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By applying Mawhin’s continuation theorem, theory of Fourier series, Bernoulli numbers
theory and some new inequalities, we study the higher-order p-Laplacian differential equa-
tion with multiple deviating arguments of the form

(pp(@™ ()™ = Fla()' (1) + g(t,2(t), 2t = 7a(t)), ..., 2(t — (1)) +e(t).

Some new results on the existence of periodic solutions for the previous equation are
obtained.
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1. Introduction

The periodic solution problem for p-Laplacian differential equation has extensively studied by many
researchers, we refer the reader to see papers [1-3] and the references cited therein.

Recently, the higher-order p-Laplacian differential equations have received more and more atten-
tion, which are derived from many fields, such as fluid mechanics and nonlinear elastic mechanics.
However, as far as we know, work on the existence of periodic solutions for higher-order p-Laplacian
differential equations has been partially discussed [4,5|. For instance, Li [5] has studied the existence
and uniqueness of periodic solutions for a kind of higher-order p-Laplacian differential equation of the
following form:

(pp(@™ ()™ + B(#))a' (1) + g(t, (t)) = e(?)-

In this paper, inspired by the results presented in [1,4, 5], we study the existence of periodic solution
for the following higher-order p-Laplacian differential equation with multiple deviating arguments of
the form:

(pp(x™ @)™ = f@()'(t) + gt 2(t), x(t = 11(1)), - x(t — (1)) + e(t). (1)

Where p > 1 is a fixed real number. The conjugate exponent of p is denoted by ¢, i.e. % + % = 1. Let
¢p: R — R be the mapping defined by ,(s) = |s[P~2s for s # 0, and ¢,(0) = 0, f,e,€ C(R,R) are
continuous T-periodic functions defined on R and 7' > 0, g € C(RF*2,R) and g(t + T, ug, w1, . .., us) =
g(t,ug, ur, ..., ug), Y(t, ug,u1, ..., ux) € RFF2 7 c CYR,R) (i = 1,2,...,k) with 7;(t + T) = 7;(t).
Therefore, in this paper, based on the Mawhin’s continuation theorem and some analysis skills, without
the assumption of fOT e(t)dt = 0, some new sufficient conditions for the existence of T-periodic solution
of p-Laplacian equation (1) will be established.
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Existence of periodic solution for a higher-order p-Laplacian differential equation ... 421

2. Preliminaries

Before stating the results, some necessary Lemmas are introduced.

Lemma 1 (Ref. [4]). Let T > 0 be constant, € C™(R,R), m > 2 and z(t + T) = z(t), ||y =

n}oa% |2 ()|, then there are M;(m) > 0 independent of x such that
telo,

T
20y < Mi(m)/ M (@)|dt, i=1,2,...,m—1 (2)
0

where, if m is an even integer

—Boy—4 m
m—2s m—as _1-
Mss_1(m) =T ”—12(2m—4s)!’ s=1,2,..., 5 1;
m _

ey

: - 1\ 252 1pm—2s—1
Milm) =9 oy = E 2 T8 Broae gy, ®)
. (m — 2s)!
Mm—l(m) = 57
if m is an odd integer
( m—2s—1
(—1)" 2 TR, o m+1
M. = =1,2,...,— 2
2S+1(m) (m —9s — 1)' y 8 ) ) 9 )
. — —Bopm 45— 1
Mi(m) = 3 Myy(m) = Tm_QS_l\/12(2m2T 4”;5_22)', s=1,2,..., —m; — 2 (4)
1
Mm_l(m) = —
\ 2

and By,_9s, Bom_4s, Bm_2s—1, Bom_4s_o are Bernoulli numbers, which can be calculed using the
- Zf;ol C;+1Bi

PEs| , where C;ziz—i—l is the combination number.

following recursion formula: By =1, B, =

Lemma 2. Letr >0, T >0 be two constants, s € C(R,R) such that s(t +T) = s(t), 7, € C}(R,R)
with 7;(t + T') = 7;(t) and |7/|o < 1. Then

T T
/\s(t—n(t)]’"dtgéi/ s dt,
0 0

where §; = |T!lo = max |7](t)].

