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Présidence de l’Université Mohammed Premier, BV Mohammed VI B.P. 524, Oujda 60000, Morroco

(Received 4 July 2020; Accepted 3 October 2020)
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theory and some new inequalities, we study the higher-order p-Laplacian differential equa-
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(ϕp(x
(m)(t)))(m) = f(x(t))x′(t) + g(t, x(t), x(t − τ1(t)), . . . , x(t− τk(t))) + e(t).

Some new results on the existence of periodic solutions for the previous equation are
obtained.
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1. Introduction

The periodic solution problem for p-Laplacian differential equation has extensively studied by many
researchers, we refer the reader to see papers [1–3] and the references cited therein.

Recently, the higher-order p-Laplacian differential equations have received more and more atten-
tion, which are derived from many fields, such as fluid mechanics and nonlinear elastic mechanics.
However, as far as we know, work on the existence of periodic solutions for higher-order p-Laplacian
differential equations has been partially discussed [4, 5]. For instance, Li [5] has studied the existence
and uniqueness of periodic solutions for a kind of higher-order p-Laplacian differential equation of the
following form:

(ϕp(x
(m)(t)))(m) + β(t))x′(t) + g(t, x(t)) = e(t).

In this paper, inspired by the results presented in [1, 4, 5], we study the existence of periodic solution
for the following higher-order p-Laplacian differential equation with multiple deviating arguments of
the form:

(ϕp(x
(m)(t)))(m) = f(x(t))x′(t) + g(t, x(t), x(t − τ1(t)), . . . , x(t− τk(t))) + e(t). (1)

Where p > 1 is a fixed real number. The conjugate exponent of p is denoted by q, i.e. 1
p
+ 1

q
= 1. Let

ϕp : R → R be the mapping defined by ϕp(s) = |s|p−2s for s 6= 0, and ϕp(0) = 0, f, e,∈ C(R,R) are
continuous T -periodic functions defined on R and T > 0, g ∈ C(Rk+2,R) and g(t+T, u0, u1, . . . , uk) =
g(t, u0, u1, . . . , uk),∀(t, u0, u1, . . . , uk) ∈ R

k+2, τi ∈ C1(R,R) (i = 1, 2, . . . , k) with τi(t + T ) = τi(t).
Therefore, in this paper, based on the Mawhin’s continuation theorem and some analysis skills, without
the assumption of

∫ T

0 e(t)dt = 0, some new sufficient conditions for the existence of T -periodic solution
of p-Laplacian equation (1) will be established.
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2. Preliminaries

Before stating the results, some necessary Lemmas are introduced.

Lemma 1 (Ref. [4]). Let T > 0 be constant, x ∈ Cm(R,R), m > 2 and x(t + T ) = x(t), |x(i)|0 =
max
t∈[0,T ]

|x(i)(t)|, then there are Mi(m) > 0 independent of x such that

|x(i)|0 6 Mi(m)

∫ T

0
|x(m)(t)|dt, i = 1, 2, . . . ,m− 1 (2)

where, if m is an even integer

Mi(m) =



































M2s−1(m) = Tm−2s

√

−B2m−4s

12(2m − 4s)!
, s = 1, 2, . . . ,

m

2
− 1;

M2s(m) =
(−1)

m−2s
2

+1Tm−2s−1Bm−2s

(m− 2s)!
, s = 1, 2, . . . ,

m

2
− 1;

Mm−1(m) =
1

2
,

(3)

if m is an odd integer

Mi(m) =



































M2s+1(m) =
(−1)

m−2s−1

2
+1Tm−2s−2Bm−2s−1

(m− 2s − 1)!
, s = 1, 2, . . . ,

m+ 1

2
− 2;

M2s(m) = Tm−2s−1

√

−B2m−4s−2

12(2m − 4s− 2)!
, s = 1, 2, . . . ,

m+ 1

2
− 2;

Mm−1(m) =
1

2

(4)

and Bm−2s, B2m−4s, Bm−2s−1, B2m−4s−2 are Bernoulli numbers, which can be calculed using the

following recursion formula: B0 = 1, Bp =
−
∑p−1

i=0
Ci

p+1
Bi

p+1 , where Ci
p+1 is the combination number.

