining
these functions from (5), (6).

It should be noted that the variant for working out the problem by setting all possible values Ay
in system (5), (6) and the following solving of the equations (with assessment of compatibility this
system) is inefficient. It follows from the number of options for searching the LSL Aj with odd k,

which is equal to the product of 1-3-5-...-(l — 1) and exceeds the number of search options 923 in
known FSA for skew-symmetrical binary sequences.
Hence, the interconnection functions of LSL Ay, Ao, ..., A;_1 determine the conditions for limiting

search for subsets for each Aj levels of side lobes.

4. Interdependencies and structures of sets for levels of side lobes of binary sequences
aperiodic autocorrelation functions

For further transformations, the system (5), (6) is presented, taking into account the properties of the
elements of skew-symmetrical BS, as follows
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(A =1,
—aijas = 0.5 (Ag — 1) s
—ayas + asag = 0.5 (A5 + 1) ,
—aja7 + asag — azas = 0.5 (A7 - 1) ,

It is necessary to obtain from (8) the following: functional dependencies between values Ay k €
[1;3;5;...;1 — 2], expressions that would determine the structure of sets of valid values, number of
independent variables Ay in the specified functional dependences, quantity of options of search in
space LSL AACF, relationships between parameters of symmetric classes of skew-symmetrical BS and
quantity of AACF, which are determined from the obtained functional dependencies.

Representation (8) of system (5), (6) contains only equations with odd values k, because as a
result of conditions (3), (4) all Ay with even k equal to zero. The left parts of each of the equations
contain products a;a;; further transformations of these equations are performed using these products
as functions of Ay.

Together with the conditions (1), (3), (4), the following procedures are applied with using several
properties of products a;a; from (8): the sum of an odd number of items (each item equals to 1 in
absolute value) is an odd number; from the expression

aij“‘apn:pr |(Ii(lj|:|(lpan|:1; i7j7p7n6[1727"'7k]; 2#37 p#na

follows the next: at B, # 0 — a;a; = 0.5B,; apa, = 0.5B),; at B, = 0 — a;a; = —a,ay,.

Conditions (3), (4) define the structure of a; = —a;; ag = a;—1, which causes the presence in the
BS of two outside elements of the same sign and, on the opposite side of the BS, two outside elements
with different signs. This circumstance allows assuming that a; = as without reducing the generality
of reasoning.

Further transformations are performed sequentially for equations with Ag; k € [1,3,...,0.5] + 3]
and at each step intermediate expressions are defined for a;a;, (as functions from Ay, to substitute them
into the following equations) and the structure of subsets of valid values Ai. The indicated remaining
0.25(1 — 7) equations, after substitution in them As, As, Ag5(1-1), form 0.25(1 — 7) objective functions
in which A3, A5, Ay 5(43) they are independent variables, and Ay; k € [0.5(1 +7),...,] — 2] are param-
eters of the AACF LSL, depending on the indicated variables. In general, 0.25(1 4+ 5) equations from
(8) are sequentially involved in these transformations in ascending order of their odd numbers from 1
to 0.5(1 + 3), since these equations contain all a;, a; € [1,2,...,1].

The products a;aj, that are defined in this way and functions from them are substituted in the
rest of 0.25(1 — 7) equations with odd & from 0.5(1 + 7) to [ — 2. The given algorithm gives 0.25(1 — 7)
functional dependencies 0.25(1 — 7) with odd numbers from 0.5( + 7) to [ — 2. Independent variables
in the aforesaid functional dependences are Ay with odd numbers from 3 to 0.5(I —1). Number of
independent variables A does not exceed 0.25(1 + 1), and therefore the number of search options does
not exceed 20-25(+1) When entering an additional upper limit v/ for LSL Ay, k € [3;5;...;0.5(1 — 1)]
this number is reduced by at least 33%. Evaluation of effectiveness ¢ of proposed method satisfies the
condition 0('); 1 < ¢ < 1.41.

Part 5 provides a detailed description of the method and algorithm with example for the binary
sequence with [=11.