1
1-|rlo’ t€[0,T]

Proof. It is easy to see that

T T T
[;B@—n@ﬂdﬁ=AIJPWW%MW—n@D+A st — (e[t

ie. . .
(=) [ Iste=mo)rae < [ Isterae
0 0
and thus
T 1 T
st—ntrdtgi/ s(t)|"dt.
|t < s st
This completes the proof. ]
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422 Moutaouekkil L., Chakrone O.

Lemma 3 (Borsuk [6]). Q C R" is an open bounded set, and symmetric with respect to 0 € Q. If
f€C(Q,RY) and f(x) # uf(—x), Vo € 92, Vu € [0,1], then deg(f,2,0) is an odd number.

Now, we recall Mawhin’s continuation theorem which our study is based upon.

Let X and Y be real Banach spaces and L: D(L) C X — Y be a Fredholm operator with index
zero. Here D(L) denotes the domain of L. This means that Im L is closed in Y and dim KerL =
dim(Y/ImL) < +oo. Consider the supplementary subspaces X; and Y7 and such that X = Ker L® X3
and Y =ImL®Y; and let P: X — Ker L and Q: Y — Y7 be natural projections. Clearly, Ker L N
(D(L) N X1) = {0}, thus the restriction L, := L|p)nx, is invertible. Denote the inverse of L, by
K. Now, let Q be an open bounded subset of X with D(L)NQ # @, amap N: Q — Y is said to be
L-compact on Q. If QN (Q) is bounded and the operator K(I — Q)N: Q — Y is compact.

Lemma 4 (Mawhin [7]). Suppose that X and Y are two Banach spaces, and L: D(L) C X — Y is
a Fredholm operator with index zero. Furthemore, Q) C X is an open bounded set, and N: Q — Y is
L-compact on Q. If all of the following conditions hold:

(1) Lz # ANz, Vo € 90N D(L), X €]0,1[;
(2) Nz ¢gImL, Ve € 0QNKer L; and
(3) deg{JQN,QNKerL,0} # 0, where J: ImQ — Ker L is an isomorphism.

Then the equation Lz = Nx has at least one solution on QN D(L).

In order to use Mawhin’s continuation theorem to study the existence of T-periodic solution for (1),

we rewrite (1) in the following system
21" (8) = q(w2)(t) = [22(1) 1 22a(2), )

f@ @)z (t) + g(t, 21 (8), 21(E = 71(1), - w1 (8 = 7r(t))) + (D).

Where ¢ > 1 is constant with % + % = 1. Clearly, if z(t) = (21(t), 72(t))T is a T-periodic solution to
equation set (5), then z1(¢) must be a T-periodic solution to equation (1). Thus, in order to prove
that (1) has a T-periodic solution, it suffices to show that equation set (5) has a T-periodic solution.

Now, we set Cr = {x € C(R,R): z(t + T) = =(t)} with the norm |z|p = H[la};] z(t)], CH =

{z € CY(R,R): (t + T) = x(t)} with the norm |z|| = max{|z|o,|2'|o} X = {x = (21(t),22(2))" €
CYHR,R?): z(t + T) = z(t)} with the norm ||z|x = max{[|z1]],||z2]|}, Y = {z = (21(t),22(2))" €
C(R,R?): z(t + T) = x(t)} with the norm ||z|y = max{|z1|o, |r2]o}. Obviously, X and Y are two
Banach spaces. Meanwhile, let

L:D(L)C X =Y, L=z = ( x%:; > (6)
L2
N: X =Y,
. oo()()
6510 = ftes iy + ot 0 0l —m e ) O

where D(L) = {x = (z1(t),22(t))" € C™(R,R?): z(t + T) = x(t)} It is easy to see that equation
set (5) can be converted to the abstract equation Lx = Nz. Moreover, from the definition of L, we see
that Ker L =R%, ImL = {y: y € Y, fo s)ds = 0}. So L is a Fredholm operator with index zero.