Lemma 2. Let r > 0, T > 0 be two constants, s ∈ C(R,R) such that s(t+ T ) = s(t), τi ∈ C1(R,R)
with τi(t+ T ) = τi(t) and |τ ′i |0 < 1. Then

∫ T

0
|s(t− τi(t)|

rdt 6 δi

∫ T

0
|s(t)|rdt,

where δi =
1

1−|τ ′i |0
, |τ ′i |0 = max

t∈[0,T ]
|τ ′i(t)|.

Proof. It is easy to see that

∫ T

0
|s(t− τi(t))|

rdt =

∫ T

0
|s(t− τi(t))|

rd(t− τi(t)) +

∫ T

0
τ ′i(t)|s(t− τi(t))|

rdt,

i.e.

(1− |τ ′i |0)

∫ T

0
|s(t− τi(t))|

rdt 6

∫ T

0
|s(t)|rdt

and thus
∫ T

0
|s(t− τi(t)|

rdt 6
1

1− |τ ′i |0

∫ T

0
|s(t)|rdt.

This completes the proof. �
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Lemma 3 (Borsuk [6]). Ω ⊂ R
n is an open bounded set, and symmetric with respect to 0 ∈ Ω. If

f ∈ C(Ω,Rn) and f(x) 6= µf(−x), ∀x ∈ ∂Ω, ∀µ ∈ [0, 1], then deg(f,Ω, 0) is an odd number.

Now, we recall Mawhin’s continuation theorem which our study is based upon.
Let X and Y be real Banach spaces and L : D(L) ⊂ X → Y be a Fredholm operator with index

zero. Here D(L) denotes the domain of L. This means that ImL is closed in Y and dimKerL =
dim(Y/ImL) < +∞. Consider the supplementary subspaces X1 and Y1 and such that X = KerL⊕X1

and Y = ImL ⊕ Y1 and let P : X → KerL and Q : Y → Y1 be natural projections. Clearly, KerL ∩
(D(L) ∩ X1) = {0}, thus the restriction Lp := L|D(L)∩X1

is invertible. Denote the inverse of Lp by

K. Now, let Ω be an open bounded subset of X with D(L) ∩ Ω 6= ∅, a map N : Ω → Y is said to be
L-compact on Ω. If QN(Ω) is bounded and the operator K(I −Q)N : Ω → Y is compact.

Lemma 4 (Mawhin [7]). Suppose that X and Y are two Banach spaces, and L : D(L) ⊂ X → Y is
a Fredholm operator with index zero. Furthemore, Ω ⊂ X is an open bounded set, and N : Ω → Y is
L-compact on Ω. If all of the following conditions hold:

(1) Lx 6= λNx, ∀x ∈ ∂Ω ∩D(L), λ ∈]0, 1[;
(2) Nx 6∈ ImL, ∀x ∈ ∂Ω ∩KerL; and
(3) deg{JQN,Ω ∩KerL, 0} 6= 0, where J : ImQ → KerL is an isomorphism.

Then the equation Lx = Nx has at least one solution on Ω ∩D(L).

In order to use Mawhin’s continuation theorem to study the existence of T -periodic solution for (1),
we rewrite (1) in the following system

{

x
(m)
1 (t) = ϕq(x2)(t) = |x2(t)|

q−2x2(t),

x
(m)
2 (t) = f(x1(t))x

′
1(t) + g(t, x1(t), x1(t− τ1(t)), . . . , x1(t− τk(t))) + e(t).

(5)

Where q > 1 is constant with 1
p
+ 1

q
= 1. Clearly, if x(t) = (x1(t), x2(t))

T is a T -periodic solution to
equation set (5), then x1(t) must be a T -periodic solution to equation (1). Thus, in order to prove
that (1) has a T -periodic solution, it suffices to show that equation set (5) has a T -periodic solution.