Mathematical Modeling and Computing, Vol.7, No.2, pp.410-419 (2020)



Optimal search for binary skew-symmetric sequences with minimal levels of side lobes 415

5. An example of the application of the method and algorithm for finding the optimal
binary sequences

An example of the application of the method and algorithm for finding the optimal BS in the set AACF
for [ = 11.
1. The initial system of equations taking into account the conditions (5), (6)

Ar=-1; a1 =ay, 9)

—ajaz = 0.5(A3 — 1), (10)

—ajas + agay = 0.5(A5 + 1), (11)

ajas + agag — azas = 0.5(A7 — 1), (12)
ayas + azayq + asas + agag = 0.5(Ag + 1), (13)

2. Analysis of transformation of the equations,

2.1. Equation (10). For further substitutions used ajag = —0.5(A3 — 1), and determining the set
of valid values of LSL Aj is carried out on the basis of the condition |—0.5(As — 1)| = 1. The solution
gives Az € {—1;3}; A3 # 1. The result:

As € |-1;3]; ajaz = —0.5(A3 —1). (14)

2.2. Equation (11). There are two options for the right part:

2.2.1. A5 = —1; as = a4

2.2.2. A5 +1#£0; asay = 025(A5 + 1); aijas = —025(A5 + 1)

The search for a set of values Aj is carried out on the basis of the condition [0.25(45 + 1)| = 1,
and the solution is the set A5 € {—5;3}. Note: a subset of values can be expanded as a result of
consideration of the equations from s. 2.4 and taking into account (sub-s. 2.2.1). Result:

As € {=5;3};  asag =0.25(A5 +1); ajas = —0.25(A5 + 1). (15)

2.3. Equation (12). The number of items in the left part is odd, therefore A7 # 1. The item asas
is represented as a product

asas = (alag) (CL16L5) =—0.5 (Ag - 1) [—0, 25 (A5 + 1)] =0.125 (Ag — 1) (A5 + 1) .
Next equation (12) is presented in the next form: asag = 0.5(A7 — 1) +0.125(A43 + 1)(As + 1). Set of
values A7 is determined by the condition: 0.5(A7 — 1) + 0.125(As + 1)(As + 1) = £1. Expression for
LSL A7, as a function of LSL Ag and Ajs is written as follows:

Ay = ( o ) —0.25(As + 1)(A5 + 1), (16)

Since (16) shows that A7 is not an independent variable in AACF,
the number of options for values A3, As, A7 is equal to the number of  Table 1. Possible combina-

variants for values As, As. Possible combinations of values Az, As, A7 tions of values Az, As, A7.
are indicated in Table 1. As | As A
The obtained result: 11 =51 3T7T=1
1] 3] 3| 1
agag = 0.5(A7 — 1) + 0.125(As + 1)(A5 + 1) (17) 3 5 = 3
3 3 | —1| -5

Ay = < - > 0.25(A3 + 1)(As + 1).
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2.4. Equation (13).
2.4.1. We will make replacements using the above expressions (14), (15), (16), (17) obtained above

—0.5(A3 — 1) 4+ 0.25(A45 + 1) + 0.125(A3 — 1)(A5 + 1)
+0.25(A5 + 1)[0.5(A7 — 1) + 0.125(As + 1)(A5 + 1)].
The result of these substitutions will be two pairs of equations:

—0.5(A3 — 1) +0.25 (A5 + 1) +0.125 (A3 — 1) (A5 + 1) + 0.25 (A5 + 1) = 0.5 (Ag + 1),
A7 =3—0.25 (A5 + 1) (A5 + 1),

—0.5(A3 — 1)+ 0.25 (A5 + 1) + 0.125 (A3 — 1) (A5 + 1) = 0.5 (Ag + 1) ,
A7 = —1-0.25(As+1) (45 + 1).

A series of elementary transformations leads these expressions to the next form

{ Ag = 0.25 (A3 +3) (A5 + 1) — As, (18)

A7 =3-0.25(A3+1) (A5 +1),

{ Ag =0.25 (A3 +3) (A5 + 1) — As, (19)
A7 =3-0.25(A3+1) (A5 +1).

Table 2. Possible combinations of values Expressions (18), (19) and subsets of values As, As,
As, As, Az, Ag (at As # 0). A7, Ag show that in the system of equations (8) there are
T A T AT A T4 two independent variables Az, As; subsets of values As,
3 5 7 9 7 9 As, defined by the first three equations from (8); expres-
—1] -5 Ol Mt Ml sions for substitution in the equation with Ag defined in
-1 3 3 3 || -1 1 .
the first five equations of (8).
3 | =5 19 3 |7 The total number of AACF obtained from (18), (19)
3 3 “1]3]-5]1 and subsets of independent variables Ag, As is equal to
“independent variables (within defined subsets) As, 8. Each of these AACF sets four allomorphic BSs, so the
As in the aperiodic autocorrelation function. total number of BSs from (18), (19) is equal to 32.
Substituting in (8) the numerical values of the found LSL AACF gives a solution in the form of
BS, which is included in one of the classes of symmetry of the set of skew-symmetric BS. The other
three BSs of this class are obtained by applying allomorphic operators to the found BS.
2.4.2. Equations (12) and (13). With condition sub-s. 2.2.1, ajas + asag — agzas = 0.5 (A7 — 1);
A7 # 1 and considering (1), (14), an equation (12) is presented in the form:

aias [0.5 (Ag + 1) + a4a6] =0.5 (A7 — 1) .