Let projections P: X — Ker L and Q Y — Im @ be defined by

T
Pr=21(0), Qy== /0 y(s)ds,
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and let K represent the inverse of L|ker prp(r)- Clearly, Ker L =Im @ = R? and

m—1 1. ' 1
Eyl(t) = > a0 +
i=1

g L s 0

where z(?) (0) (i=1,2,...,m —1) are defined by the equation AX = D,

1 0 0 -+ 0 0
c1 1 0 -+ 0 0
(&) C1 1 e 0 0
A= . ) : ) R E
Cm-3 Cm—-4 Cm-—5 -+ 1 0
Cm—2 Cm-3 Cm—a -+ c1 1

X = (20" 79(0), 2" 2(0), -+ ,2"(0),2'(0))
D = (d17d27”’ 7dm—27dm—1)T7
T
(j+ 1)

From (7) and (8), it is not difficult to find that N is L-compact on €2, where ) is an arbitrary open
bounded subset of X. For the sake of convenience, we list the following assumptions which will be
used by us in studing the existence of T-periodic solution to the equation (1)

[Hy

1 [T ,
di = /(T—s)ly(S)dS i=1,2,---,m—1 and ¢ = J=12 m=2
0

T

There is a constant d > 0 such that:

]

(1) g(t,ug, w1, ..., ux) > |elo, Y(t, ug, ut, ... ,ug) € [0,T] x RF with u; > d (i =0,1,...,k).

(2) g(t,ug,uq,...,ux) < —|elo, V(t, uo, ut, ..., up) € [0,T] x RF! with u; < —d (i =0,1,...,k).
[Ho| |g(t,uo,u1,. .. ug)| < Ef:o a;|u;|P~1 4+ B, where a; (i = 0,...,k), 3 are non-negative constants.

3. Main results
Lemma 5. Suppose that [H;| holds, if x € D(L) is an arbitrary solution of the equation Lz =
ANz, X €]0,1[, where L and N are defined by (6) and (7), respectively, then there must be a point
t* € [0,T) such that

|21 (t7)] < d. (9)
Proof. Suppose x € D(L) is an arbitrary solution of the equation Lz = ANz, for some A €]0, 1] then

{ o (1) = Agy(w2)(0) = Aaa(t) =22, 10)
2 (8) = Af (21 (£)2, (8) + Ag(t, 21(8), 21t — 11(8)), - .., 21 (t — 7(2))) + Ne(t).

From the first equation of (10), we have z2(t) = ¢, <%x§m)) (t), and then by substituting it into the

second equation of (10), we have
(p(at™ (O™ = X f (a1 ()] (6) + Ng(tar(8), 2t = 7a(t)), . 2a (= T(8) + Ne(t). (1)
Integrating both sides of equation (11) on the interval [0, 7], we have
T T
/ g(t,xl(t),xl(t—Tl(t)),...,a:l(t—Tk(t)))+/ e(t) =0.
0 0
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By the integral mean value theorem, there is a constant to € [0,7] such that

1 T
g(t,:ﬂl(to),l'l(t(] — Tl(to)), ... ,:El(to — Tk(to))) = -7 /0 e(t)dt. (12)

If |z1(to)| < d, then taking t* = tg such that |z (t*)| < d. If|z1(t9)| > d. It follows from assumption [H]
that there is some i € {1,2,...,k} such that |21 (to—7;(to))| < d. Since x4 (t) is continuous for ¢t € R and
z1(t+T) = x1(t), so there must be an integer r and a point t* € [0, 7] such that tog — 7;(to) = 1T +t*.
So \xl(t*)] = ‘xl(to — Ti(t()))’ < d. u
Theorem 6. Suppose |7/|o <1, (¢ =0,1--- ,k) and assumption [H;],[Hz] hold. Then equation (1)
1

has at one least one T-periodic solution, if (ag + Zle @;6;)» T?My(m) < 1, where My(m) and §; are
defined in Lemma 1, Lemma 2.

Proof. Let O = {x € X: Lz = ANz, A €]0,1[} if 2(.) = (21(.),22(.))T € Qy, then from (6) and (7),

we have

{A”sz%mmszmuw*uw, 1)

2 (1) = M (21 (£)2, (8) + Ag(t, 21(8), 21 (t — 11(8)), - . ., 21 (t — (1)) + Ne(t).
From Lemma 5, we have

<d+ [ |Z)(s)lds, te [t t"+T),
t*

lz1(t)| =

xl(t*)—k/t xy(s)ds

*

and

t* t*
1 (8)] = |21 (¢ — T)| = x(t*)—/ 2 (s)ds <d+/ @ (s)[ds, ¢ € [t +T.
t t* =T

-T

Combining the above two inequalities, we obtain

€[0,7] tE[t* t*+T) teftr £+ +T] i o

1 t t*
|z1]p = max |z1(t)] = max |z1(t)] < max {d + = < |2 (s)|ds + E% (s)|ds) }
t 2 ! / ! (14)