Now, we set CT = {x ∈ C(R,R) : x(t + T ) = x(t)} with the norm |x|0 = max
t∈[0,T ]

|x(t)|, C1
T =

{x ∈ C1(R,R) : x(t + T ) = x(t)} with the norm ‖x‖ = max{|x|0, |x
′|0} X = {x = (x1(t), x2(t))

⊤ ∈
C1(R,R2) : x(t + T ) = x(t)} with the norm ‖x‖X = max{‖x1‖, ‖x2‖}, Y = {x = (x1(t), x2(t))

⊤ ∈
C(R,R2) : x(t + T ) = x(t)} with the norm ‖x‖Y = max{|x1|0, |x2|0}. Obviously, X and Y are two
Banach spaces. Meanwhile, let

L : D(L) ⊂ X → Y, Lx = x(m) =

(

x
(m)
1

x
(m)
2

)

. (6)

N : X → Y,

[Nx](t) =

(

ϕq(x2)(t)
f(x1(t))x

′
1(t) + g(t, x1(t), x1(t− τ1(t)), . . . , x1(t− τk(t))) + e(t)

)

. (7)

where D(L) = {x = (x1(t), x2(t))
⊤ ∈ Cm(R,R2) : x(t + T ) = x(t)} It is easy to see that equation

set (5) can be converted to the abstract equation Lx = Nx. Moreover, from the definition of L, we see

that KerL = R
2, ImL = {y : y ∈ Y,

∫ T

0 y(s)ds = 0}. So L is a Fredholm operator with index zero.
Let projections P : X → KerL and Q : Y → ImQ be defined by

Px = x(0), Qy =
1

T

∫ T

0
y(s)ds,
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and let K represent the inverse of L|KerP∩D(L). Clearly, KerL = ImQ = R
2 and

[Ky](t) =
m−1
∑

i=1

1

i!
x(i)(0)ti +

1

(m− 1)!

∫ t

0
(t− s)m−1y(s)ds, (8)

where x(i)(0) (i = 1, 2, . . . ,m− 1) are defined by the equation AX = D,

A =



















1 0 0 · · · 0 0
c1 1 0 · · · 0 0
c2 c1 1 · · · 0 0
...

...
...

. . .
...

...
cm−3 cm−4 cm−5 · · · 1 0
cm−2 cm−3 cm−4 · · · c1 1



















,

X =
(

x(m−1)(0), x(m−2)(0), · · · , x′′(0), x′(0)
)⊤

,

D =
(

d1, d2, · · · , dm−2, dm−1

)⊤
,

di = −
1

i!T

∫ T

0
(T − s)iy(s)ds i = 1, 2, · · · ,m− 1 and cj =

T j

(j + 1)!
j = 1, 2, · · · ,m− 2.

From (7) and (8), it is not difficult to find that N is L-compact on Ω, where Ω is an arbitrary open
bounded subset of X. For the sake of convenience, we list the following assumptions which will be
used by us in studing the existence of T -periodic solution to the equation (1)

[H1] There is a constant d > 0 such that:
(1) g(t, u0, u1, . . . , uk) > |e|0,∀(t, u0, u1, . . . , uk) ∈ [0, T ]× R

k+1 with ui > d (i = 0, 1, . . . , k).
(2) g(t, u0, u1, . . . , uk) < −|e|0,∀(t, u0, u1, . . . , uk) ∈ [0, T ]× R

k+1 with ui < −d (i = 0, 1, . . . , k).
[H2] |g(t, u0, u1, . . . , uk)| 6

∑k
i=0 αi|ui|

p−1 + β, where αi (i = 0, . . . , k), β are non-negative constants.

3. Main results

Lemma 5. Suppose that [H1] holds, if x ∈ D(L) is an arbitrary solution of the equation Lx =
λNx, λ ∈]0, 1[, where L and N are defined by (6) and (7), respectively, then there must be a point
t∗ ∈ [0, T ] such that

|x1(t
∗)| 6 d. (9)

Proof. Suppose x ∈ D(L) is an arbitrary solution of the equation Lx = λNx, for some λ ∈]0, 1[ then

{

x
(m)
1 (t) = λϕq(x2)(t) = λ|x2(t)|

q−2x2(t),

x
(m)
2 (t) = λf(x1(t))x

′
1(t) + λg(t, x1(t), x1(t− τ1(t)), . . . , x1(t− τk(t))) + λe(t).