Application of properties |ajas| = 1, |asag| = 1 and a series of transformations gives a subset of
expressions A7 through As: A; = A3 +4; A7 = Ag; A= —A3 —2; Ay = —A3+ 2.

Considering appropriate conditions to obtain expressions for A7, the expressions and values for
ajas, agay, asas, asag are substituted in (13) and groups of formulas for calculating of LSL A7, Ag are
derived as functions from Ag, As.

Ag = —2A3 + 5, Ag = —1, Ag = —2A3+1, Ag = =3,
A7 = A3 +- 4, A7 = A3 — 2, A7 = As, A7 = —-A3+2, (20)
As = —1, As = —1, As = —1, As = —1.

Since A3 € {—1;3}, then each of the resulting expression systems for As, A7, Ag gives two variants
of AACF. In total, these are 8 variants of AACF, which are classes of symmetry of skew-symmetrical
BS and are shown in Table 3. Together with the AACF, that are described in sub-s. 2.4.1., we obtain
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16 such classes. Each of these classes generates four skew-symmetric binary sequences from system (8).
Their total number is 64. This value coincides with the estimation of the number of skew-symmetrical
BSs that are given in Part 2: 26 = 64. This fact confirms that the proposed method and algorithm give
the full set of possible values of skew-symmetric BSs and, accordingly, provide a comprehensive search
for optimal skew-symmetric BSs. In addition, an important advantage of the proposed method is the
possibility for screening and eliminating of unacceptable values at each successive step Ay, for example,
using the criterion A; < V1. It allows significantly reducing the number of search options (in general,
the degree of this decreasing is determined by the value of the upper limit Appit — Ax < Alimit)-

Table 3. Possible combinations of values As, As, A7, Ag (at A5 = 0).
Az" | As™ || A7 | Ao || A7 | Ao || A7 | Ag || A7 | Ag
-1 -1 3 7 -1]-1-11] 3 3 | -3

3 -1 7| -1 =5 -1 3 | -5 -1|-3

*independent variables (within defined subsets) Az, As.

The search for BSs is as follows (an example is given for one of the eight variants of AACF). A3 = 3;
As;=—1; A; =3; Ag = -5
—ajagz = 1,
—ajas + asaqg = 0,
ayas + azag — azas = 1,
aiasz + asay + agas + agag = —2.

Solving the above system gives one BS from which three more BSs of the found symmetry class are
formed according to Fig. 2.

a1 a2 as a4 as a6 ar asg ag ai0 a1

++_++I_+++_
| ¢ |

-~ T -1+ —|—|%|+|— I
| R

N —|+|%|—|— I I
| c_ |

e e e B B e s

Fig. 2. Formation of binary sequences with aperiodic autocorrelation function.

6. Conclusion

In the paper, there are introduced the method and the algorithm to perform the full search for the
optimal binary skew-symmetric sequences with odd dimension [ using a criterion of minimum side
lobes of the aperiodic autocorrelation function. The proposed method is based on performing two
consecutive operations: optimizing in the space of dimension L < 0.5(1 — 5) of the objective functions
with respect to the levels of side lobes of the aperiodic autocorrelation function; solving of the equation
system, which specifies the aperiodic autocorrelation function. The right sides of the equation system
present the levels of the side lobes that are obtained as the result of completing the first operation.
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The advantage of the proposed method and algorithm is the possibility of further reducing the
dimension 0.5(] — 5) search space by limiting the upper limit of the levels of side lobes of the aperiodic
autocorrelation function with value v/1.

The suggested methodology is formed on the results of the analysis of the structure of sets of binary
sequences; finding correlations between the structure components using the methods of group theory;
establishing analytical forms that define the functional relationships between the levels of side lobes
of aperiodic autocorrelation function. The article presents an example of application and results of
modeling of the proposed algorithm to identify the optimal binary sequences.
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OnTumanbHNn NOWYK ABINKOBUX KOCOCUMETPUYHUX NOCAiIL0BHOCTER
3 MIHIMAZIbHUMU PIBHAMU BIYHUX NENOCTKIB

Micbkis B.-M. B.1, IIpyanycI. H.!, ®a6iposcoknii C. €.1, IMamyx FO. M.?