1

T
<t [ Ih)ds
2 Jo

On the hand, multiplying both sides of (11) by z1(¢) and integrating it from 0 to 7', we obtain

T

T
A<%@@@wmm@w=V/’mmmﬁwm@w

T ’ T
—l—)\p/ g(t,a:l(t),arl(t — Tl(t)),... ,xl(t—Tk(t)))wl(t)dt—F)\p/ e(t)xl(t)dt. (15)
0 0

Case 1. If m is even, we obtain

T

T T
A<%uWW»W%mWﬁ=«nmA|ﬁ”@mﬁ=4|ﬂ“uww

Hence

T T
/mﬁ%ww=V/fmmnwm@a
0 0 (16)

T T
—i—)\p/ g(t,a:l(t),xl(t —Tl(t)),... ,xl(t—Tk(t)))arl(t)dt—F)\p/ e(t)xl(t)dt.
0 0
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In view of assumption [Hs], Lemma 2 and (16), we have

T k
/ 2™ () Pdt < (ao + Zaié,) T|z1 5+ (8 + |elo)T)x1o
0

i=1

ie.

T % 1 k P 1 1 1
</ |:n§m>(t)|¥’dt> <Tv (ao+ Y b | |aslo+T7 (B + lelo)?|z1lf,

0 i=1
which together with (14), yields

1 1 1 1
T m P T;'f‘l k p T2 > 1
([ 1tmora)” <2 (ao+;ai&- atlo+ () 6+ el

1 k ! 11 1
+T?d <a0 +Zai5i> +Trdr (B + le|o)?.

1=1

From Lemma 1, there exists M;(m) > 0 independent of A and z such that

T
2o < My(m) /0 2™ (1),

which together with (17) yields

T v T2
< /0 2™ (1) V’dt> < 5 Mi(m) (ao + Z:a,- : \Pdt>
Tt - k g
+ < - )Ml( % (B + lefo) % ( |pdt>p +Tvd <a0+zai5i)

2p =1
11 1
+Tvdr (B +lelo)r. (18)

1 =~
-
S
~
S |
N\
\

1
In view of p > 1 and T;Ml (m) (a0 + Zle a;6;)? < 1, from (18) we see that there is a constant M

independent of A such that
1
T P
(/ jz{™ (t)]?”dt) < M. (19)
0

Thus, it follows from Lemma 1 and (19) that we have
o m :
’331’0 Ml( )/ \xl (t)’dt < Ml(m)Tq M() = Mll' (20)
0

By means of (14) and (20), we have

|33‘1|0 <d+ TMyq := Mys. (21)
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ot My = max |F()l, Mg

of (13), we have

max lg(t, ug, ..., ur)| and from the second equation
te[0,T7], Juo| <Mz, up| < Mi2

T T T T
AIﬁmmﬁééIﬂmmﬁ@W+AIﬁmﬂmm@—ﬁ®%~wﬁ—mwmﬁ+A|WN

T
ng/ @ ()]t + T(M, + |elo)
0

< MyT|ah]o + T(Mj + [elo)
< MyT My + T (Mg + |elo) := M. (22)

Again, from Lemma 1, we have
T
[#3lo < Mi(m) / |y (t)|dt < My(m)May == May.
0

Integrating the first equation of (13), we have fOT |z2(t)|?225(t)dt = 0, which implies that there is a
constant 7 € [0,7] such that xzo(n) = 0, thus

T
|@b</|%@W<TMm:Nb- (23)
0

Let Qp = {z|z € Ker L, QNx = 0} if x € Q5 then = € R? is a constant vector with

22|97 229 = 0,

1T
T /0 [f (@1 ()2 (8) + g(t, x1 (), 1 (t — 71(F)), ...y w1 (¢ — T0(E))) + €(t)]dt = 0.