(10)

From the first equation of (10), we have x2(t) = ϕp

(

1
λ
x
(m)
1

)

(t), and then by substituting it into the

second equation of (10), we have

(ϕp(x
(m)
1 (t)))(m) = λpf(x1(t))x

′
1(t) + λpg(t, x1(t), x1(t− τ1(t)), . . . , x1(t− τk(t))) + λpe(t). (11)

Integrating both sides of equation (11) on the interval [0, T ], we have

∫ T

0
g(t, x1(t), x1(t− τ1(t)), . . . , x1(t− τk(t))) +

∫ T

0
e(t) = 0.
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By the integral mean value theorem, there is a constant t0 ∈ [0, T ] such that

g(t, x1(t0), x1(t0 − τ1(t0)), . . . , x1(t0 − τk(t0))) = −
1

T

∫ T

0
e(t)dt. (12)

If |x1(t0)| 6 d, then taking t∗ = t0 such that |x1(t
∗)| 6 d. If|x1(t0)| > d. It follows from assumption [H1]

that there is some i ∈ {1, 2, . . . , k} such that |x1(t0−τi(t0))| 6 d. Since x1(t) is continuous for t ∈ R and
x1(t+ T ) = x1(t), so there must be an integer r and a point t∗ ∈ [0, T ] such that t0 − τi(t0) = rT + t∗.
So |x1(t

∗)| = |x1(t0 − τi(t0))| 6 d. �

Theorem 6. Suppose |τ ′i |0 < 1, (i = 0, 1 · · · , k) and assumption [H1], [H2] hold. Then equation (1)

has at one least one T -periodic solution, if (α0 +
∑k

i=1 αiδi)
1

pT 2M1(m) < 1, where M1(m) and δi are
defined in Lemma 1, Lemma 2.

Proof. Let Ω1 = {x ∈ X : Lx = λNx, λ ∈]0, 1[} if x(.) = (x1(.), x2(.))
⊤ ∈ Ω1, then from (6) and (7),

we have
{

x
(m)
1 (t) = λϕq(x2)(t) = λ|x2(t)|

q−2x2(t),

x
(m)
2 (t) = λf(x1(t))x

′
1(t) + λg(t, x1(t), x1(t− τ1(t)), . . . , x1(t− τk(t))) + λe(t).

(13)

From Lemma 5, we have

|x1(t)| =

∣

∣

∣

∣

x1(t
∗) +

∫ t

t∗
x′1(s)ds

∣

∣

∣

∣

6 d+

∫ t

t∗
|x′1(s)|ds, t ∈ [t∗, t∗ + T ],

and

|x1(t)| = |x1(t− T )| =

∣

∣

∣

∣

∣

x(t∗)−

∫ t∗

t−T

x′1(s)ds

∣

∣

∣

∣

∣

6 d+

∫ t∗

t∗−T

|x′1(s)|ds, t ∈ [t∗, t∗ + T ].

Combining the above two inequalities, we obtain

|x1|0 = max
t∈[0,T ]

|x1(t)| = max
t∈[t∗,t∗+T ]

|x1(t)| 6 max
t∈[t∗,t∗+T ]

{

d+
1

2

(

∫ t

t∗
|x′1(s)|ds +

∫ t∗

t−T

|x′1(s)|ds

)}

6 d+
1

2

∫ T

0
|x′1(s)|ds.

(14)

On the hand, multiplying both sides of (11) by x1(t) and integrating it from 0 to T , we obtain

∫ T

0
(ϕp(x

(m)
1 (t)))(m)x1(t)dt = λp

∫ T

0
f(x1(t))x

′
1(t)x1(t)dt

+ λp

∫ T

0
g(t, x1(t), x1(t− τ1(t)), . . . , x1(t− τk(t)))x1(t)dt+ λp

∫ T

0
e(t)x1(t)dt. (15)

Case 1. If m is even, we obtain

∫ T

0
(ϕp(x

(m)
1 (t)))(m)x1(t)dt = (−1)m

∫ T

0
|x

(m)
1 (t)|pdt =

∫ T

0
|x

(m)
1 (t)|pdt.

Hence

∫ T

0
|x

(m)
1 (t)|pdt = λp

∫ T

0
f(x1(t))x

′
1(t)x1(t)dt

+ λp

∫ T

0
g(t, x1(t), x1(t− τ1(t)), . . . , x1(t− τk(t)))x1(t)dt+ λp

∫ T

0
e(t)x1(t)dt.