! Haugonanvruti ynisepcumem “JIvsiecvra noaimexrnixa”,
eyn. C. Bandepu, 12, 79013, Jlveis, Yxpaina
2 Hayionaavha axademis cyronymnur eiticox imeni 2emovmana Ilempa Cazatidaumozo,
eyn. Tepois Matdany, 32, 79012, Jlveis, Vkpaina

CHUrHaabHO-KOIOBI KOHCTPYKINI 3 MOIYJAIIHHAMA JBIHKOBUMHI ITOC/IIIOBHOCTSIMH IITHAPO-
KO 3aCTOCOBYETHCsI B OaraTOKaHAJbHAX PAIOCHCTEMAaX 3B’S3KYy, PaIiOIOKaIlii Ta iHImmX
cucreMax iHdopmaliiinoro HanpsMky. Cepell 3a3HaYeHUX [TOCJIIJOBHOCTENH 0CODJIMBO BUIi-
JIAIOTHCS Ti, fKi 320e3MevyioTh MiHIMaJIbHI PiBHI OIYHUX IEJIIOCTKIB alepioinvHOl aBTO-
KOpeJIAiiHOT (DYHKINT i, BiAMOBIIHO, HEOOXITHY CKPUTHICTD, 3aBaJOCTIfKICTh, PO3ALIBHY
3/IATHICTHh Ta HU3KY IHINX BaXX/IUBUX HapaMeTpiB. Y Iiii poOOTI pO3TJISIA€ThCS 3aa49a,
[TOBHOTO TIONIYKY ONTHUMAJIBHOI, 33 KPUTEPIEM MiHIMyMy OIYHUX IEJIOCTKIB, amepioananol
ABTOKOPEJISAIINHOT (PYHKIT ABIHKOBUX KOCOCUMETPUYHUX ITOC/IIOBHOCTEH HEMapHOI po3-
mipaocTi [. [locTaBeny 3aja4dy po3B’si3aHO Ha, OCHOBI aJIBTEPHATUBHOTO MiJIXO/Iy Ta METO-
Jy, CYTh SIKOT'O TIOJISATAE Y TTPOBEJIEHH] JIBOX MTOCJIIOBHUX OIIEPAITiii: OIITUMI3aIll B IIpOCTOPi
posmipuocti L < 0.5(1 — 5) niiboBux QyHKIIH Bij piBHIB GIYHUX IIEIIOCTKIB aepioquaHol
ABTOKOPEJIAIIIHOT QYHKIIT Ta PO3B’si3yBAHHS CUCTEMU PIBHSHbB, sIKa 33/1a€ 3a3HAYCHY alle-
pioauuny aBToKopedriiiny dyukio. [Ipn mboMy mpaBuMU YacTHHAMHI CHCTEMU PIBHIHD
€ piBHI OIYHUX IIEJIFOCTKIB, 3HaileH] 38 Pe3y/IbTaTOM BUKOHAHHS IIEPIIO] omepariii. 3acau,
K1 MOKJIaJIEHI B OCHOBY 3aIIPOIIOHOBAHOI'O METOJLY: aHAJI3 CTPYKTYPH MHOXKWH JIBIHKOBUX
MIOCJTI/TOBHOCTEH; BU3HAYUEHHS CITIBBIHOIIEHb MiXK CKJIQJIOBUMU YaCTHHAMHU CTPYKTYPH 31
3aCTOCYBaHHSM METOJIB TE€OPil I'PYIr; aHAJITUYIHI BUPa3H, SKi BU3HAYAIOTH (PYyHKIIOHAJIbHI
B3a€MO3B SI3KM MiXK DIBHSIMU OIYHUX IEFOCTKIB arepionaHOT aBTOKOPEISIHHHOT (DYHKIIT.
Hageneno npukia 3acTOCYBaHHS Ta PE3YJIbTATUA MOJIEIIOBAHHS 3aIIPOIIOHOBAHOIO AJIIO-
PUATMY HOIIYKY ONTUMAJIBbHUX JABINKOBUX IIOCJIiIOBHOCTEII.

Knrouosi cnosa: dsitikosa nocaidoshicms, anepiodusna a8mokopessuiting Gynrkuia, pie-
HI OTYHUT NEAIOCTNKIG, MOSHULT NOWYK, 3a6a00CcmitlKi padiocucmemu.
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