(24)

According to the first formula of (24), we have xo = 0, which together with the second equation of
(24) yields

1 T
T/O [g(t,xl,xl,...,xl)+€(t)]dt:0_

In view of [Hi], we see that |x1| < d. Now, let My} = max{Mj1, M12}, My = max{Ma1, Mo}, then
21| < My, [lzg| < My, Taking Q = {z|z = (z1,22)" € X,|lz1] < My +d, [lz2 < My + d}, then
2 UQe € Q. So from (21) and (23), it is easy to see that conditions (1) and (2) of Lemma 4 are
satisfied.

Next, we verify the condition (3) of Lemma 4. To do this, we define the isomorphism

J: Im@Q — Ker L, J(a:l,a:g)T = (a:l,a:Q)T,

then
B Spq(m2)
1N = 4 1100 o0 ) e )

By Lemma 3, we need to prove that

z € Ker L N

JQN(z) # (JQN(—x)), VerednKerL, pel0,1],

Case 1. If x = (x1,29) " € 002 NKer L\{(M; +d,0)",(—=M; —d,0) "}, then x5 # 0 which, gives us
(Pq(x2) 7é 0
Pq(2)pq(—w2) <O,

obviously, Vi € [0,1] JQN(z) # pu(JQN(—x)).
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Case 2. If # = (My +d,0)" or z = (=M —d,0)" then
JQN(z) = ( 0 )
N %fg[g(@ﬂ?h!ﬂh---,xl) +e(t)]dt )’

which, together with [H,], yields Vu € [0,1], JQN(z) # p(JQN(—x)).

Thus, the condition (3) of Lemma 4 is also satisfied. Therefore, by applying Lemma 4, we conclude
that the equation Lz = Nz has at least one T-periodic solution on Q, so (1).

The case m is odd can be treated similarly. This completes the proof of Theorem 6. ]

4. Example

In this section, we provide an example to illustrate effectiveness of Theorem 6. Let us consider the
following equation

(p3(x®())® = fa@®)2'(t) + g (t,2(t),x (t — S2m) g (¢ — sm2TY) 4 cos(20mt),  (25)

where 1 20mt in 207t
cos 207 sin 207
p=3, T=—, n(t)= g0 To(t) = o0 e(t) = cos 207t,

3
g(t,u,v,w) = sgn(u)u?(2 + sin 20mt) + 355 (Sgn(v)v2 + Sgn(w)w2) | cos 207t|.

Therefore we can choose d = 1, ag = 3, ay = ap = 0.014, M;(8) = (27)% / 5m51o7-
We can easily check that condition [H;], [Ha] of Theorem 6 holds. We can compute

1
k P
(ozo + Zai&-) T?M;(m) < 1,
i=1

by Theorem 6, (25) has at least one %-periodie solution.
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IcHyBaHHA nepiognYHOro po3s’a3ky A/ p-NanaaciBCbkoro
AvcbepeHLianbHOro PiBHAHHA BMULLOro nopsgky 3 baratbma
aprymMeHTamu, L0 BigXuUAstOTbCS

Mymayexkin JI.', Yaxpore O.2

L Kagedpa mamemamuru, bazamonpodirviut darysomem, Ywnisepcumem Moxameda Iepuwozo 6 Yorcdi,
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2 Kagedpa mamemamuru, daxysvmem nayxk, Ywisepcumem Mozxameda Ilepwoeo 6 Yoicdi,
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3acToCOByHOUM TEOpEeMY IPOAOBKeHHsi MoBxiHa, Teopito psiB @yp’e, Teopito yncesn bep-
HYJLI1 Ta JIesiKi HOBI HEPiBHOCTI, TOC/TIIZKYETHCS p-JIallIaciBChbKe Mudepeniiiaibiue piBHIHHS
BUINOTO TOPSIAKY 3 apryMeHTaMMU, IO BiIXUISIOTHCS, BULY

(pp (™ ()™ = fla()a’ (1) + g(t, 2(t), 2(t = T1()), - .. 2(t — (1)) + e(t).

OTpumano Jiesiki HOBI pe3y/bTaTh MO0 ICHYBAHHS IMEPIOIUIHIX PO3B’3KIiB TAKOTO PiB-
HSAHHS.

Knto4osi cnoBa: nepioduunuti poss’szok, suwuli nopadok, p-pisuanns Janaaca, apey-
MEHM, WO BI0TUAAEMBCA, Npodosoicerns Mosxina.
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