(16)
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In view of assumption [H2], Lemma 2 and (16), we have

∫ T

0
|x

(m)
1 (t)|pdt 6

(

α0 +
k
∑

i=1

αiδi

)

T |x1|
p
0 + (β + |e|0)T |x1|0

i.e.
(
∫ T

0
|x

(m)
1 (t)|pdt

)

1

p

6 T
1

p

(

α0 +

k
∑

i=1

αiδi

)

1

p

|x1|0 + T
1

p (β + |e|0)
1

p |x1|
1

p

0 ,

which together with (14), yields

(
∫ T

0
|x

(m)
1 (t)|pdt

)

1

p

6
T

1

p
+1

2

(

α0 +
k
∑

i=1

αiδi

)

1

p

|x′1|0 +

(

T 2

2

)
1

p

(β + |e|0)
1

p |x′1|
1

p

0

+ T
1

pd

(

α0 +

k
∑

i=1

αiδi

)

1

p

+ T
1

pd
1

p (β + |e|0)
1

p .

(17)

From Lemma 1, there exists M1(m) > 0 independent of λ and x such that

|x′1|0 6 M1(m)

∫ T

0
|x

(m)
1 (t)|dt,

which together with (17) yields

(∫ T

0
|x

(m)
1 (t)|pdt

)

1

p

6
T 2

2
M1(m)

(

α0 +

k
∑

i=1

αiδi

)

1

p (∫ T

0
|x

(m)
1 (t)|pdt

)

1

p

+

(

T
2

p
+ 1

pq

2
1

p

)

M1(m)
1

p (β + |e|0)
1

p

(
∫ T

0
|x

(m)
1 (t)|pdt

)

1

p2

+ T
1

pd

(

α0 +
k
∑

i=1

αiδi

)

1

p

+ T
1

pd
1

p (β + |e|0)
1

p . (18)

In view of p > 1 and T 2

2 M1(m)(α0 +
∑k

i=1 αiδi)
1

p < 1, from (18) we see that there is a constant M0

independent of λ such that
(
∫ T

0
|x

(m)
1 (t)|pdt

)

1

p

6 M0. (19)

Thus, it follows from Lemma 1 and (19) that we have

|x′1|0 6 M1(m)

∫ T

0
|x

(m)
1 (t)|dt 6 M1(m)T

1

qM0 := M11. (20)

By means of (14) and (20), we have

|x1|0 6 d+ TM11 := M12. (21)
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Let Mf = max
|u|6M12

|f(u)|, Mg = max
t∈[0,T ],|u0|6M12,...,|uk|6M12

|g(t, u0, . . . , uk)| and from the second equation

of (13), we have

∫ T

0
|x

(m)
2 (t)|dt 6

∫ T

0
|f(x1(t))x

′
1(t)|dt+

∫ T

0
|g(t, x1(t), x1(t− τ1(t)), . . . , x1(t− τk(t)))|dt +

∫ T

0
|e(t)|

6 Mf

∫ T

0
|x′1(t)|dt+ T (Mg + |e|0)

6 MfT |x
′
1|0 + T (Mg + |e|0)

6 MfTM11 + T (Mg + |e|0) := M0. (22)

Again, from Lemma 1, we have

|x′2|0 6 M1(m)

∫ T

0
|x

(m)
2 (t)|dt 6 M1(m)M21 := M21.

Integrating the first equation of (13), we have
∫ T

0 |x2(t)|
q−2x2(t)dt = 0, which implies that there is a

constant η ∈ [0, T ] such that x2(η) = 0, thus

|x2|0 6

∫ T

0
|x′2(t)|dt 6 TM21 := M22. (23)

Let Ω2 = {x|x ∈ KerL,QNx = 0} if x ∈ Ω2 then x ∈ R
2 is a constant vector with







|x2|
q−2x2 = 0,

1

T

∫ T

0
[f(x1(t))x

′
1(t) + g(t, x1(t), x1(t− τ1(t)), ..., x1(t− τk(t))) + e(t)]dt = 0.

(24)

According to the first formula of (24), we have x2 = 0, which together with the second equation of
(24) yields

1

T

∫ T

0
[g(t, x1, x1, . . . , x1) + e(t)]dt = 0.

In view of [H1], we see that |x1| 6 d. Now, let M1 = max{M11,M12}, M2 = max{M21,M22}, then
‖x1‖ 6 M1, ‖x2‖ 6 M2. Taking Ω = {x|x = (x1, x2)

⊤ ∈ X, ‖x1‖ < M1 + d, ‖x2‖ < M2 + d}, then
Ω1 ∪ Ω2 ⊂ Ω. So from (21) and (23), it is easy to see that conditions (1) and (2) of Lemma 4 are
satisfied.

Next, we verify the condition (3) of Lemma 4. To do this, we define the isomorphism

J : ImQ → KerL, J(x1, x2)
T = (x1, x2)

⊤,

then

JQN(x) =

(

ϕq(x2)
1
T

∫ T

0 [g(t, x1, x1, . . . , x1) + e(t)]dt

)

, x ∈ KerL ∩ Ω.

By Lemma 3, we need to prove that

JQN(x) 6= µ(JQN(−x)), ∀x ∈ ∂Ω ∩KerL, µ ∈ [0, 1],

Case 1. If x = (x1, x2)
⊤ ∈ ∂Ω ∩KerL\{(M1 + d, 0)⊤, (−M1 − d, 0)⊤}, then x2 6= 0 which, gives us

ϕq(x2) 6= 0
ϕq(x2)ϕq(−x2) < 0,

obviously, ∀µ ∈ [0, 1] JQN(x) 6= µ(JQN(−x)).
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Case 2. If x = (M1 + d, 0)⊤ or x = (−M1 − d, 0)⊤ then

JQN(x) =

(

0
1
T

∫ T

0 [g(t, x1, x1, . . . , x1) + e(t)]dt

)

,

which, together with [H1], yields ∀µ ∈ [0, 1], JQN(x) 6= µ(JQN(−x)).
Thus, the condition (3) of Lemma 4 is also satisfied. Therefore, by applying Lemma 4, we conclude

that the equation Lx = Nx has at least one T -periodic solution on Ω, so (1).
The case m is odd can be treated similarly. This completes the proof of Theorem 6. �

4. Example

In this section, we provide an example to illustrate effectiveness of Theorem 6. Let us consider the
following equation

(ϕ3(x
(8)(t)))(8) = f(x(t))x′(t) + g

(

t, x(t), x
(

t− cos 20πt
90

)

, x
(

t− sin 20πt
100

))

+ cos(20πt), (25)

where

p = 3, T =
1

10
, τ1(t) =

cos 20πt

90
, τ2(t) =

sin 20πt

100
, e(t) = cos 20πt,

g(t, u, v, w) = sgn(u)u2(2 + sin 20πt) +
3

225

(

sgn(v)v2 + sgn(w)w2
)

| cos 20πt|.

Therefore we can choose d = 1, α0 = 3, α1 = α2 = 0.014, M1(8) = (2π)6
√

691
2730×12×12! .

We can easily check that condition [H1], [H2] of Theorem 6 holds. We can compute

(

α0 +

k
∑

i=1

αiδi

)

1

p

T 2M1(m) < 1,

by Theorem 6, (25) has at least one 1
10 -periodic solution.
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Iснування перiодичного розв’язку для p-лапласiвського
диференцiального рiвняння вищого порядку з багатьма

аргументами, що вiдхиляються

Мутауекiл Л.1, Чакроне O.2
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Застосовуючи теорему продовження Мовхiна, теорiю рядiв Фур’є, теорiю чисел Бер-
нуллi та деякi новi нерiвностi, дослiджується p-лапласiвське диференцiальне рiвняння
вищого порядку з аргументами, що вiдхиляються, виду

(ϕp(x
(m)(t)))(m) = f(x(t))x′(t) + g(t, x(t), x(t− τ1(t)), . . . , x(t − τk(t))) + e(t).

Отримано деякi новi результати щодо iснування перiодичних розв’язкiв такого рiв-
няння.

Ключовi слова: перiодичний розв’язок, вищий порядок, p-рiвняння Лапласа, аргу-

мент, що вiдхиляється, продовження Мовхiна.
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